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INTRODUCTION 
 

Lung cancer is the deadliest malignancy worldwide [1], 

and its 5-year survival rate is approximately 4-17% [2]. 

The pathological types of lung cancer include non-small 

cell lung cancer (NSCLC) and small cell lung cancer 

(SCLC). NSCLC is further divided into adenocarcinoma 

(LUAD) and squamous cell carcinoma (LUSC), of which 

adenocarcinoma is the most common type. For last 

decades, it was believed that smoking was the primary 

cause of NSCLC. However, the incidence of NSCLC in 

non-smokers is increasing year by year [3], but the 

specific reason is still unclear. Surgery is considered to 

be the gold standard in treating early-stage lung cancer 

[4], while radiotherapy, chemotherapy, targeted therapy, 

and immunotherapy are also available for patients with 

advanced disease [5]. In recent years, EGFR-TKIs 

targeting EGFR mutations have shown significant effects 

[6]. The application of the immune checkpoint inhibitors 

PD-1 and PD-L1 also provides a broader strategy for the 

comprehensive treatment of lung adenocarcinoma [7]. 

Thus, exploration of novel approaches for monitoring 

prognosis and improving LUAD immunotherapy is 

urgently needed. 

 

Ubiquitination is a type of post-translational modification 

that participates in regulating protein function or 

degradation by the proteasome [8]. The process of protein 

ubiquitination involves three types of enzymes: ubiquitin-

activating enzyme (E1), ubiquitin-coupled enzyme (E2), 

and ubiquitin ligase (E3) [9]. The E1 enzyme is 

responsible for the adenylation of ubiquitin, a process that 

consumes one molecule ATP, and the E2 enzyme 

transports ubiquitin that is adenylated by E1 to E3 [10]. 
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ABSTRACT 
 

Protein ubiquitination has been reported to be involved in many biological processes that affect cancer cell 
growth or death. In this study, we identified differentially expressed E3s/DUB-related genes associated with the 
prognosis of lung adenocarcinoma and then constructed an E3s/DUB enzyme signature prediction model for 
the training group and validated its accuracy for prognosis prediction in the validation group. According to our 
constructed model, all patients were divided into the high- or low-risk group, and a comparison of the two 
groups revealed that the high-risk group had poorer survival and higher mortality than the low-risk group. The 
calculated risk score was also an independent prognostic factor when analyzed together with other clinical 
factors. To explore the functions of the signature genes, we predicted the substrate proteins with which they 
interact and then performed enrichment analysis. Interestingly, we found that the signature genes were 
enriched in multiple treatment resistance and immune-related pathways. Therefore, we continued to analyze 
immune infiltration in the samples and found a variety of differences in immune cell infiltration. According to 
our constructed model, these differences in immune cell infiltration may predict different immune statuses 
after grouping and are associated with worse prognosis in high-risk patients. 

 

mailto:lyzhang@hrbmu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 8511 AGING 

Finally, different E3 enzymes recognize diverse substrate 

proteins and catalyze ubiquitin transfer from E2 to the 

lysine (K) residues of substrate proteins to complete 

monoubiquitination or polyubiquitination of substrate 

proteins [11, 12]. Indeed, like other posttranslational 

modifications, ubiquitin chains on the lysine (K) residues 

of substrate proteins can be removed by deubiquitinases 

(DUBs, also known as deubiquitinating enzymes).  

The most classical function of ubiquitination and 

deubiquitination is to mediate the degradation of a protein 

by the 26S proteasome or stabilize it [13]. However, it has 

been reported that ubiquitin enzymes (UBs) and 

deubiquitinases (DUBs) are associated with various 

biological processes, such as the cell cycle, transcription, 

signal transduction, apoptosis, the immune response, 

protein interactions, and subcellular localization [14–16]. 

Among these enzymes, E3s and DUBs have been shown 

to bind specifically to substrates [17]. 

 

In lung cancer, several studies have reported that 

E3s/DUBs can interact with their substrates and play 

significant roles in LUAD. For example, it has been 

demonstrated that USP7 Monoubiquitination Histone 

H2b sensitizes lung cancer cells to ferroptosis [18]. 

