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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is among the most 

common malignancies worldwide, and is associated with 

extremely high mortality with a rising trend [1]. 

Currently, the treatment options for patients with HCC 

mainly include partial hepatectomy, liver transplantation, 

systemic therapy, and interventional operations [2]. 

However, most of these treatments are limited to early-

stage patients. Thus, there is a lack of effective therapies 
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ABSTRACT 
 

Increased glycolysis has been reported as a major metabolic hallmark in many cancers, and is closely related to 
malignant behavior of tumors. However, the potential mechanism of glycolysis in hepatocellular carcinoma (HCC) 
and its prognostic value are not well understood. To address this, we investigated glycolysis-related gene 
expression data of patients with HCC from TCGA and ICGC. Patients were categorized into three different glycolysis-
associated subgroups: Glycolysis-M, Glycolysis-H, and Glycolysis-L. We found that Glycolysis-H combined with 
Glycolysis-M (Glycolysis-H+M) subgroup was associated with poor overall survival and distinct cancer stem cell 
characteristics and immune infiltrate patterns. Additionally, multiomics-based analyses were conducted to 
evaluate genomic patterns of glycolysis subgroups, including their gene mutations, copy number variations, and 
RNA-sequencing data. Finally, a glycolysis-associated multiomics prognostic model (GMPM) consisting of 19 
glycolysis-associated genes was developed. The capability of GMPM in categorizing patients with HCC into high- 
and low-risk groups was validated with independent HCC datasets. Finally, GMPM was confirmed as an 
independent risk factor for the prognosis of patients with HCC. We believe that our findings provide new insights 
into the mechanism of glycolysis and highlight the potential clinical value of GMPM in predicting the prognosis of 
patients with HCC. 
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for patients in advanced stages, and this results in poor 

long-term outcomes for patients with HCC [3]. 

Moreover, clinicopathological features such as TNM 

staging can provide only ambiguous prognostic 

prediction abilities. Thus, there is an urgent need to 

develop an effective tool based on molecular biomarkers 

to identify and predict high-risk patients with HCC, who 

may have a poor prognosis. 

 

The liver is a central metabolic coordinator that is 

specialized in regulating glucose metabolism [4]. One of 

the hallmarks of HCC cell metabolic aberrations is the 

increase in glycolysis rate with consequent lactate 

production, which is known as Warburg effect or aerobic 

glycolysis [5]. This phenomenon occurs even in the 

presence of mitochondria and oxygen [6]. It is widely 

observed that increased glycolysis is closely related to 

higher tumor invasion and proliferation as it provides 

energy to tumor cells [7]. Furthermore, interfering with 

metabolism of oncocytes promotes apoptosis by 

increasing the sensitivity to chemotherapeutic drugs, 

thereby suppressing tumorigenesis. This indicates that 

targeting glycolysis is a meaningful strategy in cancer 

treatment [8]. However, systematic investigation of the 

multiomics feature of glycolysis-associated molecules in 

predicting prognosis of patients with HCC is still 

insufficient. Therefore, exploring the relationship 

between glycolysis status and HCC development, and 

establishing a precise predictive model based on 

glycolysis-associated molecules, has the potential to 

improve personalized treatment design [9]. 

 

To address this gap in research, patients with HCC from 

The Cancer Genome Atlas (TCGA) were clustered into 

the following subgroups: Glycolysis-H, Glycolysis-M, 

and Glycolysis-L. Furthermore, the clinicopathological 

features were assessed, and their correlation with 

glycolysis status was investigated. We systematically 

explored the multiomics differences between the 

subgroups with respect to cancer stemness characteristics, 

immune infiltration states, somatic mutations, and copy 

number variations (CNVs). Importantly, we constructed a 

glycolysis-associated multiomics prognostic model and 

demonstrated its predictive performance. 

 

RESULTS 
 

Identification of HCC phenotype based on glycolysis-

associated genes 

 

A total of 288 genes involved in glycolysis and 

glycolysis-related signaling pathways in KEGG were 

extracted (Supplementary Table 1). The expression 
profiles of these 288 glycolysis-associated genes were 

downloaded from TCGA-LIHC for hierarchical 

clustering analysis. According to elbow plot, 3 cluster 

stratification were adopted to classify patients from two 

independent cohort (Supplementary Figure 1). The 

analysis clustered the patients with HCC into three 

subgroups, Glycolysis-H, Glycolysis-M, and Glycolysis-

L, on the basis of different expression patterns (Figure 

1A, 1B). The Kaplan–Meier method was used to 

investigate the OS of the three glycolysis subgroups, and 

we observed that the subgroup Glycolysis-H combined 

with Glycolysis-M (Glycolysis-H+M) had worse OS than 

the Glycolysis-L subgroup (p < 0.001; Figure 1C). 

