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INTRODUCTION 
 

Huntington's disease (HD) is a monogenic 

neurodegenerative disorder mainly characterized by 

progressive cognitive impairment, motor dysfunction 

and psychiatric alterations [1]. The genetic cause of 

the disease is an expansion of CAG repeat in the 

mutant huntingtin (mHtt) gene, contributing to 

cortical atrophy and the preferential demise of 

medium spiny neurons in the striatum [2, 3]. A 

number of studies have shown that long-term  

survival of aforementioned neurons depends on the 

expression of brain derived neurotrophic factor 

(BDNF), which is reduced due to the mHtt-mediated 

mechanism in HD [4, 5]. Although there is no cure 

currently available for the disease, BDNF is thought 
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ABSTRACT 
 

The aim of this study is to determine the molecular functions of brain derived neurotrophic factor (BDNF) in 
Huntington’s disease (HD). A total of 1,675 differentially expressed genes (DEGs) were overlapped from HD 
versus control and BDNF-low versus high groups. Five co-expression modules were constructed using weight 
gene correlation network analysis, among which the blue and turquoise modules were most strongly correlated 
with HD and low BDNF. Functional enrichment analyses revealed DEGs in these modules significantly enriched 
in GABAergic synapse, phagosome, cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase 
(MAPK), renin-angiotensin system (Ras), Ras-associated protein-1 and retrograde endocannabinoid signaling 
pathways. The intersection pathways of BDNF, such as cAMP, MAPK and Ras signaling pathways, were 
identified in global regulatory network. Further performance evaluation of low BDNF accurately predicted HD 
occurrence according to the area under the curve of 82.4%. In aggregate, our findings highlighted the 
involvement of low BDNF expression in HD pathogenesis, potentially mediated by cAMP, MAPK and Ras 
signaling pathways. 
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to be an excellent therapeutic target for the clinical 

hallmarks of HD [6]. 

 
BDNF, encoding a member of the nerve growth factor 

family of proteins, is a crucial regulator of neuronal 

growth, differentiation and survival [7]. Previous evidence 

in mouse and cellular models of HD revealed that mHtt not 

only inhibited the synthesis and release of BDNF at 

cortico-striatal synaptic junction [8], but also disrupted its 

post-Golgi trafficking and vesicular transport [9, 10]. A 

resultant reduction in BDNF supply led to a failure of 

trophic support, which, in turn, exacerbated striatal 

degeneration and motor deficits [11, 12]. However, the 

neuropathological mechanisms of HD attributable to low 

BDNF expression remained elusive. Consequently, we 

sought to conduct a comprehensive bioinformatic analysis 

of BDNF based on gene expression data and functional 

annotations, which might gain insight into the molecular 

roles of BDNF underlying HD pathogenesis. 

 

RESULTS 
 

Identification of differentially expressed genes 

 

The workflow diagram of our study was presented in 

Figure 1. The mean ribose nucleic acid (RNA) 

expressions of BDNF in 157 HD cases (-0.12 ± 0.20) 

were significantly lower than that of 157 non-dementia 

controls (0.16 ± 0.23; P < 0.001) (Figure 2A). After the 

removal of repetitive and unannotated genes, 19,414 

background genes were included for differentially 

expressed genes (DEGs) analysis. Significant changes 

in the expression of 2,294 genes (1,221 up-regulated 

and 1,037 down-regulated) were identified in HD versus 

non-dementia controls (Figure 2B); whilst 2,173 DEGs 

(1,028 up-regulated and 1,145 down-regulated) were 

determined in BDNF-low versus high group (Figure 

2C). Thereafter, 1,675 overlapping DEGs were included 

between HD / control and BDNF-low / high cohorts. 

Heatmap of cluster analysis showed that the expression 

of the top 25 down-regulated and up-regulated DEGs 

distinguished HD from control samples (Figure 2D). 