Furthermore, UBE2O mediates Mxi1 ubiquitination and 

degradation to promotes lung cancer cell proliferation 

and radioresistance [19]. An E3 ubiquitin ligase complex 

CRL3(BTBD9) targets TNFAIP1 for degradation to 

suppress lung cancer cell migration. Moreover, the 

mRNA expression of BTBD9 is associated with the 

overall survival in lung cancer patients [20]. Thus, it is 

believed that constructing an E3s/DUB-related gene 

prediction model to monitor LUAD patients' prognosis 

would be valuable and that timely intervention can 

significantly improve the prognosis of patients with high-

risk scores. In this study, we analyzed E3s/DUB-related 

gene expression associated with patients’ clinical 

outcomes obtained from The Cancer Genome Atlas 

(TCGA) database. A prognostic prediction model for 

LUAD patients was constructed. The substrate proteins 

of these signature genes were next predicted. Besides, 

functional enrichment analysis of the substrate proteins 

showed that they might affect sensitivity to 

chemotherapy, targeted therapy, and immunotherapy. 

 

RESULTS 
 

Grouping of samples and identification of prognostic 

E3s/DUB-related DEGs 
 

First, 50 E3s/DUB-related genes were identified to be 

differentially expressed (Figure 1A), including 16 that 

were downregulated and 34 that were upregulated (Figure 

1B). Besides, a heatmap was generated to show the 

expression levels (Figure 1C). Next, we randomly divided 

the samples with complete survival information into the 

training group (n=227; 50%) and test group (n=227; 

50%). A total of 11 E3s/DUB-related DEGs were 

identified to be associated with overall survival according 

to the results of a univariate Cox regression analysis of the 

training group, with eight genes (PPP2R2C, CDCA3, 

TRIM59, UHRF1, AURKA, TRIM15, DTL) predicting 

poor outcome with a hazard ratio (HR) over 1 and three 

genes (TRIM2, RNF144B, WDR86) predicting good 

outcome with a hazard ratio (HR) less than 1. (Figure 1D). 

 

Construction of a prediction model with the five 

E3s/DUB-related signature genes 

 

To construct a prognostic model for predicting survival, 

we fit the 11 genes mentioned above to the LASSO-Cox 

regression model. Eight robustly expressed E3s/DUB-

related prognostic genes (WDR86, UHRF1, TRIM59, 

TRIM2, TRIM17, TRIM15, RNF144B, PPP2R2C) 

performed well in the LASSO analyses of the training 

group (Figure 2A, 2B). Based on the LASSO results, 

eight robustly expressed genes were used to perform 

multivariate Cox regression analysis. Eventually, five 

genes were selected to construct the risk score model 

(Figure 2C). The risk score of each patient was 

calculated as following according to the coefficients: 

risk score= (-0.12371* WDR86)+(0.081659* 

UHRF1)+(-0.02155* TRIM2)+(0.103937* TRIM17)+(-

0.05769* RNF144B). Additionally, a nomogram of the 

predictive model for patient survival based on five 

genes was plotted (Figure 2D). 

 

Evaluation of the predictive ability of the five 

signature genes for overall survival in the training 

group and test group 

 

We calculated the risk scores of all patients in the training 

group using the five signature gene prediction model and 

classified patients into high-risk and low-risk groups 

according to the median risk score values (Figure 3A). 

Kaplan-Meier log-rank analyses showed that patients with 

high risk had a worse survival than patients with low risk 

in the training group (Figure 3B). Moreover, the mortality 

rate of patients in the high-risk group was higher than that 

of patients in the low-risk group (Figure 3C). The 

prediction model's ROC curves at 1, 2, and 3 years all 

showed that the model accurately predicted patient 

survival (Figure 3D). Additionally, the heatmap showed 

the landscape of the five signature genes in the training 

group (Figure 3E). To verify the model's reliability, we 

calculated the risk score of all patients in the test group 

and then used the same cutoff value as that used for the 

training group to group the patients (Figure 4A). As 

shown in Figure 4B, 4C, in the test group, high-risk 
patients had a significantly worse prognosis and mortality 

rate than low-risk patients. Besides, the ROC curve for the 

test group proved that the model was reliable (Figure 4D). 
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Additionally, we visualized the expression of five 

signature genes in the test group (Figure 4E). 

 

Risk score is a better independent prognostic-related 

factor than other clinical factors 

 

To explore the predictive model's relationship with 

other clinical factors, we systematically profiled the risk 

scores and clinical characteristics of all patients, such as 

age, gender, and stage (Supplementary Table 1). 

