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INTRODUCTION 
 

Lung adenocarcinoma (LUAD) and lung squamous cell 

carcinoma are the two main types of non-small cell lung 

cancer (NSCLC) [1]. LUAD is the most common 

histological type of NSCLC [2]. Lung cancer has 

become the second most common cancer in both men 

and women. It accounts for 25% of all cancer-related 

deaths. During 2007–2013, the 5-year relative survival 

rate of lung cancer was only 18%. It is usually diagnosed 

at a relatively advanced stage [3, 4]. Currently, the 

treatment for LUAD mainly includes surgical resection, 

chemotherapy, radiotherapy, and molecular targeted 

therapy. However, compared with the steadily increasing 

survival rates for many cancers, the overall survival 

(OS) for lung cancer has not improved substantially, 

primarily owing to the lack of effective therapeutic 

targets [5]. The most important and only curable 

treatment for LUAD is surgical resection. However, 

once distant metastasis occurs, LUAD cannot be cured 

through surgery. Therefore, there is an urgent need to 

identify novel molecular mechanisms and effective 

therapeutic targets for LUAD. 

 

FAM72A–D (Family with sequence similarity 72 member 

A–D) is composed of four human-specific paralogs  

(A–D). FAM72 is a protein-coding neural stem cell-

specific gene [6, 7]. However, under certain conditions, 

FAM72 may lead to post-mitotic neuronal death and may 

promote the occurrence and development of cancers in 

tissues other than neuronal tissues [6, 8, 9], including 

breast cancer, prostate cancer, and glioblastoma [6, 10, 

11]. FAM72 is associated with cancer cell division, 

proliferation, and differentiation. Additionally, high 

levels of FAM72 are associated with hypomethylation 

and affect the prognosis in various cancers [11, 12]. 

These results suggest that FAM72 is a prognostic 

biomarker in cancer. However, it has not been established 
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as a prognostic factor in LUAD, and its relationship with 

LUAD has not been reported to date. 

 

In this study, we performed the first analysis of the 

functions of FAM72 in LUAD. In particular, The 

Cancer Genome Atlas (TCGA) was utilized to analyze 

the expression of FAM72A–D and its clinical-

prognostic value in LUAD. We validated the prognostic 

value in four independent datasets from the Gene 

Expression Omnibus (GEO) database. We first analyzed 

the expression differences of FAM72 in patients with 

LUAD between tumor tissue and normal tissue and then 

explored correlations between expression levels and 

clinicopathological parameters based on univariate and 

multivariate Cox regression models. We further 

developed a nomogram to predict prognosis and 

analyzed its predictive performance. To gain a more in-

depth understanding of the biological mechanisms 

underlying the effects of FAM72, we performed a Gene 

Ontology (GO) analysis and a gene set enrichment 

analysis (GSEA). Finally, we examined the correlations 

between FAM72 and mutations, immune infiltration, 

and methylation and comprehensively explored the link 

between FAM72 and tumorigenesis. 

 

RESULTS 
 

Clinical characteristics 

 

Data (shown in Table 1) were collected from TCGA, 

including gene expression data and clinical data. Patient 

characteristics, including age, gender, pack-years, race, 

tumor site, epithelial growth factor receptor (EGFR) 

status, anaplastic lymphoma kinase (ALK) status, kirsten 

rat sarcoma viral oncogene (KRAS) status, TNM stage, 

pathological stage, and gene expression, were collected. 

 

Expression status of FAM72 in LUAD tissues 

 

As evaluated by the Wilcoxon rank-sum test, the 

expression of FAM72A–D was significantly higher in 

LUAD tissues than in normal tissues (P < 0.001) (Figure 

1A–1D). FAM72A–D was significantly overexpressed in 

LUAD (P < 0.001), revealing that the expression of 

FAM72A–D is associated with lung carcinogenesis. As 

shown in Figure 1E, there were significant correlations 

between levels of FAM72A–D genes. The AUC values 

for FAM72A–D were 0.780 (CI: 0.733−0.826), 0.878 

(CI: 0.840−0.917), 0.851(CI: 0.813−0.890), and 0.843 

(CI: 0.807−0.880), respectively (Figure 1F). 

 

Association between FAM72 and survival 

 

OS was significantly reduced in patients with high 

FAM72A–D expression than in patients with low 

FAM72A–D expression (P ≤ 0.001) (Figure 2A–2D). To 

verify the association between FAM72A–D expression 

and OS, we used the GSE13213, GSE30219, GSE41271, 

and GSE50081 datasets from the GEO database. In these 

datasets, OS was significantly reduced in patients with 

high FAM72 expression than in those with low FAM72 

expression (P = 0.009, 0.009, 0.038, and 0.005, 

respectively) (Figure 2E–2H). We next used a univariate 

Cox regression model to analyze prognostic factors in 

LUAD (Table 2). In this analysis, high FAM72 

expression levels were correlated with a worse OS. We 

then performed a multivariate analysis with the Cox 

regression model. Owing to missing data exceeding 20%, 

the M stage was not included in this analysis. The results 

indicated that FAM72A–D expression (all P < 0.01), age, 

and pathological stage are independently associated with 

OS. These findings demonstrated that increased FAM72 

expression is correlated with a poor OS in LUAD. 