 

We additionally extracted and analyzed the gene 

expression profiles of 288 glycolysis-associated genes 

from the LIRI-JP dataset in ICGC. Here as well, patients 

with HCC could be classified into three distinct 

glycolysis subgroups (Figure 1D, 1E). Further, the 

Kaplan–Meier plot showed a significant difference (p = 

0.003) in the OS between the different glycolysis 

subgroups in the ICGC cohort as well (Figure 1F). 

 

Furthermore, the clinicopathological features of these 

three glycolysis subgroups were compared, and the 

results confirmed significant differences in majority of 

the clinicopathological characteristics (Table 1). Patients 

in the Glycolysis-H and Glycolysis-M subgroups were 

associated with increased tumor grade (p < 0.001) and T-

stage (p < 0.001). 

 

Cancer stem cell characteristics and immune 

infiltration evaluation in patients with different 

glycolysis subgroups 

 

mRNAsi and mDNAsi are the two main indices that 

reflect the stemness of samples based on gene expression 

and epigenetic features, respectively [10]. As shown  

in Figure 2A, the Glycolysis-H+M subgroup had  

a significantly higher stemness index in mRNAsi  

(p < 0.01) and, a lower epigenetic level (p < 0.05). The 

regulatory network of stem cell index and glycolysis-

associated genes showed that mRNAsi negatively 

regulated PFKFB3 and VCAN, while it positively 

regulated CENPA. Further, mDNAsi negatively regulated 

QSX1, GPC4, and TGFA (Supplementary Figure 2A). 

 

The results of CIBERSORT showed significant 

differences in infiltrating immune cell types between the 

Glycolysis-H+M and Glycolysis-L subgroups including 

more abundant proportions of B cells, CD4+ and CD8+ T 

cells, neutrophils, macrophages, and dendritic cells in 

Glycolysis-H+M subgroup than the Glycolysis-L 

subgroup (p < 0.001; Figure 2B). Thus, Glycolysis-H+M 

subgroups showed a distinct immune infiltration pattern 

from Glycolysis-L subgroup. Moreover, in the regulatory 
network, macrophages and dendritic cells were closely 

related to the glycolysis-associated genes (Supplementary 

Figure 2B). 
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Analysis of multiomics in patients with distinct 

glycolysis-associated subgroup 

 

We further explored the glycolysis-associated HCC 

subgroups through multiomics profiles. The mutation 

profiles of patients with HCC were investigated, and the 

top 30 frequently somatically mutated genes in different 

glycolysis subgroups are presented in Figure 3A. Higher 

somatic mutation frequencies of TP53 and RB1 were 

observed in the Glycolysis-H+M subgroup. In contrast, 

somatic mutations in CTNNB1 and APOB were 

significantly enriched in the Glycolysis-L subgroup 

(Figure 3A and Supplementary Figure 3). 

 

Additionally, CNVs on chromosomal level were 

investigated, and their differences between the three 

glycolysis subgroups are displayed in Figure 3B. 

Glycolysis-H+M subgroup had CNVs on almost  

all chromosomes except sex chromosomes, and 

chromosomes 5 and 18. As illustrated, chromosomes 

2, 3, 7, 10, 12, and 17 were mainly amplified, whereas 

chromosomes 4, 6, 11, 14, 15, 16, 21, and 22 were 

dominated by deletions. 

Further, Volcano plot revealed 53 significant DEGs 

between the Glycolysis-H+M and Glycolysis-L 

subgroups, in which 27 genes were upregulated and 26 

genes were downregulated (Figure 3C). GSEA-based 

KEGG analysis was used to investigate the underlying 

biological mechanisms related to the glycolysis-

associated subgroups. The results revealed that “Notch 

signaling pathway,” “Wnt signaling pathway,” and 

“TGFβ signaling pathway” were enriched in the 

Glycolysis-H+M subgroup (Figure 3D). 

 

GSEA-based KEGG analysis and GO analysis 

 

Intersection of 53 DEGs and 175 genes with different 

CNV statuses between the Glycolysis-H+M and 

Glycolysis-L subgroups in TCGA resulted in 36 

multiomics glycolysis-associated differentially expressed 

genes (MOG-DEGs; Figure 4A). 