Univariate Cox regression analysis showed that risk 

score was more strongly associated with overall 

survival than other factors (Figure 5A). Additionally, 

multivariate Cox regression analysis showed that risk 

score was a better independent prognostic factor than 

other clinical factors (Figure 5B). The ROC curves for 

risk score and other clinical characteristics also showed 

that risk score had a better predictive ability than other 

clinical factors (Figure 5C). To compare the predictive 

effect of our constructed model on prognosis with other 

clinical factors, we further constructed decision curves 

for risk-scores that calculated by our prognostic model 

 

 
 

Figure 1. Identification of prognostic E3s/DUBs related DEGs. (A) Veen Diagram for the differentially expressed genes (DEGs)of all 

samples' whole gene expression with all E3s/DUBs-related genes. (B) Of the 50 E3s/DUBs-related DEGs, 34 were up-regulated, and 16 were 
downregulated. (C) Heatmap of E3s/DUBs-related DEGs in all samples. (D) Univariate Cox regression analysis showed that 11 genes were 
associated with overall survival (P<0.1). 
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and other clinical factors (Supplementary Figure 1A, 

1B). The results showed that the risk-scores calculated 

by our prognostic model had better benefits than other 

indicators as clinical intervention indicators. 

 

Prediction of the substrate proteins of the signature 

genes and their functional analysis 

 

To investigate the potential functional impact of the five 

signature genes, we predicted the likely substrate 

proteins of the signature genes using “UbiBrowser”. 

The top 20 substrate proteins of each signature gene, 

which were identified according to their predicted 

scores were selected for further functional analysis 

(Figure 6A). GO enrichment analysis showed that all 

substrate proteins were involved in regulating the 

classical P53 pathway and various epigenetic regulation 

mechanisms, including histone modification, chromatin 

modification, and protein modification (Figure 6B). 

Additionally, KEGG analysis suggested that the 

substrate proteins were mainly enriched in the non-

small cell lung cancer pathway, which confirmed our 

model's validity. Besides, the substrate proteins were 

found to participate in some intriguing pathways, such 

as EGFR tyrosine kinase inhibitor resistance, Fc epsilon 

RI signaling pathway, platinum drug resistance, human 

T-cell leukemia virus 1 infection, PD-L1 expression and 

PD-1 checkpoint pathway in cancer, and Fc gamma R-

mediated phagocytosis (Figure 6C). Enrichment for the 

above pathways predicts that our five signature genes 

may regulate immune infiltration. Since protein 

ubiquitination has been previously reported to influence 

innate and adaptive immunity [21], we further 

performed a detailed analysis of this process. 

 

 
 

Figure 2. Construction of the predictive five E3/DUB-related genes signature model in the training group. (A) LASSO coefficient 

profiles of the expression of 11 candidate genes. (B) Confidence intervals for each lambda. (C) Multivariate Cox analysis of 8 genes derived 
from the Lasso. (D) A nomogram of the five-gene model predicting patient outcome. 
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Figure 3. The five-gene signature predicts overall survival in the training group. (A) The distribution of risk-score and patients' 
grouping. (B) Kaplan-Meier survival curves of high and low-risk patients. (C) Vital status of patients. (D) ROC curves of the predictive model in 
the training group. (E) Heatmap of five genes in the training group. 
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Figure 4. Validation of the predictive model. (A) The distribution of risk-score in the test group. (B) Kaplan-Meier survival curves of high 
and low-risk patients in the test group. (C) Vital status of patients in the test group. (D) ROC curves of the predictive model in the test group. 
(E) Heatmap of five genes in the test group. 
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Identification of immune infiltration in the low-risk 

group and high-risk groups 

 

According to the risk score, we divided all patients into 

high- and low-risk groups and then used the R package 

“CIBERSORT” to analyze infiltrated immune cells in 

each sample (Figure 7A). As shown in Figure 7B, the 

infiltration of CD8 cells was higher in the low-risk 

group than in the high-risk group, while NK cells, 

dendritic cells, and mast cells had higher infiltration 

levels in the high-risk group than in the low-risk group. 

However, the activation levels of these cells were not 

significantly different between the two groups group. In 

contrast, CD4 memory cells were significantly more 

activated in the low-risk group than in the high-risk 

group (Figure 7B). The above differences in these 

immune cells may be associated with differences in 

overall survival and tumor resistance to multiple 

treatments. 