 

Development of a prognostic model based on FAM72 

and clinicopathological factors 

 

A nomogram integrating FAM72A–D expression and 

independent clinical risk factors (age and pathological 

stage) was constructed (Figure 3A–3D). A worse 

prognosis was represented by a higher total number of 

points on the nomogram. The C-index values were 0.7, 

0.7, 0.69, and 0.68 for FAM72A–D based on 1000 

bootstrap replicates. The deviation correction line in the 

calibration plot was close to the ideal curve (i.e., a 45° 

line), indicating that the prediction results are in good 

agreement with the observation results (Figure 4A–4D). 

 

FAM72-related functional enrichment analysis 

 

A GO enrichment analysis of genes with correlated 

expression revealed various overrepresented terms in the 

three main functional groups (Figure 5A–5D): cellular 

component, biological process, and molecular function. 

In the cellular component category, FAM72 and genes 

with similar expression patterns were mainly involved in 

mitotic nuclear division, spindle, cell cycle, and DNA 

replication. Figure 6A–6D shows an interactive network 

of the most highly enriched terms (colored by cluster-ID, 

where distinct colors indicate enriched pathways). 

 

FAM72-related signaling pathways obtained by GSEA 

 

RNA-seq data obtained from TCGA were used to 

compare groups with high and low FAM72A–D 

expression. Approximately 20,000 differentially expressed 

genes were identified between the high and low 

expression groups. Based on a GSEA of all differentially 

expressed genes, various significantly enriched signaling 
pathways were identified, including EGFR signaling, 

lung cancer poor survival, undifferentiated cancer, 

proliferation, and cell cycle, as determined by the 
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Table 1. TCGA lung adenocarcinoma patient characteristics. 

Clinical characteristics  Total (497) Percentage (%) 

Gender    

 male 228 45.9 

 female 269 54.1 

Age    

 <=70 years old 327 65.8 

 > 70 years old 160 32.2 

Number pack years smoked    

 <40 167 33.6 

 >=40 174 35 

Race    

 white 384 77.3 

 other 113 22.7 

Tumor site    

 upper lobe 291 58.6 

 other 206 41.4 

EGFR status     

 mut 79 15.9 

 wt 190 38.2 

ALK status     

 mut 33 6.6 

 wt 206 41.4 

KRAS status     

 mut 61 12.3 

 wt 244 49.1 

T stage    

 T1 166 33.4 

 T2 267 53.7 

 T3 43 8.7 

 T4 18 3.6 

N stage    

 N0 321 64.6 

 N1 94 18.9 

 N2 69 13.9 

 N3 2 0.4 

M stage    

 M0 331 66.6 

 M1 24 4.8 

TNM stage    

 stage I 267 53.7 

 stage II 118 23.7 

 stage III 80 16.1 

 stage IV 25 5 

Vital status    

 dead 180 36.2 

 alive 317 63.8 

FAM72A expression    

 low 248 49.9 

 high 249 50.1 

FAM72B expression    

 low 248 49.9 

 high 249 50.1 



 

www.aging-us.com 8158 AGING 

FAM72C expression    

 low 248 49.9 

 high 249 50.1 

FAM72D expression    

 low 248 49.9 

 high 249 50.1 

 

normalized enrichment score (NES), adjusted P-value, 

and false discovery rate (FDR) (Figure 7A–7D). Several 

pathways enriched in FAM72A–D were related to 

LUAD, including proliferation, EGFR signaling, 

undifferentiated cancer, lung cancer poor survival, and 

cell cycle pathways (Figure 8A). 

 

Genetic mutations in FAM72 and their associations 

with OS 

 

We analyzed genetic alterations in FAM72A–D and 

their associations with OS in LUAD. As shown in 

Figure 8B, 8C, patients with LUAD showed a high 

FAM72A–D mutation rate. Among 510 patients with 

LUAD, genetic alterations were found in 122 patients, 

with an overall mutation rate of 24% and specific 

mutation rates of 14%, 17%, 12%, and 18% for the 

four loci, respectively. Furthermore, genetic alterations 

in FAM72A–D were associated with a poor OS in 

patients with LUAD. These results implied that 

mutations in FAM72A–D could affect prognosis in 

LUAD. 

 

Correlations between FAM72 expression and immune 

infiltration 

 

As shown in Table 3, activated CD4 T cells were 

significantly positively correlated with FAM72A–D 

expression. In other subsets, we found that FAM72 

expression was associated with plasmacytoid dendritic 

cell, natural killer T cell, monocyte, mast cell, 

macrophage, immature dendritic cell, eosinophil, 

activated dendritic cell, type 2 T helper cell, type 17 T 

helper cell, T follicular helper cell, memory B cell, 

immature B cell, gamma delta T cell, effector memory 

CD4 T cell, central memory CD4 T cell, activated CD4 

T cell, and activated B cell counts. PDCD1 (PD-1) and 

CD274 (PD-L1) levels were positively correlated with 

FAM72A–D expression (Table 4). 

