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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the sixth most 

commonly diagnosed cancer and the fourth leading 

cause of cancer deaths worldwide [1]. Treatment for 

HCC has been developed over many years, and includes 

approaches such as curative resection, ablation, liver 

transplantation, radiotherapy, cancer pharmacological 

treatments and transarterial chemoembolization 
(TACE). However, clinical outcomes of HCC patients 

remain unsatisfactory due to high recurrence and 

metastasis rates [2–7]. The probability of postoperative 

recurrence remains high in patients who undergo 

surgery, with a 5-year recurrence rate of >70%, and 

which usually increases within the first 2 years [8]. 

Meanwhile, the 5-year survival rate is only 30–40% [9]. 

The complexity of underlying molecular mechanisms in 

HCC, which could involve genetic mutations, 

epigenetic alterations and lack of reliable gene 

signatures [10, 11], leads to poor curative effects. 

Therefore, understanding the specific mechanisms of 

HCC pathogenesis and finding therapeutic strategies are 

urgently needed for better prediction of prognoses and 

improved treatment in HCC patients. 
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ABSTRACT 
 

The development of high-throughput technologies has yielded a large amount of data from molecular and 
epigenetic analysis that could be useful for identifying novel biomarkers of cancers. We analyzed Gene 
Expression Omnibus (GEO) DataSet micro–ribonucleic acid (miRNA) profiling datasets to identify miRNAs that 
could have value as diagnostic and prognostic biomarkers in hepatocellular carcinoma (HCC). We adopted 
several computing methods to identify the functional roles of these miRNAs. Ultimately, via integrated analysis 
of three GEO DataSets, three differential miRNAs were identified as valuable markers in HCC. Combining the 
results of receiver operating characteristic (ROC) analyses and Kaplan–Meier Plotter (KM) survival analyses, we 
identified hsa-let-7e as a novel potential biomarker for HCC diagnosis and prognosis. Then, we found via 
quantitative reverse-transcription polymerase chain reaction (RT-qPCR) that let-7e was upregulated in HCC 
tissues and that such upregulation was significantly associated with poor prognosis in HCC. The results of 
functional analysis indicated that upregulated let-7e promoted tumor cell growth and proliferation. 
Additionally, via mechanistic analysis, we found that let-7e could regulate mitochondrial apoptosis and 
autophagy to adjust and control cancer cell proliferation. Therefore, the integrated results of our bioinformatics 
analyses of both clinical and experimental data showed that let-7e was a novel biomarker for HCC diagnosis 
and prognosis and might be a new treatment target. 
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Micro–ribonucleic acids (miRNAs) are short, single-

stranded, noncoding RNAs (ncRNAs) 19–25 

nucleotides long that bind to the 3′-untranslated region 

(UTR) of messenger RNAs (mRNAs), resulting in 

degradation of the target mRNA molecules or 

translational inhibition [12]. MiRNAs are multi-

functional molecules participating in cell development, 

differentiation and aging [13–15]. However, the miRNA 

profiles of malignancies are significantly different from 

those of normal tissues, making them potentially 

appealing biomarkers in the diagnosis, treatment and 

prognosis of various cancers [12, 16, 17]. Recently, the 

role of miRNAs in tumorigenesis and tumor progression 

has attracted much attention. A growing amount of 

evidence has proven the vital role of dysregulated 

miRNAs in cancer diagnosis and prognosis. Certain 

miRNAs are significantly correlated with the presence 

of tumors, even in the early stages, or with worse 

prognosis [18, 19]. In this study, we focused on finding 

miRNAs that could have value as diagnostic and 

prognostic biomarkers in HCC. 
 

With the development of high-throughput technologies, a 

large amount of data has been generated from molecular 

and epigenetic analyses. The relevant databases could  

be used to identify novel biomarkers of cancers via 

computational approaches [20]. Herein, we analyzed 

Gene Expression Omnibus (GEO) DataSet miRNA 

profiling datasets to identify miRNAs with potential 

diagnostic- and prognostic-biomarker value in HCC. 

Then, we verified the prognostic values of these  

miRNAs using the Kaplan–Meier (KM) Plotter 

(http://www.kmplot.com/analysis/). Further analyses of 

these miRNAs included Gene Ontology (GO) analysis 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

signaling pathway analysis. Finally, we identified the 

most valuable miRNA, hsa-let-7e. Note, however, that 

bioinformatics data analyses based on the 

abovementioned databases often produce conflicting 

results [21]. Therefore, we performed studies to identify 

the clinical value, biological function (BF) and molecular 

mechanism (MM) of let-7e. Differences in let-7e 

expression in HCC tissues were verified and their clinical 

relevance analyzed. Finally, via in vitro experiments, we 

demonstrated the potential BF and MM of let-7e in HCC. 

Our results suggested that let-7e might be a novel 

biomarker for diagnosis, treatment and prognosis in HCC. 