 

DISCUSSION 
 

Protein ubiquitination has been reported to be involved 

in various biological processes to regulate the growth or 

 

 
 

Figure 5. Prognostic correlation analysis with risk-score and other clinical characteristics. (A) Univariate analysis of risk-score and 

other clinical features. (B) Multivariate cox analysis showed that risk-score was an independent prognostic factor. (C) Comparison of the 
accuracy of risk-score and other clinical characteristics in predicting patients prognosis. 
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death of tumor cells [22]. E3s/DUB is involved in the 

regulation of numerous pathways by ubiquitinating 

substrates or changing the level of ubiquitination. 

Deepening further research and understanding of such 

E3s/DUB will help to expand existing cancer 

therapeutic targets and effective biomarkers, so it is 

worth exploring a prognostic prediction model for 

patients based on E3s/DUB. Although some signature 

gene-based prediction models for lung adenocarcinoma 

were recently reported [23–25], no study has focused on 

protein ubiquitination in LUAD. In the present study, 

we constructed an E3s/DUB-related signature gene 

model to predict prognosis and further analyzed the 

functional impact. 

 

 
 

Figure 6. Substrate protein prediction and potential functional analysis. (A) The prediction of substrate proteins. (B) GO enrichment 
analysis. (C) KEGG pathway enrichment analysis. 
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We systematically investigated the expression levels of 

E3s/DUB-related genes in lung adenocarcinoma patients 

and their relationship with overall survival. We 

constructed a brand-new five signature gene (WDR86, 

TRIM2, TRIM17, RNF144B, and UHRF1)-based 

prediction model for the training group and then 

validated the model in the test group. In this model, 

WDR86, TRIM2, and RNF144B were protective factors 

for risk score, while UHRF1 and TRIM17 were risk 

factors for LUAD. Among these genes, UHRF1, which 

has been demonstrated experimentally can promote 

disease progression and is associated with poor prognosis 

by affecting the cell cycle pathway in lung 

adenocarcinoma [26], which is consistent with our 

findings. However, previous studies have reported that 

TRIM2 mediates proliferation and metastasis of lung 

adenocarcinoma, by deubiquitinating and stabilizing 

Snail1 protein [27]. That is contradictory to our study in 

which TRIM2 was a risk protective factor. We suggest 

that TRIM2 binding to Snail1 may not be unique.

 

 
 

Figure 7. The immune infiltration analysis in low-risk and high-risk groups. (A) The distribution of the immune cells. (B) Differential 

analysis of immune cell infiltration in the high-risk and low-risk group. 
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Because deubiquitinase recognizes protein possessing the 

same specific domain. By affecting the ubiquitination 

levels of different substrate proteins, TRIM2 may play 

inconsistent cancer-promoting or cancer-inhibiting roles. 

When considering the impact of TRIM2 on patient 

survival, the combined effects of TRIM2 needs to be 

considered. More experiments are needed to investigate 

the combined effects of TRIM2 on survival in patients 

with lung adenocarcinoma. Besides, the specific role of 

other genes in the prediction model in lung cancer has not 

been reported, and further experiments on them can also 

help us to expand the understanding of the mechanisms 

of lung cancer development and progression. In our 

study, both Kaplan-Meier survival curves and ROC 

curves confirmed the reliability of our model in 

predicting survival. Then, we predicted the substrate 

proteins of the five signature genes to explore their 

functional impact. Interestingly, GO and KEGG analysis 

showed that the enriched pathways are associated with 

treatment resistance and the immune response and thus 

affect prognosis. Then, we studied immune cell 

infiltration in samples grouped according to risk scores 

calculated by our prediction model. Indeed, we observed 

some differences in immune cell infiltration scores, with 

the most significant difference being related to the 

activation of CD4 memory T cells, which was 

significantly increased in the low-risk group. This 

difference may have contributed to the better survival of 

patients in the low-risk group than those in the high-risk 

group. This finding is also consistent with previous 

reports showing that quiescent CD4 memory T cells exist 

in the microenvironment with tumors, where they can be 

activated by locally continuously released IL-12, 

allowing them to proliferate and secrete IFN-γ, leading to 

tumor cell death [28]. Of course, this study has some 

limitations, such as insufficient sample size and lack of 

experimental validation, which is also the focus of our 

future research. 
 