 

Correlation between FAM72 expression and 

methylation 

 

As shown in Figure 8A, the methylation level of 
FAM72 is low. Its expression may be related to the 

hypomethylation level (Figure 9A–9C). MethSurv was 

used to evaluate the effect of hypomethylation levels 

and FAM72 expression on prognosis in LUAD. We 

discovered that cg09169215, located in a CpG island, 

was associated with a poor prognosis (Figure 9D). 

 

DISCUSSION 
 

Owing to the lack of early clinical features of LUAD, a 

large number of patients develop metastases [3, 4]. 

Currently, the primary clinical treatments for advanced 

LUAD are chemotherapy, radiotherapy, and targeted 

therapy; however, these approaches are limited with 

respect to improving survival. Moreover, the prognosis 

is poor for stage III or higher in NSCLC, with fewer 

than 15% of patients surviving 5 years [13]. Most 

patients eventually die from chemotherapy resistance 

and cancer progression. Therefore, the identification of 

new molecular mechanisms is necessary to develop 

therapeutic targets in LUAD. 

 

Our results indicated that FAM72 may be a prognostic 

biomarker in LUAD. High FAM72 expression was 

associated with a poor survival rate. FAM72 mutations 

were also associated with poor survival. FAM72 has 

been reported to promote cancer cell proliferation in 

glioblastoma and multiple myeloma [11, 12]. Rahane  

et al. indicated that the increased expression of mitotic 

FAM72 in tumor cells is caused by upstream mutations 

in primitive oncogenes or in tumor suppressor genes, 

such as EGFR, RAS, BRAF, and TP53, resulting in 

increased cell proliferation. Silencing neural stem cell-

specific FAM72 may prevent cancer cell proliferation 

[11]. These previous findings suggest that FAM72 is an 

oncogene. 

 

Similarly, our results demonstrated FAM72 was up-

regulated in LUAD tissues, supporting its potential role 

in the development of LUAD. FAM72 paralogs might 

contribute to tumorigenesis by the activation of 

centrosome and mitotic spindle formation via mitotic cell 

cycle genes KIF23, ASPM, CEP55, KIF14, SGO1, 
CENPE, and BUB1 [11]. In addition, several studies have 

shown that FAM72 may be a target for tumor therapy [6, 

10–12, 14]. However, the association between FAM72 

and LUAD has not been explored to date. Therefore, our 

results provide the first evidence for its therapeutic and 
prognostic value in LUAD. 

 

Key terms identified in a GO enrichment analysis, such 

as mitotic nuclear division, spindle, cell cycle and DNA 
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Figure 1. FAM72A-D expression levels in LUAD from TCGA data. (A–D) The expression levels of FAM72A-D in LUAD and normal 

tissue; (E) The correlation between FAM72A-D members; (F) Receiver operating characteristic analysis (ROC) of FAM72A-D in LUAD.  
(*P < 0.05, **P < 0.01, ***P < 0.001). 
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Figure 2. The prognostic value of FAM72A-D expression in LUAD. (A–D) Survival curves of OS from TCGA data (n = 497); (E–H) 

Survival curves of OS from GSE 13213, GSE30219, GSE41271 and GSE50081 data (n = 117, 85, 181, and 127, respectively). 
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Table 2. Univariate(a) and multivariate(b) Cox regression model of prognosis for FAM72A-D in patients with lung 
adenocarcinoma. 

Clinicopathologic variable Total(N) HR(95% CI) p-value 

FAM72A     

a.    

Gender(Male vs. Female) 497 0.954(0.711~1.279) 0.752 

Age(>70 vs. <=70) 487 1.464(1.081~1.982) 0.014 

Number pack years smoked(>40 vs. <=40) 341 1.026(0.714~1.475) 0.888 

Race(Other vs. White) 497 1.265(0.797~2.008) 0.061 

Tumor site(Upper lobe vs. Other) 497 1.156(0.862~1.552) 0.333 

EGFR status(Mut vs. Wt) 266 1.265(0.797~2.008) 0.319 

ALK status(Mut vs. Wt) 236 1.713(0.938~3.128) 0.080 

KRAS status(Mut vs. Wt) 302 1.257(0.778~2.032) 0.351 

T stage(T2/T3/T4 vs. T1) 494 1.678(1.187~2.373) 0.003 

M stage(M1 vs. M0) 355 2.129(1.243~3.648) 0.006 

Pathologic stage(StageII/Stage III/Stage IV vs. Stage I) 490 2.629(1.924~3.591) <0.001 

FAM72A (High vs. Low) 497 1.719(1.277~2.313) <0.001 

b.    

Age(>70 vs. <=70)  1.564(1.139~2.148) 0.006 

T stage(T2/T3/T4 vs. T1)  1.232(0.856~1.774) 0.260 

N stage(N2/N3 vs. N0/N1)  1.169(0.782~1.746) 0.447 

FAM72A (High vs. Low)  1.714(1.250~2.351) 0.001 

FAM72B     

a.    