 

Co-expression modules and functional enrichment 

analysis 

 

All the samples passing the preset cut-off value (height 

= 15) belonged to specific clusters (Figure 3A). Five co-

expression modules (blue, brown, gray, turquoise and 

yellow) were constructed by using WGGNA (Figure 

3B). The heatmap of module-trait relationships (Figure 

3C) revealed that the turquoise module had the strongest 

negative correlation with HD (correlation coefficient = -

0.69, P = 8e-46) and the strongest positive correlation 

with BDNF expression (correlation coefficient = 0.79, P 

= 2e-68); whereas the blue module was the most 

positively correlated with HD (blue: correlation 

coefficient = 0.73, P = 9e-53) and the most negatively 

correlated with BDNF expression (blue: correlation 

coefficient = -0.74, P = 3e-56); likewise, the brown and 

yellow modules were positively correlated with HD 

(brown: correlation coefficient = 0.72, P = 3e-51; 

yellow: correlation coefficient = 0.53, P = 1e-24) and 

negatively correlated with BDNF expression (brown: 

correlation coefficient = -0.53, P = 2e-24; yellow: 

correlation coefficient = -0.45, P = 6e-17). As shown in 

Figure 3D, the DEGs of the turquoise module were 

enriched in KEGG pathways of GABAergic synapse, 

cyclic adenosine monophosphate (cAMP), mitogen-

activated protein kinase (MAPK), renin-angiotensin 

system (Ras) and retrograde endocannabinoid signaling 

pathways; the blue module DEGs were involved in 

cytokine-cytokine receptor intersection, phagosome, 

and MAPK signaling pathways; the DGEs of brown and 

yellow modules participated in Ras-associated protein-1 

(Rap1) signaling pathway and vascular smooth muscle 

contraction, respectively. 

 

Global regulation network and AUC analysis of 

BDNF 

 

The scatterplot of GS versus MM (Figure 4A) showed a 

strong correlation between intramodular connectivity 

and genetic phenotypes in the blue and turquoise 

modules (blue: correlation coefficient = 0.79, P = 5.9e-

96; turquoise: correlation coefficient = 0.6, P = 6e-98). 

In the global regulation network (Figure 4B), low 

expression of BDNF interacting with DEGs was 

presented. Functional enrichment analysis identified the 

intersection pathways of BDNF, and all the genes 

enriching in cAMP, MAPK and Ras signaling pathways 

were exhibited in Figure 4C. The AUC analysis 

presented an accurate performance of low BDNF 

expression in predicting HD (AUC = 82.4%) (Figure 

4D). 

 

Verification of BDNF-mediated pathways and the 

biological processes of GSEA 

 

Five signature genes of each intersection pathway were 

listed in Supplementary Table 1. As shown in Figure 

5A, the expression of BDNF were significantly 

positively or negatively correlated with each of the 

signature genes (P < 0.05). Compared with the non-

dementia controls, the significantly enriched biological 

processes in HD were mainly related to neutrophil 

chemotaxis, neutrophil migration, positive regulation of 

angiogenesis, regulation of protein maturation and 

processing (Figure 5B). Similarly, biological processes 

of neutrophil chemotaxis, neutrophil migration, positive 

regulation of angiogenesis, regulation of protein 

maturation and processing, were significantly enriched 

in BDNF-low group (Figure 5C). 
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DISCUSSION 
 

In this study, we identified BDNF as a target gene of 

HD and the RNA data revealed that BDNF expression 

was down-regulated. The GSEA analyses engaging 

19,414 background genes showed that DEGs in HD / 

control and BDNF-low / high groups were significantly 

enriched in regulation of angiogenesis, protein 

maturation and protein processing. Pathologically, the 

accumulation of N-terminal mHtt was observed to be 

responsible for protein processing impairment, protein 

misfolding and neuronal degeneration [13, 14]. It was 

worth noting that these biological processes were 

potentially related to HD as well as the low BDNF 

expression. Thenceforth, the global regulatory network 

and co-expression modules of DEGs interacting with 

BDNF were constructed to investigate the genome-level 

pathogenesis of BDNF in HD. 

 

 
 

Figure 1. The workflow diagram of the present study. HD: Huntington’s disease. 
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Figure 2. Differential expression gene analysis. BDNF expression between HD and non-dementia controls (A). Distribution of DEGs in 

the HD / control (B) and BDNF-low / high group (C): blue represents down-regulated and red indicates up-regulated. Heatmap of the top 25 
down-regulated and up-regulated genes (D). HD: Huntington’s disease, DEGs: differential expression genes. 