 

KEGG-based pathway enrichment analysis of these 36 

MOG-DEGs showed the highest enrichment in 

“glycolysis,” “gluconeogenesis,” “glucagon signaling 

pathway,” “tyrosine metabolism,” and “fatty acid 

 

 
 

Figure 1. Glycolysis-associated genes identified distinct HCC clusters with different OS. (A, B) Three distinct clusters were 

generated by hierarchical clustering analysis based on the expression level of the 288 glycolysis-associated genes in the TCGA. (D, E) Three 
glycolysis-associated clusters were generated in the ICGC. (C, F) Kaplan-Meier survival curves of different glycolysis subtypes in the TCGA and 
ICGC. The Glycolysis-H+M subgroup had a worse OS than the Glycolysis-L subgroup (TCGA cohort: log-rank p<0.001; ICGC cohort: log-rank p= 
0.003). HCC, hepatocellular carcinoma; OS, overall survival. 
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Table 1. The comparison of clinical characteristics among different glycolysis subgroups of HCC patients in TCGA 
(n=363). 

Clinicopathological variables Glycolysis-H (n = 15) Glycolysis-M (n = 93) Glycolysis-L (n = 255) P-value 

Age (years)    0.002 

 < 65 13 (86.7) 64 (69.6) 136 (53.3)  

 ≥ 65  2 (13.3) 28 (30.4) 119 (46.7)  

Gender    0.014 

 Male  5 (33.3) 65 (69.9) 176 (69.0)  

 Female 10 (66.7) 28 (30.1)  79 (31.0)  

T-stage    < 0.001 

 T1+T2  8 (53.3) 56 (60.2) 204 (80.6)  

 T3+T4  7 (46.7) 37 (39.8)  49 (19.4)  

N-stage    0.898 

 N0 11 (73.3) 62 (67.4) 173 (67.8)  

 N1 + NX  4 (26.7) 30 (32.6)  82 (32.2)  

M-stage    0.234 

 M0 12 (80.0) 72 (77.4) 176 (69.0)  

 M1 + MX  3 (20.0) 21 (22.6) 79 (31.0)  

AJCC stage    < 0.001 

I + II   6 (42.9) 51 (58.6) 194 (81.5)  

III + IV   8 (57.1) 36 (41.4) 44 (18.5)  

AFP (ng/ml)    < 0.001 

< 400  7 (87.5) 33 (51.6) 168 (84.0)  

≥ 400  1 (12.5) 31 (48.4)  32 (16.0)  

ECOG Performance Status     

 0  4 (44.4) 26 (41.9) 132 (62.0) < 0.001 

 1  1 (11.1) 15 (24.2) 65 (30.5)  

 2  2 (22.2) 11 (17.7) 13 (6.1)  

 3  1 (11.1)  8 (12.9)  3 (1.4)  

 4  1 (11.1) 2 (3.2) 0   

Family history of cancer    0.058 

No  12 (85.7) 57 (72.2) 135 (61.4)  

Yes  2 (14.3) 22 (27.8) 85 (38.6)  

Grade    < 0.001 

G1-2 6 (42.9) 41 (44.1) 177 (70.5)  

G3-4 8 (57.1) 52 (55.9)  74 (29.5)  

Hepatitis C    0.967 

No 13 (86.7) 80 (86.0) 217 (86.1)  

Yes  2 (13.3) 13 (14.0)  38 (14.9)  

Hepatitis B    0.042 

No  15 (100) 70 (75.3) 181 (71.0)  

Yes 0 23 (24.6)  74 (29.0)  

Surgical margin resection status    0.002 

 R0 12 (85.7) 74 (80.4) 233 (93.2)  

 Non-R0  2 (14.3) 18 (19.6) 17 (6.8)  

Vascular invasion    0.006 

 None  6 (66.7) 36 (51.4) 159 (69.7)  

 Micro 3 (33.3) 25 (35.7)  62 (27.2)  

 Macro  0  9 (12.9)  7 (3.1)  
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degradation” (Figure 4B). “Glucose metabolism,” 

“oxidoreductase activity,” and “glycolysis/ 

gluconeogenesis” were the most enriched terms in BP, 

MF, and CC, respectively (Figure 4C). These results 

clarified that these 36 MOG-DEGs were indeed 

involved in glycolysis. 

 

To further validate the prognosis predictive potential of 

the MOG-DEGs in the OS of the patients with HCC, a 

univariable Cox regression analysis showed that 20 out 

of 36 MOG-DEGs had significant prognostic potential 

(p < 0.05; Figure 4D). 

 

Development and independent validation of GMPM 

 

LASSO regression analysis screened out 19 MOG-

DEGs with the most predictive potential from the 36 

MOG-DEGs and constructed the GMPM (Figure 5A, 

5B). A receiver operating characteristic curve showed 

that the area under the curve (AUC) of the GMPM 

signature in predicting the OS of patients with HCC at 

1, 3, and 5 years was 0.778, 0.745, and 0.748, 

respectively (Figure 5C). We further investigated the 

coexpression levels of these 19 genes and found a weak 

to moderate correlation, where PCK2 was significantly 

positively correlated with ALDH2 and GYS2 (r > 0.7; 

Figure 5D, 5E). 