Gender(Male vs. Female) 497 0.954(0.711~1.279) 0.752 

Age(>70 vs. <=70) 487 1.464(1.081~1.982) 0.014 

Number pack years smoked(>40 vs. <=40) 341 1.026(0.714~1.475) 0.888 

Race(Other vs. White) 497 1.265(0.797~2.008) 0.061 

Tumor site(Upper lobe vs. Other) 497 1.156(0.862~1.552) 0.333 

EGFR status(Mut vs. Wt) 266 1.265(0.797~2.008) 0.319 

ALK status(Mut vs. Wt) 236 1.713(0.938~3.128) 0.080 

KRAS status(Mut vs. Wt) 302 1.257(0.778~2.032) 0.351 

T stage(T2/T3/T4 vs. T1) 494 1.678(1.187~2.373) 0.003 

M stage(M1 vs. M0) 355 2.129(1.243~3.648) 0.006 

Pathologic stage(StageII/Stage III/Stage IV vs. Stage I) 490 2.629(1.924~3.591) <0.001 

b.    

Age(>70 vs. <=70)  1.595(1.160~2.193) 0.004 

T stage(T2/T3/T4 vs. T1)  1.257(0.875~1.807) 0.216 

N stage(N2/N3 vs. N0/N1)  1.131(0.755~1.694) 0.551 

Pathologic stage(StageII/Stage III/Stage IV vs. Stage I)  2.326(1.631~3.318) 0.001 

FAM72B (High vs. Low)  1.776(1.289~2.446) <0.001 

FAM72C     

a.    

Gender(Male vs. Female) 497 0.954(0.711~1.279) 0.752 

Age(>70 vs. <=70) 487 1.464(1.081~1.982) 0.014 

Number pack years smoked(>40 vs. <=40) 341 1.026(0.714~1.475) 0.888 

Race(Other vs. White) 497 1.265(0.797~2.008) 0.061 

Tumor site(Upper lobe vs. Other) 497 1.156(0.862~1.552) 0.333 

EGFR status(Mut vs. Wt) 266 1.265(0.797~2.008) 0.319 

ALK status(Mut vs. Wt) 236 1.713(0.938~3.128) 0.080 

KRAS status(Mut vs. Wt) 302 1.257(0.778~2.032) 0.351 
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T stage(T2/T3/T4 vs. T1) 494 1.678(1.187~2.373) 0.003 

N stage(N2/N3 vs. N0/N1) 486 2.274(1.589~3.255) <0.001 

M stage(M1 vs. M0) 355 2.129(1.243~3.648) 0.006 

Pathologic stage(StageII/Stage III/Stage IV vs. Stage I) 490 2.629(1.924~3.591) <0.001 

FAM72C (High vs. Low) 497 1.907(1.414~2.572) <0.001 

b.    

Age(>70 vs. <=70)  1.507(1.100~2.064) 0.011 

T stage(T2/T3/T4 vs. T1)  1.226(0.852~1.764) 0.272 

N stage(N2/N3 vs. N0/N1)  1.220(0.815~1.825) 0.334 

Pathologic stage(StageII/Stage III/Stage IV vs. Stage I)  2.238(1.566~3.197) <0.001 

FAM72C (High vs. Low)  1.796(1.310~2.462) <0.001 

FAM72D     

a.    

Gender(Male vs. Female) 497 0.954(0.711~1.279) 0.752 

Age(>70 vs. <=70) 487 1.464(1.081~1.982) 0.014 

Number pack years smoked(>40 vs. <=40) 341 1.026(0.714~1.475) 0.888 

Race(Other vs. White) 497 1.265(0.797~2.008) 0.061 

Tumor site(Upper lobe vs. Other) 497 1.156(0.862~1.552) 0.333 

EGFR status(Mut vs. Wt) 266 1.265(0.797~2.008) 0.319 

ALK status(Mut vs. Wt) 236 1.713(0.938~3.128) 0.080 

KRAS status(Mut vs. Wt) 302 1.257(0.778~2.032) 0.351 

T stage(T2/T3/T4 vs. T1) 494 1.678(1.187~2.373) 0.003 

N stage(N2/N3 vs. N0/N1) 486 2.274(1.589~3.255) <0.001 

M stage(M1 vs. M0) 355 2.129(1.243~3.648) 0.006 

Pathologic stage(StageII/Stage III/Stage IV vs. Stage I) 490 2.629(1.924~3.591) <0.001 

FAM72D (High vs. Low) 497 1.741(1.289~2.349) <0.001 

b.    