 

RESULTS 
 

Identification of significantly dysregulated miRNAs 

and their diagnostic and prognostic values in HCC 

tissues 
 

We performed a comprehensive differential analysis of 

miRNA expression based on three GEO DataSets 

(GSE6857, GSE22058 and GSE12264) in order to 

identify dysregulated miRNAs in HCC tissue compared 

with non-tumor normal controls (NCs). Datasets 

GSE6857, GSE22058 and GSE12264, respectively, 

contained 124, 146 and 966 miRNAs. By merging the 

three datasets, we were able to identify three 

consistently dysregulated miRNAs (hsa-let-7b, hsa-let-

7c and hsa-let-7e) in HCC tissue versus NCs (Figure 

1A). The expression profiles of these distinct miRNAs 

are shown in the heatmaps in Figure 1B. heatmaps. 

Considering the widely differing expression levels of 

hsa-let-7b, hsa-let-7c and/or hsa-let-7e between 

cancerous and non-tumor tissues, we selected them for 

further investigation of whether, when dysregulated, 

they could serve as diagnostic and prognostic markers 

in HCC. 

 

Next, we used quantitative reverse-transcription 

polymerase chain reaction (RT-qPCR) to measure 

differences in these three miRNAs’ expression levels 

between HCC tissue specimens and matched non-tumor 

tissue specimens. The results showed that let-7b 

(P=0.038; 45 pairs of specimens) and let-7e (P=0.016; 

63 pairs) were upregulated in HCC tissue compared 

with NCs. However, expression of let-7c (P=0.162; 43 

pairs) did not differ between HCC and normal tissues 

(Figure 1C). 

 

To further elucidate the diagnostic roles played by the 

three miRNAs in HCC, we computed receiver operating 

characteristic (ROC) curves of their diagnostic values in 

HCC based on the dataset GSE12264, and then we 

compared the areas under the curve (AUCs) of the ROC 

curves among the miRNAs (Figure 1D). The results 

indicated that expression levels of let-7b (AUC, 0.791; 

95% CI, 0.700–0.881), let-7c (AUC, 0.740; 95% CI, 

0.639–0.841) and let-7e (AUC, 0.810; 95% CI, 0.721–

0.898) were significantly higher in HCC tissues than in 

NCs (Table 1). Then, to the evaluate three miRNAs’ 

prognostic capabilities, we analyzed patient survival 

rates using KM Plotter datasets and compared 

differences in survival rate using a log-rank test. We 

found that expression levels of let-7c (HR, 0.70; 

95%CI, 0.49–0.99, P=0.046) and let-7e (HR, 1.49; 

95%CI, 1.03–2.14, P=0.031) were associated with 

survival rate in HCC patients. However, expression of 

let-7b (HR, 0.69; 95%CI, 0.47–1.01; P=0.053) had no 

statistically significant association with survival rate in 

this analysis (Figure 1E). 

 

Functional enrichment analysis 

 

Using a functional-enrichment analysis tool (FunRich; 
http://www.funrich.org), we analyzed the most relevant 

neighboring and cross-linked target genes of the three 

miRNAs. The result was a network (Figure 2A), which 

http://www.kmplot.com/analysis/
http://www.funrich.org/
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was composed of these miRNAs and of 52 genes. 

Next, we analyzed the relevant transcription factors 

(TFs) of let-7b, let-7c and let-7e using FunRich. The 

top-10 relevant enriched TFs were Achaete–Scute 

family basic helix-loop-helix (BHLH) transcription 

factor 2 (ASCL2), early growth response 1 (EGR1), 

specificity protein 1 (SP1), homeobox A7 (HOXA7), 

transcription factor 3 (TCF3), myelocytomatosis 

oncogene (MYC), neurofibromin 1C (NF1C), visual 

system homeobox 2 (VSX2), SP4 and LIM homeobox 

3 (LHX3) (Figure 2B). Then, we measured their 

expression levels in HCC specimens and matched non-

tumor specimens using RT-qPCR. Results are shown 

in Figure 2C. 

 

 
 

Figure 1. Identification of significantly dysregulated miRNAs in HCC. (A) Heatmaps of expression profiles of distinct miRNAs in three 

GEO DataSets (GSE6857, GSE22058 and GSE12264). (B) Venn diagram showing number of dysregulated miRNAs found via integrated analysis 
of the three datasets. (C) Expression of let-7b (45 cases; P=0.038), let-7c (43 cases; P=0.162) and let-7e (63 cases; P=0.016) in HCC tissues and 
matched normal tissues as shown by RT-qPCR. (D) ROCs of diagnostic value of the three miRNAs in HCC were computed based on GEO 
DataSet GSE12264. (E) The prognostic roles of the three miRNAs were evaluated via survival analyses based on KM Plotter datasets. 
Differences in survival rate were compared using a log-rank test. 
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Table 1. The ROC test results of 3 candidate miRNAs. 

miRNA Area P value 
95% Confidence interval 

Lower bound Upper bound 

hsa-let-7b 0.791 p<0.001 0.700 0.881 

hsa-let-7c 0.740 p<0.001 0.639 0.841 

hsa-let-7e 0.810 p<0.001 0.721 0.898 

ROC: Receiver operating characteristics. 