 

 
 

Figure 3. Weighted correlation network analysis. Plot of sample clustering (A). Cluster dendrogram of five modules and assigned 

module colors (B): grey indicates non-clustering genes. Heatmap of module-trait relationships (C): red indicates positively correlated and 
green represents negatively correlated. KEGG pathways of genes in co-expression module (D). HD: Huntington’s disease, KEGG: Kyoto 
Encyclopedia of Genes and Genomes. 
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The results emerging from co-expression network 

analysis demonstrated that the blue and turquoise 

modules had the greatest correlation with HD and 

BDNF expression, in which the DEGs were involved in 

GABAergic synapse, phagosome, Rap1, cAMP, 

MAPK, Ras and retrograde endocannabinoid signaling 

pathways. Additional experiments from animal HD 

models linked the MAPK signaling pathway to the 

neurotoxicity of mHtt [15–17]. More specifically, the 

role for MAPK signaling in HD was supported by 

mHtt-induced inhibition of fast axonal transport  

through the activation of MAPKs, which provided a 

molecular basis for HD neuropathology [18]. An 

increase in BDNF was sufficient to preserve synaptic 

vesicle proteins and facilitate behavioral recovery in 

post-stroke mice, partially via MAPK signaling [19]. 

Several indirect evidences confirmed the linkage 

between BDNF and MAPK signaling, namely, the 

targeted deletion of MAPK kinases inhibited the 

neuroprotective action of BDNF, leading to neuronal 

apoptosis and brain developmental defects [20–22]. On 

the other hand, pretreatment with BDNF prevented 

MAPK phosphorylation activated by amyloid-beta 

peptide in the entorhinal cortex of Alzheimer’s  

disease, suggesting a negative correlation of BDNF with 

MAPK signaling [23]. Similarly, our results supported 

the likelihood that low expression of BDNF was 

involved in the hyperactivation of MAPK signaling and 

that enhancing BDNF expression could be 

neuroprotective in HD. 

 

With except of the MAPK signaling, enrichment 

analysis of intersection pathways revealed that BDNF 

jointly participated in Ras and cAMP signaling 

pathways. The involvement of Ras has been 

increasingly reported in the pathophysiology of neuro-

degenerative diseases, such as Alzheimer’s disease [24] 

and HD [25]. Angiotensin converting enzyme (ACE) is 

a dipeptidase that belongs to the Ras and cleaves 

angiotensin I to generate angiotensin II (Ang II) [26]. In 

mouse models of Alzheimer’s disease [27] and HD 

[25], ACE inhibitors and Ang II antagonists were 

administrated to improve cognitive impairment by 

reducing mitochondrial oxidants. 

 

 
 

Figure 4. Module-pathway regulatory network and AUC analysis. Scatterplot of module membership vs. gene significance (A). Global 
regulatory network of blue and turquoise modules (B): red represents high expression; blue and yellow indicate low expression; node size 
indicates the degree of gene connectivity. Enrichment analyses of BDNF intersection pathways (C): yellow indicates the low BDNF expression. 
Performance evaluation of low BDNF in HD prediction (D). AUC: area under the curve, HD: Huntington’s disease. 
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Recently, the protective effects of candesartan (an 

inhibitor of Ang II) on BDNF loss and neuronal 

apoptosis has also been demonstrated in cognitively 

impaired rats, pointing to the reduction in BDNF on Ras 

signaling as a mechanism of neurodegeneration [28]. 

Moreover, BDNF participation in Ras / MAPK 

signaling pathways was extended by binding to and 

activating the tyrosine receptor kinase B, giving rise to 

the differentiation and survival of knock-in striatal cells 

in HD [29]. For cAMP signaling, it is essential for 

mHtt-induced energy metabolism deficits, especially in 

early stage of HD [30]. There was convincing evidence 

that inhibition of cAMP expression and mitochondrial 

respiratory chain dysfunction emerged in HD brain as 

early as 12 hours following mHtt transgene induction 

[31]; intriguingly, the administration of forskolin to 

raise cAMP levels attenuated the neurotoxicity of mHtt 

[32]. In addition, experiment from primary cultures of 

hippocampal neurons showed the deteriorative damage 

of cAMP signaling with the down-regulation of BDNF 

[33], which was in line with our findings on the 

involvement of cAMP signaling in low BDNF-mediated 

HD pathogenesis. 