Age(>70 vs. <=70)  1.537(1.121~2.108) 0.008 

T stage(T2/T3/T4 vs. T1)  1.225(0.851~1.764) 0.275 

N stage(N2/N3 vs. N0/N1)  1.164(0.778~1.743) 0.459 

Pathologic stage(StageII/Stage III/Stage IV vs. Stage I)  2.332(1.633~3.331) <0.001 

FAM72D (High vs. Low)  1.698(1.234~2.336) 0.001 

 

replication, suggested that FAM72 is related to cell 

growth, division, and proliferation, further supporting  

its relationship with tumorigenesis. Other enriched  

terms were related to the centrosome, microtubule, and 

chromosome, and these findings need to be confirmed in 

further studies. A GSEA indicated roles in EGFR 

signaling, lung cancer poor survival, undifferentiated 

cancer, proliferation, and cell cycle pathways. Evan  

et al. reported that the excessive accumulation of cancer 

cells results from excessive cell proliferation and 

inadequate apoptosis. It is possible that FAM72 promotes 

tumorigenesis and contributes to a poor prognosis by 

similar mechanisms. 

 

Immunotherapy is a promising approach in tumor 

therapy. The level of T cell immune infiltration is 
related to the efficacy of immunotherapy and is 

therefore the focus of current cancer immunotherapy 

research [15]. A large number of studies have shown 

that high levels of B cells and T cells, such as 

adenocarcinoma B cells and breast CD8T, are 

associated with a better OS in many types of cancer, 

including LUAD [16]. NK cells are important 

mediators of anti-tumor immunity and ultimately 

participate in malignant cell killing [17]. Our results 

showed that FAM72A–D expression levels are 

correlated with immune infiltration, including levels of 

T cells, B cells, eosinophils, NK cells, monocytes, 

mast cells, macrophages, and dendritic cells. These 

results suggest that the expression level of FAM72 

may indicate the level of immune infiltration, 

providing a reference for the application of immuno-

therapy in LUAD. In addition, we found that PDCD1 

(PD1) and CD274 (PD-L1) expression levels are 

positively correlated with FAM72A–D expression 
levels. High levels of PD-L1 have been detected in 

many tumors, including NSCLC, and are associated 

with poor prognosis [18]. However, some studies have 
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indicated that elevated PD-L1 may be related to a 

better response to immunotherapy. A randomized 

phase 3 trial of pembrolizumab and docetaxel in 

patients with PD-L1-positive tumors suggested that the 

survival benefit was associated with PD-L1 expression 

(50% expression of PD-L1, HR = 0.53; 1–49% 

expression, HR = 0.76) [19]. Another study has shown 

that patients with PD-L1 overexpression have better 

clinical outcomes after anti-PD-1 therapy than those of 

patients with low expression [20]. Our results 

indicated that FAM72 is a candidate predictive bio-

marker for the efficacy of immunotherapy and is 

associated with prognosis in patients with LUAD 

receiving immunotherapy. 

 

Several studies have demonstrated an inverse relationship 

between hypomethylation and gene expression in 

NSCLC [21, 22]. Sato et al. indicated that high gene 

expression induced by hypomethylation is associated 

with poor prognosis in NSCLC [23, 24]. Previous studies 

have shown that high FAM72 expression is associated 

with hypomethylation and outcomes in cancer [11, 12]. 

We found that FAM72A–D show hypomethylation and 

that the hypomethylation level is associated with a poor 

 

 
 

Figure 3. Nomogram for predicting the probability of 1-, 3- and 5-year OS for LUAD patients. (A–D) A nomogram that integrates 

FAM72A-D and other prognostic factors in LUAD from TCGA data. 
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Figure 4. Calibration curve for predicting the probability of 1-, 3- and 5-year OS for LUAD patients. (A–D) The calibration curve of 

the nomogram in LUAD from TCGA data. 
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Figure 5. Functional enrichment of FAM72A-D in LUAD. (A–D) Gene ontology (GO) enrichment analysis of FAM72A-D and its co-

expression genes in Metascape. The GO enriched terms are colored by p-value, where terms containing more genes tend to have more 
significant p-value. 
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Figure 6. An interactive network of the top enrichment terms. (A–D) It is colored by cluster-ID. Distinct colors are various enrichment 

pathways of FAM72A-D correlated genes. 
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Figure 7. The top 20 pathways were differentially enriched according to the level of NES in FAM72A-D related LUAD.  
(A–D) The enrichment plot was obtained from the gene set enrichment analysis (GSEA). 
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Figure 8. The functional pathways and gene alteration of FAM72A-D in LUAD. (A) Several pathways were enriched in FAM72A-D 
related LUAD, including the proliferation, EGFR signaling, undifferentiated cancer, lung cancer poor survival and cell cycle; (B, C) Genetic 
alteration in FAM72A-D and its association with OS of LUAD patients. 
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Table 3. The association between the expression level of FAM72A-D and the 
immune infiltration in the tumor microenvironment. 