 

Using the GMPM signature and formula, the risk score 

of each patient in TCGA cohort was calculated. The 

coefficients of each gene in the GMPM are listed in 

Table 2. We used the median value (median = 0.28) of 

the risk score as the cutoff level to categorize the 

patients with HCC into high- and low-risk groups 

(Figure 6A). The relationship between the risk scores 

and OS was investigated, and the results indicated that 

patients in the high-risk group had a worse survival than 

those in the low-risk group (Figure 6C). The expression 

 

 
 

Figure 2. Different glycolysis-associated HCC subtypes varied in cancer stemness and immune infiltration. (A) Stemness indices 
of TCGA cohort. The Glycolysis-H+M subtype had a higher expression level of mRNAsi (p< 0.01), while the Glycolysis-L subtype had a higher 
expression level of mDNAsi (p< 0.05). (B) Immune cells with a significantly different proportion between Glycolysis-H+M and Glycolysis-L 
subgroups in the TCGA. *p< 0.05, **p< 0.01, ***p < 0.001. 



 

www.aging-us.com 7486 AGING 

 
 

Figure 3. Multi-omics analysis among glycolysis-associated HCC subgroups. (A) The waterfall plot showed the mutation type of each 

patient and the proportion of mutation in each subgroup. 30 genes with the most frequent somatic mutation in HCC patients from TCGA 
were listed. (B) Differences in CNV profiles of the different glycolysis-associated HCC subtypes were visualized, gains of CNVs shown in black, 
and losses in blue. (C) Volcano plot showed the between Glycolysis-H+M subgroups and Glycolysis-L subgroup (FDR < 0.05 and |log2fold-
change (FC)| > 1). (D) GSEA analysis of Glycolysis-H+M subgroups and Glycolysis-L subgroup. CNV, copy number variation; DEGs, differentially 
expressed genes; GSEA, Gene-set enrichment and functional enrichment analyses. 
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levels of GCKR, ADH6, PC, ADH4, ADH1C, G6PC, 
ANG, ALDH2, and PCK2 were downregulated and 

those of GCK, GPR87, GYS2, SOX9, B3GNT3, CLDN9, 
TFF3, EGLN3, PFKP, and SLC16A3 were upregulated 

in the high-risk group (Figure 6B). 

 

We further validated and confirmed the prediction 

capability of the GMPM signature with the ICGC 

cohort. Using the same formula and cutoff value as that 

in TCGA cohort, the LIRI-JP cohort was also stratified 

into high- and low-risk groups. The results of the 

survival plot showed a poorer survival in the high-risk 

group than its counterpart, which was consistent with 

the results from TCGA cohort (Figure 6D–6F). 

GMPM risk score as an independent factor in 

predicting OS of patients with HCC 

 

To investigate whether the GMPM risk score was an 

independent risk factor for HCC prognosis prediction, 

we conducted univariable and multivariable Cox 

regression analyses. The results of the univariable 

analysis showed a significant hazard ratio of tumor 

stage, ECOG performance status, HBV infection status, 

platelet count, surgical margin status in resection, 

cluster and riskscore in the OS of patients with HCC (p 

< 0.05; Figure 7A). Furthermore, multivariable analysis 

demonstrated that GMPM and HBV infection status 

was an independent predictive factor of OS in HCC 

 

 
 

Figure 4. Identification and analysis of different status genes among glycolysis subgroups based o n multi-omics data.  
(A) Venn diagram showed 36 overlapped genes in DEGs and genes with differently CNV status. (B) The results of gene ontology 
functions analysis of the 36 multi-omics based different status glycolysis genes. (C) KEGG pathways enrichment analysis of the 36 multi-
omics based different status glycolysis genes. (D) 20 MOG-DEGs with a significant correlation with OS by univariable Cox analyses in  
the TCGA. 
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(p < 0.001; Figure 7B). These results further confirmed 

the prognostic potential of the GMPM signature in 

predicting OS in patients with HCC. 
 

DISCUSSION 
 

In this study, we established subtype-stratification 

models based on multiomics glycolytic-associated gene 

status. We stratified patients with HCC into Glycolysis-

H, Glycolysis-M, and Glycolysis-L subgroups, which 

were associated with different expression patterns based 

on glycolysis-related genes. Further, the Glycolysis-

H+M subgroup presented with a significantly worse OS 

than its counterpart, and this result is consistent with 

those of previous studies [11]. Notably, the Glycolysis-

H+M subgroup had a higher T-stage and pathological 

grade. Thus, it may be speculated that undifferentiated 

tumors with high T-stage may possess distinct 

glycolysis-associated gene expression patterns that 

possibly exacerbate tumor progression and promote poor 

prognosis. 