Further scatterplot of the relationship between MM and 

GS confirmed that DEGs in the blue and turquoise 

modules were strongly interacting with the BDNF 

expression. Based on these DEGs, the global regulatory 

network was constructed to predict the intersection 

pathways of BDNF, which supported the potential roles 

of BDNF reduction in HD pathophysiology via MAPK, 

Ras and cAMP signaling pathways. Owing to the low 

expression of BDNF, the susceptibility of these 

presented pathways to defects might be obvious, 

resulting in the development of HD under a variety of 

pathogenic mechanisms [29, 34]. The AUC analysis 

exhibited a good diagnostic performance of low BDNF 

in differentiation of HD cases from non-dementia 

controls, implying BDNF to be a potential biomarker of 

HD. It was consistent with previous animal experiment 

that low expression of BDNF was found in pre-

symptomatic HD, and this pathological decline could be 

up-regulated through beneficial interventions, such as 

wheel operation and environmental enrichment [35]. 

Moreover, the analyses of Pearson correlation showed 

significant correlation of BDNF with signature genes, 

which suggested that alterations in BDNF expression 

 

 
 

Figure 5. Correlation among genes and gene set enrichment analysis. Correlation of BDNF with signature genes (A): *P < 0.05; red 

indicates negative correlation; blue represents positive correlation. Biological processes enriched in HD (B) and BDNF-low (C) groups. HD: 
Huntington’s disease. 
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led to changes in signature genes of each intersection 

pathway, thus providing computational statistical 

evidence that low BDNF expression related HD 

pathogenesis was mediated via cAMP, MAPK and Ras 

signaling pathways. Further investigation in vivo or in 

vitro is expected to verify the relevant pathways 

proposed in this study underlying pathological process 

of HD. 
 

CONCLUSIONS 
 

Overall, we may presumptively declare that gene 

expression profiling is a promising approach to 

elucidate molecular roles of targeted gene in the HD 

occurrence. On the basis of our findings, BDNF is 

found to be down-regulated in HD, and its detrimental 

effects of low expression in the pathogenesis of HD 

might be mediated by MAPK, Ras and cAMP signaling 

pathways. 

 

MATERIALS AND METHODS 
 

Data resources 

 

Rosetta / Merck Human 44k microarray analyses of 

postmortem prefrontal cortex samples were performed 

with RNA extracted from 157 HD patients and 157  

age- and gender-matched controls in the GSE33000 

dataset of Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/) database [36]. A 

gene corresponding to multiple probes eliminated those 

with low expression and retained the highest one. The 

normalization processing on the gene expression data 

was conducted using normalizeBetweenArrays function 

in the limma package of R software version 3.6.2 [37]. 
 

Differential expression analysis 
 

Taking the mean expression value of BDNF to be cut-

off point, the included samples were divided into 

BDNF-low and high groups. To identify differentially 

expressed genes (DEGs) in HD / control and BDNF-low 

/ high cohorts, we computed empirical Bayes moderated 

t-statistics using lmFit and eBayes functions in limma 

packages. False discovery rate (FDR)-adjusted P < 0.05 

and logarithm fold change (logFC) > 0.15 were 

considered statistically significant in the analysis of 

DEGs [37, 38]. 
 

Co-expression network analysis 
 

The expression data of DEGs overlapped from HD 

versus control as well as BDNF-low versus high groups 
were extracted to perform weight gene correlation 

network analysis (WGCNA). The hclust function was 

implemented to draw the clustering dendrogram 

eliminating the outliers of samples. Using the default 

unsigned network type, a soft thresholding power of 14 

meeting the scale-free topology criterion was selected in 

the pickSoftThreshold function [39]. The WGCNA 

package was implied to predict the co-expression 

modules for assigning different color labels [40]. The 

minimum size of module was set to 30 genes to avoid 

small modules and guarantee separation. Functional 

annotations and enrichment analyses were conducted 

using the clusterProfiler package to screen genes 

enriched in Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways. The FDR < 0.05 was considered as 

enrichment with statistical significance. 