Immune cell Spearman correlation P-value 

FAM72A   

Plasmacytoid dendritic cell -0.275 <0.001 

Natural killer cell -0.134 0.002 

Monocyte -0.204 <0.001 

Mast cell -0.365 <0.001 

Macrophage -0.149 0.001 

Immature dendritic cell -0.184 <0.001 

Eosinophil -0.379 <0.001 

Activated dendritic cell -0.161 <0.001 

Type 2 T helper cell 0.239 <0.001 

Type 17 T helper cell -0.221 <0.001 

Type 1 T helper cell -0.135 0.002 

T follicular helper cell -0.219 <0.001 

Memory B cell 0.430 <0.001 

Immature B cell -0.134 0.003 

Gamma delta T cell 0.106 0.017 

Effector memory CD4 T cell 0.198 <0.001 

Central memory CD4 T cell -0.180 <0.001 

Activated CD4 T cell 0.517 <0.001 

Activated B cell -0.222 <0.001 

FAM72B   

Plasmacytoid dendritic cell -0.225 <0.001 

Natural killer T cell -0.132 0.003 

Monocyte -0.185 <0.001 

Mast cell -0.347 <0.001 

Macrophage -0.114 0.010 

Immature dendritic cell -0.148 0.001 

Eosinophil -0.372 <0.001 

Activated dendritic cell -0.118 0.008 

Type 2 T helper cell 0.297 <0.001 

Type 17 T helper cell -0.197 <0.001 

T follicular helper cell -0.190 <0.001 

Memory B cell 0.484 <0.001 

Immature B cell -0.099 0.025 

Gamma delta T cell 0.163 <0.001 

Effector memory CD4 T cell 0.237 <0.001 

Central memory CD4 T cell -0.162 <0.001 

Activated CD4 T cell 0.563 <0.001 

Activated B cell -0.188 <0.001 

FAM72C   

Plasmacytoid dendritic cell -0.295 <0.001 

Natural killer cell -0.145 0.001 

Monocyte -0.178 <0.001 

Mast cell -0.402 <0.001 

Macrophage -0.132 0.003 

Immature dendritic cell -0.209 <0.001 

Eosinophil -0.375 <0.001 
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Activated dendritic cell -0.129 0.004 

Type 2 T helper cell 0.177 <0.001 

Type 17 T helper cell -0.163 <0.001 

Type 1 T helper cell -0.119 0.007 

T follicular helper cell -0.228 <0.001 

Memory B cell 0.335 <0.001 

Immature B cell -0.132 0.003 

Effector memory CD4 T cell 0.156 <0.001 

Central memory CD8 T cell -0.106 0.017 

Central memory CD4 T cell -0.221 <0.001 

Activated CD4 T cell 0.486 <0.001 

Activated B cell -0.153 0.001 

FAM72D   

Plasmacytoid dendritic cell -0.339 <0.001 

Natural killer cell -0.171 <0.001 

Monocyte -0.213 <0.001 

Mast cell -0.401 <0.001 

Macrophage -0.161 <0.001 

Immature dendritic cell -0.217 <0.001 

Eosinophil -0.379 <0.001 

Activated dendritic cell -0.179 <0.001 

Type 2 T helper cell 0.253 <0.001 

Type 17 T helper cell -0.209 <0.001 

Type 1 T helper cell -0.159 <0.001 

T follicular helper cell -0.263 <0.001 

Memory B cell 0.389 <0.001 

Immature B cell -0.166 <0.001 

Gamma delta T cell 0.089 0.044 

Effector memory CD4 T cell 0.140 0.002 

Effector memory CD8 T cell -0.108 0.015 

Central memory CD4 T cell -0.237 <0.001 

Central memory CD8 T cell -0.124 0.005 

Activated CD4 T cell 0.523 <0.001 

Activated B cell -0.209 <0.001 

MDSC -0.098 0.001 

 

Table 4. Correlation between the expression of PDCD1/CD274 and 
the expression of FAM72A-D. 

 Spearman correlation P-value 

PDCD1   

FAM72A 0.191 <0.001 

FAM72B 0.211 <0.001 

FAM72C 0.150 0.001 

FAM72D 0.163 <0.001 

CD274   

FAM72A 0.226 <0.001 

FAM72B 0.248 <0.001 

FAM72C 0.104 0.012 

FAM72D 0.147 0.001 
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prognosis in LUAD. Therefore, FAM72 expression may 

be epigenetically regulated by DNA hypomethylation, 

providing an additional prognostic factor. 

 

Although our findings improve our understanding of the 

relationship between FAM72A–D and LUAD, our study 

had some limitations. First, the data were obtained from 

public databases, and data quality cannot be assessed. 

Further experimental studies are needed to confirm our 

results. Second, the specific role of FAM72 in the 

development of LUAD should be comprehensively 

evaluated, and a broader range of clinical factors should 

be considered. These analyses were limited by a lack of 

some information in public databases. Third, the 

correlation between FAM72 expression at the mRNA 

and protein levels needs to be verified by cellular and 

clinical experiments. Fourth, we cannot determine the 

direct mechanisms by which FAM72 promotes the 

development of LUAD, which should be a focus of 

future research. To further investigate the mechanism 

underlying the effects of FAM72 in LUAD, we plan to 

conduct cellular experiments in the near future. 