 

The degree of malignancy in HCC is inevitably 

correlated with energy metabolism, as the liver vitally 

acts as the coordinator of maintaining energy 

metabolism homeostasis. Metabolism reprogramming is 

closely correlated with tumorigenesis. Our GSEA-based 

KEGG enrichment analysis also revealed pathways 

previously been identified as abnormal signaling 

pathways in HCC [12]. In fact, Warburg effect is 

characterized in many malignancies by the shift of the 

glycometabolic pathway from oxidative phosphorylation 

to aerobic glycolysis in mitochondria even with a 

sufficient supply of oxygen. Although this shift lowers 

 

 
 

Figure 5. Development of GMPM. (A, B) LASSO regression analysis identified the 19 key MOG-DEGs in TCGA. (C) Time-dependent ROC 

curve analysis was performed to evaluate the diagnostic efficacy of GMPM. (D, E) The co-expression correlation between 19 key MOG-DEGs 
was showed. MOG-DEGs, multi-omics glycolysis-associated differentially expressed genes. ROC, receiver operating characteristic; GMPM, 
glycolysis-associated multi-omics prognostic model. 
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Table 2. The coefficients of the risk score in GMPM. 

Gene Coef Gene Coef Gene Coef 

ADH1C -0.0136 EGLN3 0.117536 PC 0.284064 

ADH4 -0.10821 G6PC -0.04209 PCK2 0.102078 

ADH6 0.067533 GCK 0.105903 PFKP 0.149495 

ALDH2 -0.18404 GCKR 0.031161 SLC16A3 0.095468 

ANG -0.00241 GPR87 -0.09511 SOX9 0.019108 

B3GNT3 -0.05977 GYS2 -0.12435 TFF3 -0.09511 

CLDN9 0.043918     

 

the efficacy of ATP supply, it also reduces the 

dependence of tumor cells on oxygen [13]. Further, its 

intermediate metabolites also support the protein, lipid, 

and nucleic acid synthesis pathways and pentose 

phosphate pathway of tumors. Such metabolism also 

supports the rapid proliferation and metabolism of tumor 

cells [14]. Thus, the activity of the glycolysis pathway 

may be closely linked to the malignancy of tumors and 

further affect the survival of patients, especially in 

patients with HCC. In such cases, predictive models can 

help us understand the underlying mechanisms of HCC 

and improve prognosis prediction of individual patients. 

 

To further investigate the differences among the 

subgroups, a multiomics analysis was carried out. 

Although liver cancer stem cells account for a small 

proportion of all tumor cell types, they maintain 

tumorigenic and metastatic properties of the tumor by 

their genetic and epigenetic factors [15, 16]. In our 

study, high mRNAsi index in the Glycolysis-H+M 

subgroup suggested that the glycolysis-related gene 

expression pattern with poor prognosis had higher tumor 

stemness, and this may have further resulted in poor 

patient prognosis. Stem cell characteristics acquisition 

strongly influences tumor progression [17], which is in 

accordance with the increase in mRNAsi during 

progression as previously described [10]. To the best of 

our knowledge, this study is the first to analyze the 

correlation between stemness characteristics of cancer 

and glycolysis-related gene expression. 

 

Tumor microenvironment (TME) contributes largely to 

the development of tumor heterogeneity and the 

development of tumors [18]. In the TME, immune 

infiltration patterns are valuable for prognostic 

assessment in HCC [19]. The interdependent relationship 

between tumor metabolism and immune infiltration has 

been reported in previous studies as well [20]. Our results 

showed significantly elevated B cells, CD4+ and CD8+ T 

cells, neutrophils, macrophages, and dendritic cells in the 
Glycolysis-H+M subgroup than in Glycolysis-L 

subgroup; this indicates that the immune patterns tend to 

be closely related to the glycolytic state of a tumor. This 

result was consistent with previous reports [21], 

suggesting that these subgroups of glycolysis could be 

used to preliminarily evaluate the immune characteristics 

of cancer. Furthermore, the use of immunotherapy in the 

Glycolysis-H+M subgroup may be more effective. 

 

In addition, investigation of the somatic mutation 

landscape among the glycolysis subgroups revealed 

significantly higher TP53 and RB1 mutational burdens 

in the Glycolysis-H+M subgroup. TP53 and RB1 are 

believed to be tumor-suppressor genes in multiple 

tumors [22, 23]. In fact, TP53 has the highest mutation 

frequency in HCC, and its functional loss enables 

survival of DNA-damaged cells and escape of 

apoptosis, thereby affecting the progression of HCC 

patients [22]. Moreover, RB1 is a known tumor-

suppressor gene [24], and the loss of RB1 is the main 

mechanism of acquired resistance in HCC [23]. 