 

Construction of global regulatory network and 

intersection pathways of BDNF 

 

The scatter diagram of the module membership (MM) 

and gene significance (GS), respectively representing 

intramodular connectivity and genetic phenotype, was 

plotted using the verboseScatterplot function [41]. We 

selected the modules with the strongest positive or 

negative correlation with phenotypes to construct the 

global regulatory network in the STRING database 

(Search Tool for the Retrieval of Interacting Genes, 

https://www.string-db.org/) [42]. The visualization of 

global regulatory network and BDNF intersection 

pathways were accomplished by using the cytoscape 

software [43]. 

 

Analysis of area under the curve (AUC) 

 

The pROC function was utilized to evaluate the 

performance of target gene in distinction of HD and 

non-dementia. Receiver operating characteristic 

(ROC) curves exhibit the performance of dichotomies 

with sequential output, showing the sensitivity and 

specificity as output thresholds move into the  

range of all possible values [44]. ROC analysis is 

widely used in medical diagnostics, in which the 

performance of a classifier is measured by the area 

under the curve (AUC) [45]. An AUC value of  

100% indicated complete prediction and 50% 

represented random selection. All P values were 

bilateral and statistical significance was set to the 

threshold less than 0.05. 

 

Signature genes for a pathway and gene set enrichment 

analysis (GSEA) 

 

The quantified relationship of a gene with other genes 

was measured by correlation coefficient using Pearson 

correlation [46]. In term of each intersection pathway, 
we identified a small set of genes (the top 5) in the 

pathway as signature genes, whose expression showed 

the strongest correlation with other genes of the 

https://www.ncbi.nlm.nih.gov/geo/
https://www.string-db.org/
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pathway [47]. A pathway was considered to be 

regulated or mediated by the target gene (i.e., BDNF) if 

the signature genes of the pathway were significantly 

correlated with target gene. The analysis of GSEA was 

conducted to filtrate the biological process of gene 

ontology terms that might be associated with HD and 

low BDNF [48, 49]. The default weight statistic was 

used for the permutation of 1000 times, and the 

threshold of significant enrichment was set as 

normalized P < 0.05. The enrichment data of GSEA 

analysis were visualized using ClusterProfler, ggplot2, 

enrichplot and GSEABase packages. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. Signature genes for each intersection pathway. 

Pathway Genes Signature genes 

cAMP signaling pathway ADCYAP1, AKT3, ATP1A3, ATP1B1, 

ATP2A2, ATP2B1, ATP2B2, BDNF, 

CALM2, CALML4, CAMK4, DRD1, 

GLI1, GRIA1, GRIA2, GRIN2A, 

MAP2K1, MAPK10, MAPK8, MAPK9, 

PAK1, PIK3CB, PRKACB, RAPGEF3, 

ROCK2, SOX9, SST, VIP 

AKT3, GRIA2, MAPK10, PAK1, 

PIK3CB 

MAPK signaling pathway AKT3, ARAF, BDNF, CACNB2, 

CACNB4, DUSP2, DUSP4, DUSP6, 

ERBB2, FGF2, FGF7, FGF9, 

GADD45G, HSPA8, KRAS, MAP2K1, 

MAPK10, MAPK8, MAPK9, NLK, 

PAK1, PDGFRB, PPP3CA, PRKACB, 

PTPN5, PTPRR, RASGRP1, 

RPS6KA3, STMN1 

ARAF, MAPK9, MAPK10, NLK, 

PAK1 

Ras signaling pathway ABL1, AKT3, ARF6, BDNF, CALM2, 

CALML4, FGF2, FGF7, FGF9, 

FOXO4, GNB5, GNG2, GNG5, 

GRIN2A, KRAS, MAP2K1, MAPK10, 

MAPK8, MAPK9, PAK1, PAK3, 

PDGFRB, PIK3CB, PRKACB, RALB, 

RASGRP1, RASSF5 

AKT3, GNG2, PAK1, PAK3, PIK3CB 

 