 

 
 

Figure 9. The methylation of FAM72A/B/D in LUAD. (A–C) The visualization between the methylation level and the FAM72A/B/D 

expression; (D) The Kaplan-Meier survival of the promoter methylation of FAM72B. 
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In summary, the results of the present study partially 

revealed the roles of FAM72A-D in LUAD, providing a 

potential therapeutic and prognostic biomarker. In 

particular, we found that FAM72 may be a molecular 

marker of poor prognosis in LUAD. FAM72 mutations 

were associated with poor survival. Additionally, 

FAM72 may be a predictive biomarker for the efficacy 

of immunotherapy as well as prognosis in patients  

with LUAD undergoing immunotherapy. Finally, 

hypomethylation was associated with high FAM72 

expression, providing additional insight into the 

molecular mechanisms underlying LUAD. 

 

MATERIALS AND METHODS 
 

Clinical information from TCGA and GEO databases 

 

Gene expression data (HTSeq-Counts and HTSeq-

FPKM), phenotype data, and detailed clinicopathological 

information for TCGA-LUAD were obtained using  

the UCSC Xena browser (version: 07-20-2019, 

https://xenabrowser.net/datapages/). Sequence data were 

retrieved using the Illumina HiSeq_RNA_Seq platform. 

HTSeq-FPKM gene expression data were transformed 

into TPM (transcripts per million reads) for subsequent 

analyses. TPM yields more similar results to those 

produced by a microarray approach and facilitates 

comparisons among samples [25]. The inclusion criteria 

for data retrieval from the two databases were as follows: 

(1) pathological diagnosis of adenocarcinoma, (2) 

complete gene expression data, and (3) complete survival 

information. GEO datasets used GPL570, GPL6480 and 

GPL6884 platforms. The probe ID was converted to the 

gene symbol according to the related annotation file, and 

the average expression values for multiple probes 

corresponding to the same gene were calculated. Data 

used in the study were in accordance with publication 

guidelines provided by TCGA and GEO. No studies 

directly involving human participants or animal 

experiments were included. Ethics approval and informed 

consent were not required. 

 

Statistical analysis 

 

All statistical analysis was performed using the IBM 

SPSS statistical package (SPSS 26.0) and R (4.0.2). The 

Wilcoxon rank-sum test was used to compare the 

expression of FAM72A–D between LUAD and normal 

groups. The relationships between clinicopathologic 

parameters and FAM72A–D expression levels were 

evaluated with Wilcoxon signed-rank tests. Clinico-

pathologic parameters (age, gender, pack-years, race, 

tumor site, EGFR status, ALK status, KRAS status, T 

stage, N stage, M stage, pathological stage, and gene 

expression) associated with OS were evaluated by Cox 

regression analyses. Univariate and multivariate analyses 

were performed by applying the Cox logistic regression 

model to identify independent predictors, including age 

at diagnosis (ref. ≤70 years), gender (ref. male), pack-

years (ref. <40), race (ref. other race), tumor site (ref. 

other site), EGFR status (ref. wt), ALK status (ref. wt), 

KRAS status (ref. wt), T stage (ref. T1), N stage (ref. 

NO), M stage (ref. M0), pathological stage (ref. I), and 

FAM72A–D expression (ref. Low). The 95% confidence 

interval (Cl) of the HR was measured to evaluate the 

hazard risk for individual factors. All tests were two-

sided, and P-values of less than 0.05 were considered 

statistically significant. 

 

Over-expression of FAM72A-D in patients with 

LUAD 

 

FAM72 expression levels in patients with LUAD were 

compared between tumor tissues and normal tissues.  

In addition, the corrplot R package (version:0.84, 

https://cran.r-project.org/web/packages/corrplot/index. 

html) was used to explore correlations between 

FAM72A, B, C, and D levels in LUAD. The AUC 

values for FAM72A–D were evaluated using pROC R 

package (version:1.16.2, https://cran.r-project.org/web/ 

packages/pROC/index.html) and ggplot2 R package 

(version:3.3.2, https://cran.r-project.org/web/packages/ 

ggplot2/index.html). 

 

Association between FAM72 and survival 

 

A survival curve was generated using the survival  

R package (v. 0.1.3, https://cran.r-project.org/web/ 

packages/survivalAnalysis/index.html) and survminer  

R package (v. 0.4.8, https://cran.r-project.org/web/ 

packages/survminer/index.html). Furthermore, the 

prognostic value of the risk model was evaluated using 

four independent datasets from GEO (https://www.ncbi. 

nlm.nih.gov/geo/), GSE13213 (n = 117), GSE30219  

(n = 85), GSE412710 (n = 181), and GSE50081 (n = 127). 

 

Construction and evaluation of the nomogram and 

prognostic model 

 

A nomogram was constructed based on the optimal 

multivariate Cox regression analysis to predict the 1-year, 

3-year, and 5-year survival probabilities. The rms R 

package (v. 6.0-1, https://cran.r-project.org/web/packages/ 

rms/index.html) was used to produce a nomogram. The 

concordance index (C-index) and calibration plot are 

frequently used to evaluate the quality of nomogram 

models. The C-index and calibration plot were evaluated 

using the Hmisc R package (v. 4.4-1, https://cran.r-

project.org/web/packages/Hmisc/index.html). In this 
study, the C-index was used to determine the 

discrimination ability with 1000 bootstrap replicated. As 

the C-index increases, the prediction accuracy increases. 

https://xenabrowser.net/datapages/
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/pROC/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/survivalAnalysis/index.html
https://cran.r-project.org/web/packages/survivalAnalysis/index.html
https://cran.r-project.org/web/packages/survminer/index.html
https://cran.r-project.org/web/packages/survminer/index.html
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/Hmisc/index.html
https://cran.r-project.org/web/packages/Hmisc/index.html
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The calibration curve was visually evaluated by mapping 

the nomogram predictions to observed probabilities, and 

a 45° line represented optimal predictive values. 