 

The target gene modules in the network were often 

enriched with diverse specific functions that had 

biological significance. In order to identify the BFs of 

the three miRNAs’ target genes, we performed GO 

analysis based on information from selected genes. 

Because miRNAs can promote degradation of miRNAs 

by binding to mRNA, it is helpful to distinguish up and 

downregulated mRNA groups for further research and 

analysis into the mechanism of miRNAs. First, we 

included the genes negatively correlated with the 

miRNAs in our analysis. The results showed that these 

genes were enriched in the regulation of mitogen-

activated protein kinase (MAPK) activity and anion 

transmembrane transport in biological processes (BP) 

(Figure 2D). Then, we included the genes positively 

correlated with the miRNAs in our GO analysis. Our 

results indicated that three GO terms of BP, two GO 

terms of Cellular Component (CC) and three GO terms 

of Molecular Function (MF) were enriched; we 

identified these as significant (Figure 2E). In addition, 

we performed KEGG pathway enrichment analysis to 

identify potential pathways of the genes positively 

(Figure 2F) and negatively (Figure 2G) correlated with 

miRNAs. 

 
High expression of let-7e was associated with poor 

clinical outcomes in HCC 

 
The above results showed that let-7e could be the most 

significant biomarker for diagnosis and prognosis in 

HCC; it was upregulated in primary HCC tissues 

compared with adjacent normal tissues in 63 patients. 

Next, we explored the relationship between let-7e 

expression and clinicopathological parameters, using 

median expression level as the cutoff value between the 

high- and low-expression groups. Results are 

summarized in Table 2. High let-7e expression was 

significantly associated with poor tumor differentiation 

(P=0.014), larger tumor size (P=0.029) and venous 

invasion (P=0.031).  

 
To explore whether expression of let-7e was associated 

with prognosis in HCC patients, we used KM survival 

analyses to compare the overall survival (OS) and 

disease-free survival (DFS) rates between the high- and 

low-expression groups. Results revealed that median 

OS was 23 months in the high–let-7e expression group 

versus 38 months in the low–let-7e expression group. 

The high–let-7e expression group had a significantly 

worse OS rate than the low–let-7e expression group 

(P=0.046, log-rank test; Figure 3A). The median DFS 

rates of patients with high and low let-7e expression 

were 19 and 28 months, respectively. Compared with 

the low–let-7e expression group, the high–let-7e 

expression group had a significantly worse DFS rate 

(P=0.030, log-rank test; Figure 3B). Therefore, high let-

7e expression was significantly associated with poor 

prognosis in HCC patients. 

 

Verification of let-7e expression in transfected HCC 

cells 

 

To investigate the BF of let-7e, we transfected let-7e 

mimic and let-7e inhibitor into HepG2 and Hep3B cell 

lines, respectively, to construct let-7e–expressing and 

let-7e–inhibited cell lines. We also transfected control 

mimic and inhibitor to construct NC cells for these two 

HCC cell lines. Before conducting experiments to 

determine the BF of let-7e, we confirmed the expression 

thereof in the transfected cell lines via RT-qPCR 

(Figure 4). 

 

Expression of let-7e was significantly upregulated in 

HCC cells transfected with let-7e mimic than in those 

transfected with control mimic (Figure 4A). Conversely, 

let-7e expression was significantly downregulated in 

HCC cells transfected with let-7e inhibitor than in those 

transfected with control inhibitor (Figure 4B). 

 

Using these transfected HCC cells, we conducted 

the following experiments to determine the BF 

of let-7e. 
 

Expression of let-7e affected the growth and 

proliferation of HCC cells 

 

To explore whether high let-7e expression affected the 

growth of HCC cells, we performed cell viability and 

colony formation assays in HepG2 and Hep3B HCC 

cells. Cell viability assay results showed that 
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Figure 2. Functional enrichment analysis. (A) The network of cross-linked genes of let-7b, let-7c and let-7e was constructed of these 
three miRNAs and 52 genes. (B) Top 10 relevant enriched TFs of let-7b, let-7c and let-7e were analyzed, including ASCL2, EGR1, SP1, HOXA7, 
TCF3, MYC, NF1C, VSX2, SP4 and LHX3. (C) Expression of the aforementioned 10 TFs in HCC tissues and matched normal tissues as shown by 
RT-qPCR. (D) GO analysis of genes negatively correlated with the three miRNAs. (E) GO analysis of genes positively correlated with these 

miRNAs. (F) KEGG pathway enrichment analysis was conducted to identify the potential pathways of genes positively correlated with the 

miRNAs. (G) KEGG pathway enrichment analysis of genes negatively correlated with the miRNAs. 
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Table 2. Association between let-7e expression and clinicopathological parameters in HCC. 