 

In recent years, glycolysis-related genes have caused 

widespread concern for its association with tumors. 

Jiang et al. first identified and validated a six-mRNA 

glycolysis-related signature for predicting outcomes for 

patients with HCC [21]. However, they only analyzed 

gene expression profiles in their study. To make our 

prediction model more robust, we conducted a 

multiomics analysis for glycolysis-related genes, and 

included CNVs, gene mutations, and gene expression 

levels to build a novel, glycolysis-associated predictive 

model for HCC. Consequently, our GMPM had a stable 

and steady prediction accuracy at 1-, 3-, and 5-years 

with AUC values above 0.745 for all. Thus, this model 

may provide a more efficient way of screening high-risk 

patients with HCC associated with poor prognosis. 

Further, the genes included in the GMPM have been 

correlated with tumorigenesis and aggressiveness of 

HCC. For instance, ANG plays a critical role in 

angiogenesis in HCC, and is involved in the regulation 

of immune response [25]. CLDN9 is an HCC proto-

oncogene that increases the invasiveness and migration 
capability of cancer cells by affecting the STAT3 

signaling pathway [26]. G6PC is a hepatocyte terminal 

differentiation marker, and Yan et al. demonstrated that 
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Figure 6. GMPM predicts OS in HCC patients. The distribution of survival status and risk scores in TCGA (A) and ICGC (D), respectively. 

The expression difference between high- and low-risk groups in TCGA (B) and ICGC (E). Kaplan-Meier survival curves to verify the predictive 
effect of GMPM in TCGA (C) and ICGC (F). GMPM, glycolysis-associated multi-omics prognostic model; OS, overall survival. 
 

 
 

Figure 7. Univariable and multivariable Cox regression analyses of clinicopathological characteristics and GMPM for HCC 
patient’s prognosis. Univariable analyses of clinicopathological features and GMPM in TCGA (A). Multivariable analyses of 

clinicopathological features and GMPM in TCGA (B). GMPM, glycolysis-associated multi-omics prognostic model. 
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the overexpression of GPR87 could upregulate CD133 

expression to promote tumor initiation [27]. High 

expression of SOX9 is closely related to the poor 

prognosis in patients with HCC [28]. Elevated 

expression of TFF3 has been found in HCC, and it is 

associated with poor patient survival outcomes and 

clinical features [29]. ADH is known to be repressed in 

the HepG2 human hepatoma cell line [30]. Furthermore, 

some genes were associated with glucose metabolism as 

well. GCK plays a vital role in liver and pancreatic beta 

cells to regulate glucose distribution and synthesis, and 

its activity is competitively inhibited by GCKR [31]. 

Chen et al. found significant downregulation of GYS2 

through the HBx/GYS2/p53 pathway in HCC, which 

results in the deregulation of glycogen metabolism [32]. 

PCK is a protein in the hepatic gluconeogenesis pathway 

whose low expression is associated with poor prognosis 

in patients with HCC [33]. Thus, our strategy screened 

out glycolysis-related gene panels with robust prognosis 

predictive ability, and may guide the investigation of 

underlying mechanisms in glycolysis-associated HCC 

tumorigenesis. Although this study provides a new 

perspective of glycolysis-related genes in molecular 

subtyping and prognostic prediction of HCC based on 

integrative multiomics analyses, its limitations must be 

acknowledged. First, the prognostic value of our risk 

stratification model needs to be validated in more 

patients with HCC with multicentered data to further 

increase its credibility. Second, the molecular 

understanding of glycolysis-associated genes used in the 

risk stratification model needs further investigation with 

functional experiments to unravel the role of glycolysis 

in HCC. 

 

CONCLUSIONS 
 

To conclude, by stratifying the patients with HCC with 

glycolysis-associated genes, we identified different 

prognostic, clinical, and immune features between 

patients with different glycolysis patterns. 

Consequently, we used this novel approach to identify 

key glycolysis-related genes by developing a GMPM, 

which presented as an independent risk factor with 

robust prognostic predictive ability for HCC. Taken 

together, this study provides a guide for the clinical 

management of patients with HCC, and genes related to 

our model may provide promising targets for HCC 

treatment. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 
Transcriptome profiles, masked somatic mutation data, 

CNV files, and clinicopathological information of 374 

patients with HCC were acquired from TCGA-liver 

hepatocellular carcinoma (LIHC) program in TCGA 

(https://portal.gdc.cancer.gov/). Additionally, we 

obtained gene expression files and clinicopathological 

data of 232 patients with HCC from the LIRI-JP project 

in the International Cancer Genomics Consortium 

(ICGC; https://icgc.org/) database. The gene expression 

data were normalized and log2-transformed for 

subsequent analyses. The samples that lacked important 

clinicopathological or survival information were 

excluded from further analyses. 