In conclusion, we constructed an E3s/DUB-related 

signature gene-based model for predicting prognosis 

that performed well in predicting LUAD patient 

survival. Additionally, we identified the infiltrated 

immune cells significantly associated with the 

prognostic signature genes. These findings may provide 

novel insights for monitoring LUAD prognosis and 

guide the development of cancer immunotherapy. 

 

MATERIALS AND METHODS 
 

Data downloading and processing 

 

The RNA-seq data (HTSeq-FPKM) and clinical datasets 

for tumors (n=497) and normal samples (n=54) were 

downloaded from The Cancer Genome Atlas (TCGA) 

website (https://cancergenome.nih.gov/). E3s/DUB-

related genes (n=1016) were identified from the IUUCD 

database (http://iuucd.biocuckoo.org/). 

 

Identification of differentially expressed E3/DUB-

related genes 

 

We used the R package “limma” to analyze differentially 

expressed genes (DEGs) between the tumor (n=397) and 

normal samples (n=54). The screening criteria were a 

corrected p-value < 0.05 and |log2FC| > 1.5. Then, the set 

of DEGs and an E3/DUB-related gene set were 

intersected using the R package “VennDiagram” to 

identify the E3/DUB-related genes that are differentially 

expressed in LUAD patients. The expression data for 

E3s/DUBs-related DEGs in all samples were plotted by R 

package “ggplot2” and “pheatmap”. 

 

Patient grouping and establishment and validation 

of the prediction model 

 

Mean gene expression levels for samples with the same 

patient ID were calculated by the R package “limma”. 

Repeated patient samples and samples with insufficient 

follow-up information were excluded (n = 43). Then, 

the package “caret” was used to randomly divide the 

tumor samples into the training group (n=227; 50%) and 

test group (n=227; 50%). We identified E3/DUB-related 

DEGs associated with overall survival by the univariate 

Cox regression method after combining gene expression 

and response to clinical treatment information (P < 0.1). 

Moreover, we performed LASSO-Cox regression using 

signatures derived from univariate Cox regression and 

established prognostic signature formulae to avoid 

overfitting. LASSO regression was performed by the R 

package “glmnet” to identify robustly expressed genes. 

The parameter for LASSO was selected by ten-fold 

cross-validation. Subsequently, multivariate Cox 

regression analyses (P < 0.05) of these robustly 

expressed genes were performed to construct the risk 

score model. The risk scores of patients in the training 

group were calculated, and the median value of the risk 

score was used to divide the patients into high-risk and 

low-risk groups. Risk scores for patients in the test 

group were calculated as described above, and the same 

cutoff score was used for grouping. Kaplan-Meier 

analysis with the log-rank test and a ROC curve was 

used to detect the reliability of the model. A heatmap 

showing signature gene expression in the two groups 

was generated with the R package “survival”. 

 

Prediction and functional enrichment analysis of 

substrate proteins 

 
The substrate protein of E3s/DUB is predicted  

using “UbiBrowser” (http://ubibrowser.ncpsb.org). The 

substrate proteins with the top 20 prediction scores were 

https://cancergenome.nih.gov/
http://iuucd.biocuckoo.org/
http://ubibrowser.ncpsb.org/
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then selected for functional enrichment analysis. Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) analyses were performed with the R 

package “clusterProfiler”. 
 

Analysis of immune infiltration between the low-risk 

and high-risk groups 
 

To understand the relationship between the model and 

infiltrated immune cells, we characterized immune cell 

composition using the R package “CIBERSORT”. The 

low-risk and high-risk groups were divided according to 

risk scores, and differentially infiltrated immune cells 

were identified. Here, a P-value < 0.05 was considered 

to be statistically significant. 
 

Statistical analysis 
 

All statistical analyses are performed with R version 

4.0.2 and the attached packages. The p-value and hazard 

ratio (HR) for survival analysis were derived from Cox 

regression. LASSO (least absolute shrinkage and 

selection operator) regression was used to filter the 

robustly expressed genes. The student’s t-test was used 

to explore the differences between the two groups. 

Moreover, the log-rank test was used for Kaplan-Meier 

survival analysis. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Decision curve analysis of risk scores and other clinical factors. (A) Decision curve analysis of 3-year 
survival. (B) Decision curve analysis of 5-year survival. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Table of risk scores, risk grades, and clinical factors for all patients. 

 