Variable 
Patients (n)  

N=63 

Let-7e expression  

(qPCR) P value 

Low(n=31) High(n=32) 

Age    0.701 

<60 30 14 16  

≥60 33 17 16  

Gender    0.260 

Male 35 15 20  

Female 28 16 12  

Child-Pugh    0.719 

A 38 18 20  

B 25 13 12  

Liver cirrhosis    0.124 

yes 43 24 19  

no 20 7 13  

Differentiation    0.014 

Well-moderate 23 16 7  

Poor 40 15 25  

Tumor size    0.029 

≤5cm 36 22 14  

>5cm 27 9 18  

Venous invasion    0.031 

Positive 37 14 23  

Negative 26 17 9  

BCLC stage    0.539 

A 17 10 7  

B 33 16 17  

C 13 5 8  

AFP level    0.532 

<400 33 15 18  

>400 30 16 14  

Notes: P < 0.05 by χ2 test. P < 0.05 was considered statistically significant. 
Abbreviations: BCLC, Barcelona Clinic Liver Cancer; AFP, alpha-fetoprotein. 
 

upregulated let-7e promoted the proliferation of HCC 

cells (Figure 5A), while the colony formation assays 

revealed that upregulated let-7e improved the cells’ 

colony formation efficiency (Figure 5B). To prove 

whether downregulated let-7e could inhibit the growth 

of HCC cells, we transfected HepG2 and Hep3B HCC 

cells with let-7e inhibitor and NC inhibitor and then 

performed cell viability and colony formation assays. 

The results showed that downregulated let-7e inhibited 

cell proliferation of HCC cells in cell viability assays 
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(Figure 5C). The colony formation assays showed that 

downregulated let-7e inhibited the colony formation 

efficiency of these cells (Figure 5D). 

 

Expression of let-7e affected apoptosis of HCC cells 

 

To explore whether let-7e’s promotion of HCC cell 

growth and proliferation was relevant to cell apoptosis, 

we analyzed apoptosis via flow cytometry (FCM). 

Results showed that the percentage of apoptotic cells 

was significantly lower in let-7e mimic–transfected 

cells but higher in let-7e inhibitor–transfected cells, 

which indicated that let-7e expression affected 

apoptosis in HCC cells (Figure 6A, 6B).  

 

Expression of let-7e affected apoptosis and 

autophagy of HCC cells 

 

To further explore whether the functional mechanism of 

cell growth and proliferation affected by let-7e was 

 

 
 

Figure 3. Prognostic value of let-7e expression was evaluated by Kaplan–Meier survival analyses of HCC patients. (A) HCC 

patients who had high let-7e expression had significantly worse OS rates compared with those who had low let-7e expression (*P=0.046).  
(B) Compared with HCC patients who had low let-7e expression, those who had high let-7e expression had significantly worse DFS rates 
(P=0.030). 

 

 
 

Figure 4. Verification of let-7e expression in transfected HCC cells. (A) Expression of let-7e was significantly upregulated in HepG2 
and Hep3B HCC cells transfected with let-7e mimic compared with those transfected with control mimic. (B) Expression of let-7e was 
significantly downregulated in HepG2 and Hep3B HCC cells transfected with let-7e inhibitor compared with those transfected with control 
inhibitor (*P<0.05, **P<0.01, ***P<0.001). NC mimic–transfected and NC inhibitor-transfected cells were the control group in all 
experiments.  
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Figure 5. Expression of let-7e affected the growth and proliferation of HCC cells. (A) Results of cell viability assays showed that 

upregulated let-7e promoted the proliferation of HepG2 and Hep3B HCC cells. (B) Colony formation assays revealed that upregulated let-7e 
improved the colony formation efficiency of HepG2 and Hep3B HCC cells. (C) Downregulated let-7e inhibited the proliferation of HepG2 and 
Hep3B HCC cells. (D) Downregulated let-7e inhibited the colony formation efficiency of HepG2 and Hep3B HCC cells (*P<0.05, **P<0.01, 
***P<0.001). NC mimic–transfected and NC inhibitor–transfected cells were the control group in all experiments.  
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related to mitochondrial apoptosis, we performed 

Western blot (WB) analysis to detect the expression of 

apoptosis-related proteins in the HCC cell lines. Results 

suggested that the levels of pro-apoptotic protein Bax, 

Bak, Bad, cleaved Caspase-9 and cleaved Caspase-3 

were decreased, while that of the anti-apoptotic protein 

Bcl-2 was increased, in let-7e mimic–transfected HCC 

cells (Figure 6C, 6D).  

 

Autophagy is a conserved cellular process considered to 

be associated with tumor progression, particularly in 

cell apoptosis [22, 23]. To explore the function of let-7e 

in autophagy of HCC cells, we detected the expression 

of autophagy-related proteins using WB analysis. The 

results suggested that expression levels of LC3, Atg4A, 

Atg5, Atg 16L and p53 were decreased but that of p62 

was increased in let-7e mimic–transfected HCC cells 

(Figure 6E, 6F).  

 

Taken together, our results indicated that let-7e might 

suppress cell apoptosis and autophagy via the p53 

pathway, which induced the growth and proliferation of 

HCC cells. 