 

Functional enrichment analysis 

 

GEPIA, a database based on the UCSC Xena project 

(http://xena.ucsc.edu), enables dynamic analyses and 

visualization of TCGA gene expression profile data [26]. 

In our study, GEPIA2.0 (http://gepia2.cancer-pku.cn/) 

was used to find genes with highly correlated expression 

levels to those of FAM72A–D in LUAD. The correlations 

between levels of these genes and FAM72A–D were 

greater than 0.62. Then, the functions of FAM72A–D and 

genes with correlated expression in TCGA-LUAD were 

predicted by a GO enrichment analysis, as implemented 

using Metascape (http://metascape.org) [27]. 

 

Gene set enrichment analysis 

 

Expression profiles (HTSeq-Counts) were compared 

between high and low FAM72A–D expression groups to 

identify differentially expressed genes using the DESeq2 

R package (v. 1.28.1, http://www.bioconductor.org/ 

packages/release/bioc/html/DESeq2.html) in R (4.0.2). A 

GSEA of approximately 20,000 differentially expressed 

genes was performed. GSEA determines whether a set of 

prior defined genes show statistically significant and 

consistent differences between two biological states [28, 

29]. In this study, GSEA was performed using the 

Molecular Signatures Database (MSigDB) Collection 

(c2.all.v7.0.entrez.gmt) of the clusterProfiler R package 

(3.18.0, http://bioconductor.org/packages/release/bioc/ 

html/clusterProfiler.html) to identify statistically 

significant pathway differences between high and low 

FAM72A–D expression groups in LUAD. The expression 

level of FAM72A–D was used as a phenotype label. 

Pathway terms with adjusted P-value < 0.05 and FDR  

q-value < 0.25 were considered significantly enriched. 

 

FAM72A–D mutations and prognosis 

 

cBioPortal (https://www.cbioportal.org) can be used to 

explore, visualize, and analyze multidimensional cancer 

genome data [30]. In our study, we analyzed the genomic 

profiles of FAM72A–D with a z-score threshold of ±1.8. 

Genetic mutations in FAM72A–D and their association 

with OS were evaluated. 

 

Analysis of immune infiltration with respect to 

FAM72A–D expression by ssGSEA 

 

To evaluate correlations between FAM72A–D and 
levels of immune cell infiltration, the ssGSEA (single-

sample Gene Set Enrichment Analysis) method  

was applied using the GSVA package (v. 1.36.3, 

http://www.bioconductor.org/packages/release/bioc/htm

l/GSVA.html). The immune reference set was obtained 

from the literature (http://dx.doi.org/10.1016/j.celrep. 

2016.12.019) [31]. The relative levels of 28 types of 

tumor-infiltrating immune cells in the immunocyte 

signatures, including 782 genes for prediction in 

individual tissue samples, were evaluated. Based on 28 

immunocyte signature genes in the literature, a relative 

enrichment score for every immunocyte was quantified 

from the gene expression profile of each tumor sample 

[32]. The following 28 types of immune cells were 

included: activated CD4 T cells, activated CD8 T cells, 

activated B cells, central memory CD4 T cells, central 

memory CD8 T cells, effector memory CD4 T cells, 

effector memory CD8 T cells, gamma delta T cells, 

regulatory T cells, type-1 T helper cells, type-2 T helper 

cells, type-17 T helper cells, follicular helper T cells, 

CD56 dim natural killer cells, CD56 bright natural killer 

cells, natural killer cells, natural killer T cells, immature B 

cells, memory B cells, activated dendritic cells, immature 

dendritic cells, plasmacytoid dendritic cells, mast cells, 

myeloid-derived suppressor cells, monocytes, eosinophils, 

neutrophils, and macrophages. The relationships between 

FAM72A–D and levels of immune cell infiltration were 

evaluated by Spearman correlation coefficients. 

 

Correlation between FAM72A–D expression and 

methylation 

 

Studies have shown that FAM72 is related to 

methylation. Therefore, we further analyzed the 

relationship between FAM72A–D and methylation. 

Spearman correlation coefficients were determined to 

evaluate the correlation between FAM72A–D and 

methylation levels in TCGA-LUAD. For this analysis, 

MethSurv (https://biit.cs.ut.ee/methsurv/) was used, 

which is a web tool for univariate and multivariate 

survival analyses based on DNA methylation biomarkers 

using TCGA data, containing 25 different types of cancer 

and 7,358 patients [33]. 
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