 

Clustering analysis of glycolysis-associated genes 

 

Genes involved in glycolysis and glycolysis-related 

signaling pathways were downloaded via the Kyoto 

Encyclopedia of Genes and Genomes (KEGG)  

from Gene Set Enrichment Analysis (GSEA; 

http://software.broadinstitute.org/gsea/index.jsp). Based 

on the expression levels of the glycolysis-associated 

genes, patients with HCC from TCGA and ICGC were 

stratified into different subgroups using hierarchical 

clustering analysis. Furthermore, Kaplan-Meier method 

was employed to analyze and compare the overall 

survival (OS) in the different glycolysis-associated 

subgroups. 

 

Evaluation of cancer stem cells characteristics 

 

To calculate the mRNA expression and DNA 

methylation status-based stemness indices of the 

samples, a predictive model, previously reported by 

one-class logistic regression (OCLR), was adopted. 

OCLR was calculated using pluripotent stem cell 

samples from the Progenitor Cell Biology Consortium 

dataset [10]. The stemness indices ranged from low 

(zero) to high (one) to scale the stemness features of the 

samples. The differences in stemness indices between 

different glycolysis subgroups were analyzed using 

Wilcoxon rank-sum test. Further, we conducted a 

correlation analysis between the expression levels of the 

glycolysis-associated genes and stemness indices. 

Genes with an absolute value of correlation coefficient r 

> 0.4 and p < 0.001 were plotted using Cytoscape [34] 

(Version:3.8.1, https://cytoscape.org/). 

 

Analysis of immune infiltration 

 

CIBERSORT algorithm was used to calculate the 

relative abundance of 22 immune cell types according 

to a previously reported procedure [35]. The proportion 

of each immune cell was evaluated and compared 

across the groups using Wilcoxon rank-sum test. 

Similarly, we conducted a correlation analysis between 
the glycolysis-associated gene expression levels and 

immune cell abundance. The correlations with |r| > 0.4 

and p < 0.001 were plotted using Cytoscape. 

https://portal.gdc.cancer.gov/
https://icgc.org/
http://software.broadinstitute.org/gsea/index.jsp
https://cytoscape.org/
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Multiomics analysis of different glycolysis-associated 

subgroups 

 

Mutation data of patients with HCC from TCGA were 

analyzed and visualized using maftools package in R 

software [36]. Genes with the highest tumor mutation 

frequencies and their percentages in different glycolysis-

associated subgroups were displayed using a waterfall 

plot. Chi-square test was employed to screen significantly 

different CNVs (adjusted p < 0.05) among the different 

glycolysis-associated subgroups. 

 

Using RNA-sequencing data of patients with HCC in 

TCGA, we compared the expression level of each gene 

among the different glycolysis-associated subgroups 

using the limma R package [37]. A false discovery rate 

(FDR) < 0.05 and |log2fold change (FC) |> 1 was set as 

the threshold to identify differentially expressed genes 

(DEGs). GSEA was carried out to identify significantly 

upregulated and downregulated KEGG pathways among 

the glycolysis subgroups with an FDR < 0.05 [38, 39]. 

 

Identification and analysis of different CNV status 

genes among glycolysis subgroups based on 

multiomics data 

 

Genes with different expression levels and CNV statuses 

were obtained by taking the intersection of the DEGs and 

genes with different CNV statuses among the different 

glycolysis-associated subgroups. These genes were 

subjected to gene ontology (GO) and pathway analyses. 

For the GO analysis, we identified enriched terms related 

to biological processes (BP), molecular functions (MF), 

and cell components (CC). Terms with FDR < 0.05 in 

GO and pathway analyses were visualized [40]. 

Furthermore, we conducted a univariable Cox regression 

analysis to evaluate the correlation of the expression 

levels of these genes and OS of the patients with HCC. 

 

Construction and validation of a glycolysis-associated 

prognostic model 

 

A least absolute shrinkage and selection operator 

(LASSO) regression model was used to extract key 

glycolysis-associated genes based on the DEGs and CNV 

statuses to construct a glycolysis-associated multiomics 

prognostic model (GMPM) using glmnet R package [41]. 

Next, the risk score of each patient with HCC in TCGA 

and ICGC was calculated by adding the multiplication of 

each glycolysis-associated gene expression level with  

its corresponding regression coefficients. Correlation 

analysis between key glycolysis-associated genes was 

further conducted. 
 

Using the median value of the GMPM risk score in 

TCGA as the cutoff value, patients with HCC (in both 

TCGA and ICGC cohorts) were stratified into high- and 

low-risk subgroups, separately. The OS of patients was 

calculated and compared using the Kaplan-Meier 

method, and the heatmap of genes used in the GMPM 

was plotted. Finally, univariable and multivariable  

Cox regression analyses were conducted to identify 

independent prognostic predictors associated with the OS 

of patients with HCC in TCGA. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Elbow plot of TCGA (A) and ICGC (B) cohort. Vertical axis showed the total within sum of square, horizontal axis 

represented the number of clusters. 
 