 

DISCUSSION 
 

HCC is still one of the most malignant tumors, with 

increasing incidence and a high mortality rate [2, 24]. 

Though a variety of therapeutic methods have been 

developed, the recurrence and metastasis rates of HCC 

remain stubbornly high, leading to unsatisfactory and 

poor prognoses [25]. Because of the disease’s 

complicated pathogenesis and molecular mechanism 

[26, 27], finding an effective treatment is still a 

worldwide problem. Therefore, it is imperative to 

identify underlying molecular mechanisms and valuable 

biomarkers of HCC. 

 

With the development of high-throughput technologies 

and bioinformatics analysis, omics sciences have been 

promoted over the last decade, and petabytes of 

molecular data on various human diseases have been 

collected [28]. This ever-growing amount of 

bioinformatics data contributes to our understanding of 

the physiopathological aspects of diverse diseases, 

including cancers [29]. In the present study, we aimed 

to identify novel miRNAs that could serve as 

biomarkers for diagnosis and prognosis in HCC, as well 

as to understand the MMs of HCC by analyzing and 

integrating several miRNA profiling datasets using 

several computational approaches. However, the huge 

quantity of data from the relevant databases is often not 

completely accurate, which generates conflicting results 

[21]. Therefore, after selecting the miRNAs most likely 

to be valuable from the results of our bioinformatics 

analyses, we explored their probable clinical values, 

BFs and MMs in HCC via analysis of clinical data and 

our own experiments. 

 

MiRNAs, which are short, single-stranded ncRNAs 19–

25 nucleotides long, are pivotal in the cellular processes 

of development, differentiation and aging [12–15]. In 

the current study, we first analyzed and integrated the 

GEO DataSets GSE6857, GSE22058 and GSE12264 to 

identify miRNA expression profiling datasets. By 

analyzing the differing expression levels of miRNA 

profiles, as well as performing ROC analyses of the 

GEO DataSets and survival analyses using the KM 

Plotter datasets, we identified three dysregulated 

miRNAs for further analyses: let-7b, let-7c and let-7e. 

 

The let-7 family contains 13 members encoding nine 

mature miRNAs, including let-7a, let-7b, let-7c, let-7d, 

let-7e, let-7f, let-7g, let-7i and miR-98 [30]. The 

multiple functions of this family are extensively 

pleiotropic including oncogenic behavior; repression of 

oncogenes; and regulation of signaling pathways, cell 

cycle, apoptosis, epithelial–mesenchymal transition 

(EMT) and chemosensitivity in cells [31–57]. In 

previous studies, let-7b expression has been associated 

with prognosis in hepatoblastoma, HCC, melanoma and 

prostate cancer [32, 34, 58, 59]. Let-7c expression was 

related to the development of acute promyelocytic 

leukemia; HCC; and prostate, lung and endometrial 

cancers [34, 43, 60–63]. Other studies have found let-7e 

expression to be associated with melanoma; 

endometrial, prostate and ovarian cancers; and 

esophageal carcinoma [58, 59, 63–65]. The above 

referenced studies revealed that let-7b, let-7c and let-7e 

were multifunctional miRNAs involved in the 

development of various cancers. In the present study, 

we analyzed their most relevant neighboring and cross-

linked genes using a functional-enrichment analysis 

tool. We also analyzed the top 10 relevant enriched TFs, 

which were ASCL2, EGR1, SP1, HOXA7, TCF3, 

MYC, NF1C, VSX2, SP4 and LHX3. These TFs 

participate in the occurrence and development of 

diverse cancers [66–77]. The selected miRNAs might 

play roles in HCC progression by influencing levels of 

these TFs. Cancer is regarded as a disease of 

communication between and within cells [78]. To 

explore how the selected miRNAs might affect 

progression of HCC via their BFs and via signaling 

pathways, we analyzed the target genes of the three 

miRNAs using GO and KEGG analyses. BF and 

pathway enrichment analysis results showed that these 

miRNAs regulated the phosphatidylinositol-4,5-

bisphosphate 3-kinase (PI3K-)–protein kinase B (Akt 

signaling pathway), p53 and MAPK signaling 
pathways, all of which are considered classic signaling 

pathways involved in the development of cancers  

[78–80]. P53 is downstream protein affected by Akt, a 
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central protein of the PI3K–Akt pathway; it mediates 

many signaling pathways in cancers and generates 

multifarious biological responses [81]. In addition, p53 

can functionally interact with components of the MAPK 

signaling pathway, including p38 MAPK, extracellular-

signal–related kinase (ERK) and stress-activated protein 

kinase (SAPK)–c-Jun N-terminal protein kinase (JNK) 

[82]. Therefore, we supposed that the selected miRNAs 

 

 
 

Figure 6. Effects of let-7e expression on apoptosis and autophagy in HCC cells. (A) Upregulated let-7e suppressed apoptosis of 

HepG2 cells, but downregulated let-7e initiated apoptosis in these cells. (B) Upregulated let-7e suppressed apoptosis of Hep3B cells, but 
downregulated let-7e initiated apoptosis in these cells. (C) WB analysis was used to detect the expression of several key cell apoptotic 
proteins in let-7e mimic–transfected HepG2 cells and NC mimic–transfected HepG2 cells. (D) Determination of the expression of several key 
cell apoptotic proteins in let-7e mimic–transfected Hep3B cells and NC mimic–transfected Hep3B cells. (E) Determination of the expression of 
key autophagy regulators in let-7e mimic–transfected HepG2 cells and NC mimic–transfected HepG2 cells. (F) Determination of the 
expression of key autophagy regulators in let-7e mimic–transfected Hep3B cells and NC mimic–transfected Hep3B cells (*P<0.05, **P<0.01, 
***P<0.001). The NC mimic–transfected cells were as the control group in all experiments. 
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might play roles in HCC progression by affecting these 

interactional signaling pathways. 

 

From the comprehensive results of above analyses, we 

supposed that let-7e was likely to play the most 

significant role in the diagnoses and prognoses of HCC 

patients. However, due to discrepancies in the relevant 

databases, bioinformatics data analyses often produce 

conflicting results [21]. Therefore, to identify the 

clinical value, BF and MM of let-7e, we based  

this study on our own data. First, we explored  

the association between let-7e expression and 

clinicopathological parameters. Our results suggested 

that high let-7e expression was significantly associated 

with poor tumor differentiation, larger tumor size and 

venous invasion. The results of KM survival analyses 

indicated that high let-7e expression was correlated with 

worse OS and DFS rates in HCC. Next, we performed 

cell viability and colony formation assays to identify the 

BF of let-7e in HCC cells. We found that upregulated 

let-7e promoted cell growth and colony formation 

efficiency in HCC cells, which indicated that this 

miRNA might act as an oncomiR.  

 

MiRNAs promote cellular proliferation through 

mechanisms such as suppression of apoptosis and 

autophagy [83, 84]. In our study, we found that 

upregulated let-7e promoted cellular proliferation by 

suppressing apoptosis and autophagy in HCC cells. 

These are both highly conserved processes participating 

in cellular proliferation, death and homeostasis, and 

dysfunctions in either process can result in various 

human diseases [85, 86].  

 

Apoptosis involves the extrinsic death receptor pathway 

and the intrinsic mitochondrial pathway [87]. The 

extrinsic pathway is activated by several death 

receptors, such as Fas Cluster of Differentiation 95 

[CD95/Apo1),]/apolipoprotein 1 [APO1]), tumor 

necrosis factor receptors (TNFRs) and TNF-related 

apoptosis-inducing ligand receptors (TRAILRs). This in 

turn activates pro–Caspase-8, which then directly 

proteolytically cleaves and activates Caspase-3, 

resulting in mitochondrial damage [88]. The initiator 

caspase of the intrinsic apoptotic pathway is Caspase 9 

[87]. Bcl-2 family proteins also tightly regulate this 

pathway. These proteins are comprised of pro-apoptotic 

members (such as Bax, Bak, Bad, BID, Bcl-Xs, Bim, 

Bik, HRK, Noxa and PUMA) and anti-apoptotic 

members (such as Bcl-2, Bcl-Xl, Bcl-W, Bfl-1 and 

MCL-1) [89]. In our studies, we revealed that let-7e 

could downregulate the pro-apoptotic protein Bax, Bad, 

Bad, cleaved Caspase-9 and cleaved Caspase-3 while 
upregulating the anti-apoptotic protein Bcl-2. Therefore, 

upregulation of let-7e suppressed apoptosis of HCC 

cells via the intrinsic mitochondrial pathway.  

Autophagy usually occurs at the contact sites between 

the endoplasmic reticulum and mitochondria with the 

formation of the isolation membrane/phagophore. This 

membrane/phagophore contains macroproteins or even 

whole organelles which are sequestered into lysosomes 

for degradation [90]. Autophagy is a highly conserved 

process relying on the function of a core set of  

ATGs [91]. A series of signaling pathways initiate or 

regulate autophagy cascades, including the adenosine 

monophosphate–activated protein kinase (AMPK-)–

mammalian target of rapamycin complex 1 (mTORC1), 

class I PI3K, Akt–mTOR, Ras–rapidly accelerated 

fibrosarcoma (Raf-1-)–mitogen-activated protein kinase 

1/2 (MEK1/2-)–extracellular signal–regulated kinase 

1/2 (ERK1/2,) and p53 signaling pathways [92]. Recent 

studies have found autophagy to be an upstream 

initiator of apoptosis and to regulate cell apoptosis by 

modulating Caspase and Bcl-2 family proteins [93]. 

Autophagy might be a guardian or executioner of 

apoptosis, depending on the surrounding micro-

environment, therapeutic intervention and stage of 

carcinoma [93]. Therefore, in this study, we also 

detected the expression of autophagy-related proteins to 

explore the effect of let-7e on autophagy in HCC cells. 