 
 

Supplementary Figure 2. (A) The regulatory network of stem cell indices and glycolysis-associated genes. (B) The regulatory network of 
macrophages, dendritic cells, and glycolysis-associated genes. Black edge for negative-regulated and red edge for positive-regulated. 
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Supplementary Figure 3. The lollipop plot of TP53 (A), CTNNB1 (B), RB1 (C), and APOB (D) showed each mutation with its location and 
accumulated burden of each gene. 
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Supplementary Table 
 

Supplementary Table 1. Glycolysis-associated genes from KEGG signaling pathways.  

AAAS ALDH3B2 CACNA1H DDIT4 GAL3ST1 GUSB LDHAL6A NUP133 PCK1 PKP2 RBCK1 TGFBI 

ABCB6 ALDH7A1 CAPN5 DEPDC1 GALE GYS1 LDHAL6B NUP153 PCK2 PLOD1 RPE TKTL1 

AC010618.1 ALDH9A1 CASP6 DLAT GALK1 GYS2 LDHB NUP155 PDHA1 PLOD2 RRAGD TPBG 

AC074143.1 ALDOA CD4 DLD GALK2 HAX1 LDHC NUP160 PDHA2 PMM2 SAP30 TPI1 

ACSS1 ALDOB CD44 DPYSL4 GALM HDLBP LHPP NUP188 PDHB POLR3K SDC1 TPR 

ADH1A ALDOC CDK1 DSC2 GAPDH HK1 LHX9 NUP205 PDK3 POM121 SDC2 TPST1 

ADH1B ALG1 CENPA ECD GAPDHS HK2 MDH1 NUP210 PFKFB1 POM121C SDC3 TSTA3 

ADH1C ANG CHPF EFNA3 GCK HK3 MDH2 NUP214 PFKFB2 PPFIA4 SDHC TXN 

ADH4 ANGPTL4 CHPF2 EGFR GCKR HMMR ME1 NUP35 PFKFB3 PPIA SEC13 UGP2 

ADH5 ANKZF1 CHST1 EGLN3 GCLC HOMER1 ME2 NUP37 PFKFB4 PPP2CA SEH1L VCAN 

ADH6 ARPP19 CHST12 ELF3 GFPT1 HS2ST1 MED24 NUP43 PFKL PPP2CB SLC16A3 VEGFA 

ADH7 ARTN CHST2 ENO1 GLCE HS6ST2 MERTK NUP50 PFKM PPP2R1A SLC25A10 VLDLR 

ADORA2B AURKA CHST4 ENO2 GLRX HSPA5 MET NUP54 PFKP PPP2R1B SLC25A13 XYLT2 

ADPGK B3GALT6 CHST6 ENO3 GMPPA IDH1 MIF NUP58 PGAM1 PPP2R5D SLC35A3 ZNF292 

AGL B3GAT1 CITED2 ERO1A GMPPB IDUA MIOX NUP62 PGAM2 PRKACA SLC37A4 ALDH3B1 

AGRN B3GAT3 CLDN3 EXT1 GNE IER3 MPI NUP85 PGAM4 PRKACB SOD1 BPNT1 

AK3 B3GNT3 CLDN9 EXT2 GNPDA1 IGFBP3 MXI1 NUP88 PGK1 PRKACG SOX9 DCN 

AK4 B4GALT1 CLN6 FAM162A GNPDA2 IL13RA1 NANP NUP93 PGK2 PRPS1 SPAG4 G6PD 

AKR1A1 B4GALT2 COG2 FBP1 GOT1 IRS2 NASP NUP98 PGM1 PSMC4 SRD5A3 GPR87 

ALDH1A3 B4GALT4 COL5A1 FBP2 GOT2 ISG20 NDC1 NUPL2 PGM2 PYGB STC1 LDHA 

ALDH1B1 B4GALT7 COPB2 FKBP4 GPC1 KDELR3 NDST3 P4HA1 PGM2L1 PYGL STC2 NUP107 

ALDH2 BID CTH FUT8 GPC3 KIF20A NDUFV3 P4HA2 PGP QSOX1 STMN1 PC 

ALDH3A1 BIK CXCR4 G6PC GPC4 KIF2A NSDHL PAM PHKA2 RAE1 TALDO1 PKM 

ALDH3A2 BPGM CYB5A G6PC2 GPI LCT NT5E PAXIP1 PKLR RANBP2 TFF3 TGFA 

 