We found that upregulated let-7e decreased the 

expression levels of LC3, Atg 4A, Atg5, Atg 16L and 

p53, but increased that of p62. From these results, we 

supposed that let-7e might suppress cell autophagy and 

apoptosis via the p53 signaling pathway, inducing the 

growth and proliferation of HCC cells.  
 

In conclusion, let-7e was associated with poor prognosis 

in HCC patients and acted as an oncogene by 

suppressing autophagy and apoptosis in HCC cells, 

suggesting that it could be a novel biomarker for 

prognosis and target of treatment in HCC. 

 

MATERIALS AND METHODS 
 

Analysis of GEO databases 
 

To identify miRNAs potentially involved in the 

development and progression of HCC, we reviewed 

the National Center for Biotechnology Information 

(NCBI; Bethesda, MD, USA) GEO databases. To  

find miRNA profiles significantly dysregulated in 

HCC, we analyzed three GEO DataSets: GSE6857, 

GSE22058 and GSE12264. Differences in miRNA 

expression between the tumor group (HCC) and 

normal group of the three datasets were compared 

using Student’s t test. P < 0.05 and fold change ≥ 1.5 

were considered statistically significant. Then, we 

conducted Venn selections of differentially expressed 
miRNAs among the three lists using the online tool 

Venny version 2.1.0 (http://bioinfogp.cnb.csic.es/tools/ 

venny/). 

http://bioinfogp.cnb.csic.es/tools/venny/
http://bioinfogp.cnb.csic.es/tools/venny/
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Heatmaps of differential miRNA expression between 

both groups in all three datasets were generated using the 

pheatmap package in R software (Ihaka and Gentleman, 

1999). P < 0.05 was considered statistically significant. 

 

Diagnostic prediction of selected miRNAs 

 

We evaluated the predictive power of the three selected 

miRNAs in HCC diagnosis using ROC curves. Clinical 

data were derived from GEO database GSE12264. 

 

Kaplan–Meier plotter 

 

To evaluate the prognostic value of extracted-miRNA 

expression in liver cancers, we performed analyses 

using the KM Plotter. Cancer patients were divided into 

two groups, high and low miRNA expression, according 

to median values of miRNA expression; and KM 

survival curves were drawn in the plotter. P < 0.05 was 

considered statistically significant. 

 

Prediction of target genes of miRNAs 

 

We analyzed the predictive power of target genes of the 

selected miRNAs and discovered the top 10 enriched TFs 

using a functional-enrichment analysis tool (FunRich). 

We also used FunRich to analyze the interaction network 

between the selected miRNAs and their target genes. 

 

Enrichment analysis of target genes 

 

Using ClusterProfiler software version 3.11 (https://bio 

conductor.org/packages/release/bioc/html/clusterProfile

r.html) [94, 95], we conducted functional-enrichment 

analysis of the predicted target genes of the selected 

miRNAs. GO analysis was conducted to describe 

functions of predicted genes, including BP, CC and MF. 

KEGG was used for pathway enrichment analysis based 

on significance at P < 0.05.  

 

Patients and tissue samples 

 

We had earlier collected HCC tissues along with adjacent 

normal tissues at the Third Affiliated Hospital of Sun 

Yat-sen University (Guangzhou, China) after obtaining 

informed consent from all included patients. This study 

conformed to ethical and legal standards and was 

approved by the Research Ethics Committee of Sun Yat-

sen University. Sixty-three tissue pairs, accompanied by 

patient clinical characteristics and other patient 

information, were included in this study. Enrollment 

criteria were as follows: histological diagnosis of HCC; 

no previous anti-cancer treatment before surgery; no 

distant metastasis; no other tumors found; and adequate 

clinical follow-up time (≥6 months). Clinicopathological 

parameters of included samples are briefly summarized 

in Table 2. In the first year after surgery, we followed up 

with patients every 3 months, then every 6 months over 

the subsequent several years. We assessed patients’ 

health status using blood routine tests, hepatic-function 

tests, serum alpha-fetoprotein (AFP) level tests, 

abdominal ultrasonography (US) and magnetic resonance 

imaging (MRI). Median follow-up time was 23 months 

(range, 8–60 months). 

 

Cell lines and culture 

 

The human hepatocarcinoma cell lines in this study 

included HepG2 and Hep3B, which were both purchased 

from the Shanghai Cell Bank (Chinese Academy of 

Sciences, Shanghai, China). We cultured the cell lines  

in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS; GIBCO 

[Thermo Fisher Scientific], Grand Island, NY, USA) and 

put them in a humidified 5% CO2 incubator at 37° C. 

 

Real-time quantitative polymerase chain reaction 

(RT-qPCR) 

 

We used TRIzol solution (Invitrogen; Corp., Carlsbad, 

CA, USA) to extract total RNA from HCC specimens 

and cell lines per manufacturer’s instructions. After 

determining concentrations of total RNA using a 

NanoDrop 2000 Spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA, USA), we synthesized each 

complementary deoxyribonucleic acid (cDNA) 

sequence using a reverse transcriptase kit (Invitrogen); 

then, we used the cDNA as a template for RT-qPCR. 

Primer sequences of let-7b, let-7c, let-7e and U6 were 

devised and synthesized by Guangzhou Ribobio Co., 

Ltd. (Guangzhou, China). We used U6 small nucleolar 

RNA for normalization. Quantification of let-7b, let-7c 

and let-7e was performed using a Stem-Loop Real-Time 

PCR miRNA Kit (Ribobio). Primer sequences of 

ASCL2, EGR1, SP1, HOXA7, TCF3, MYC, NF1C, 

VSX2, SP4, LHX3 and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) were devised and synthesized 

by Ribobio. GAPDH was used as an internal control. 

We determined relative expression of each gene via the 

2−ΔΔCt method. 

 

Cell transfection  

 

We purchased let-7e mimic and let-7e inhibitor from 

Ribobio. After being cultured in a six-well culture dish 

for 24 h until the degree of cell fusion reached about 

~70%, the HCC cell lines HepG2 and Hep3B were 

transfected with let-7e mimic or inhibitor and normal 

control (NC) mimic or inhibitor via transfection 
reagents (riboFECT CP Transfection Kit; Ribobio). The 

transfected concentration of mimic was 50 nmol, and 

that of inhibitor was 100 nmol. 

https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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Cell viability assay 

 

We used a Cell Counting Kit-8 (CCK-8; Dojindo 

Molecular Technologies, Inc., Kumamoto, Japan) to 

evaluate transfected cells’ viability. Cells were 

dispersed into and cultured in 96-well plates (2500 

cells/well). To each well, we added 10μL CCK-8 

reagent at the indicated time point. After incubating the 

transfected cells for 1 h at 37° C, we measured the 

absorbance of each well at 450 nm. 

 
Colony formation assay 

 

Transfected HCC cell lines HepG2 and Hep3B were 

seeded into 6-well plates (1000 cells/well) for colony 

formation assays. Fourteen days later, we used 70% 

ethanol to immobilize the cell colonies for 15 min, after 

which we stained them for 10 min using 0.1% crystal 

violet. Finally, we counted the colonies and used this 

number to evaluate the transfected HCC cells’ colony 

formation capacity. Colony count was based on three 

different experiments and colonies in each well were 

manually counted three times. 

 
Cell apoptosis analysis 

 

Cell apoptosis was measured using an Annexin V-

FITC/PI apoptosis assay kit (Sangon Biotech, Shanghai, 

China). We analyzed the percentage of apoptosis on a 

CytoFlex flow cytometer (Beckman Coulter Life 

Sciences, Brea, CA, USA) per manufacturer’s 

instructions. 

 
Western blot 

 

RIPA buffer (Pierce, Rockford, IL, USA) and BCA 

Protein Assay Kit (Pierce) were respectively used to 

extract proteins from cells and determine protein 

amounts. We separated the same amount of protein 

(20μg) via 6–12% SDS-PAGE. Then, the protein was 

transferred to PDVF membranes (MilliporeSigma, 

Burlington, MA, USA), which we blocked in 5% non-

fat milk for 1 h. Next, we incubated the membranes 

overnight at 4° C with the following indicated primary 

antibodies, all of which were purchased from Cell 

Signaling Technology (CST; Danvers, MA, USA): 

Caspase-3 (1:1000; Cat. No. 9662), cleaved Caspase-3 

(1:1000; Cat. No.9661), Caspase-9 (1:1000; Cat. No. 

9502), cleaved Caspase-9 (1:1000; Cat. No. 9505), 

Bcl-2 (1:1000; Cat. No. 4223), Bax (1:1000; Cat. No. 

2772), Bak (1:1000; Cat. No. 12105), Bad (1:1000; 

Cat. No. 9292), Bad (1:1000; Cat. No. 9292), β-

Tubulin (1:1000; Cat. No. 2146), p53 (1:1000; Cat. 

No. 9282), p62 (1:1000; Cat. No. 39749), Atg4A 

(1:1000; Cat. No. 7613), Atg5 (1:1000; Cat. No. 

12994), Atg16L (1:1000; Cat. No. 8089), LC3B 

(1:1000; Cat. No. 43566). The next day, membranes 

were incubated with HRP-labeled secondary antibody 

(1:2000) for 1 h, and a chemiluminescence kit (ECL) 

kit (KeyGen Biotech, Guangzhou, China) was used for 

visualization and detection of blots.  

 

Statistical analysis 

 

The relationship between HCC patients’ 

clinicopathological characteristics and let-7e expression 

was analyzed via χ2 test. We used the KM method with 

a log-rank test for analysis of OS and DFS rates. All 

experimental data were analyzed using Student’s t test 

(two-sided). P < 0.05 was considered statistically 

significant. We used SPSS software version 22.0 (IBM, 

Armonk, NY, USA) for all statistical analyses. 

 

Abbreviations 
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