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INTRODUCTION 
 

As the sixth most common cancer, oesophageal cancer is 

one of the most aggressive diseases in the world. 

Oesophageal squamous-cell carcinoma and oesophageal 

adenocarcinoma are two common subtypes of 

oesophageal cancer. While the prognosis of oesophageal 

cancer has been improving in the past few decades, the 

5-year survival rate is only 20%, which is still worse 

than that of many other cancers [1, 2]. Clinically, tumour 

stage is the primary predictor of oesophageal cancer 

survival, but patients in the same stage and who are 

receiving similar treatments may have vastly different 

outcomes. The immune status in the tumour 

microenvironment is related to tumour development, 

patient survival, and treatment response, indicating that 

tumour-infiltrating immune cells may be a new potential 

predictor of the prognosis of oesophageal cancer [3, 4]. 

 

Extensive research on the effect of tumour-infiltrating 

immune cells on the prognosis of oesophageal cancer 

[5, 6] has shown that immune cell infiltration, especially 

the immunoscore signature based on multiple markers, 
may be another predictor in addition to tumour stage [7, 

8]. However, the efficacy of the immunoscore signature 

in predicting the prognosis of oesophageal cancer 
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ABSTRACT 
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immunoscore signature based on 12 types of infiltrating immune cells using the least absolute shrinkage and 
selection operator (LASSO) model. This immunoscore was used as an independent predictor in the prognostic 
model (training cohort: [hazard ratio (HR), 4.78; 95% confidence interval (CI), 2.64-8.67; P < 0.001], validation 
cohort: [HR, 2.15; 95% CI, 1.04-4.45; P = 0.040]). Subgroup analysis by clinical features showed that overall 
survival was significantly different between the high-immunoscore group and the low-immunoscore group. The 
predictors that constituted the individualized prediction nomogram were immunoscore, age, and tumour stage. 
The nomogram had good discrimination and calibration. Decision curve analysis showed that the immunoscore 
nomogram was clinically useful. Therefore, the novel immunoscore signature based on infiltrating immune cells 
can be used as a reliable predictor of the prognosis of oesophageal cancer, and the immunoscore nomogram is 
a convenient tool for predicting the survival of individual patients. 
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relative to that of traditional predictors is unknown. 

Traditional methods of evaluating tumour immune 

infiltration include immunohistochemistry and flow 

cytometry. With the current technology, the ability of 

immunohistochemistry to simultaneously measure 

multiple immune markers is limited, complicating 

comprehensive evaluations of the immune effects of 

different cell types or closely related cell populations. 

For flow cytometry, tissue must be broken down, which 

may cause cell loss or damage and affect the results. 

Another method is to obtain high-dimensional data of 

gene expression profile from the cell mixture, which are 

then used to deduce the fraction of immune cells [9]. 

This approach is independent of surface markers and 

cell division-related human factors. 

 

In this study, we used “cell-type identification by 

estimating relative subsets of known RNA transcripts 

(CIBERSORT)” to quantify the fraction of immune 

cells [10]. This is a deconvolution approach that uses a 

priori knowledge of expression data to deduce the 

fractions of 22 immune cell types. CIBERSORT has 

been used to evaluate the prognosis of various cancers 

and is considered the most accurate method of cell-type 

identification [11, 12]. We used CIBERSORT to 

calculate the fraction of immune cells in tumour and 

normal tissues based on the gene expression data of 

oesophageal cancer from a public database. We 

identified an immunoscore signature based on 12 types 

of infiltrating immune cells. This signature can be used 

as a biomarker to predict the overall survival of patients 

with oesophageal cancer. We also validated its 

prognostic value in an independent cohort. 

 

RESULTS 
 

Clinical characteristics of study cohorts 

 

An overview of this study is delineated in Figure 1. The 

clinical information of the two oesophageal cancer 

 

 
 

Figure 1. Flowchart of the study design. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; ROC, receiver operating 
characteristic; GSEA, gene set enrichment analysis. 
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cohorts was downloaded from the public Gene 

Expression Omnibus (GEO) and The Cancer Genome 

Atlas (TCGA) databases. Based on the inclusion 

criterion (CIBERSORT P < 0.05), a total of 374 

samples were included in this study, including 104 

normal samples from the GEO database and 270 cancer 

samples from GEO (147) and TCGA (123). The cancer 

samples from the GEO database were the training 

cohort to identify prognostic markers and construct the 

model, which was then validated with the TCGA data. 

In the training cohort, the median age at diagnosis was 

60.0 (54.0-66.0) years, and 79.6% of the patients were 

men. In the validation cohort, the median age at 

diagnosis was 60.0 (54.0-73.0) years, and 82.9% of the 

patients were men. The detailed clinical information of 

these two groups is shown in Table 1. 

 

Differential immune cell fraction 

 

We first compared the relative abundance of 22 immune 

cell types between normal and oesophageal cancer 

tissues from the GEO database. In general, the top five 

immune cells in cancer and normal tissues were plasma 

cells, CD8+ T cells, dendritic cells (resting), regulatory T 

cells (Tregs), and mast cells (activated); the total fraction 

averaged at 64.8% in cancer tissues and 64.0% in normal 

tissues (Figure 2A). Moreover, dendritic cells (resting), 

M0 and M1 macrophages, mast cells (activated), 

memory B cells, CD4+ naive T cells, and CD4+ memory 

T cells (activated) were significantly enriched in cancer 

tissues relative to normal tissues, while mast cells 

(resting), M2 macrophages, naive B cells, CD8+ T cells, 

gamma and delta T cells, plasma cells, Tregs, and 

monocytes were significantly reduced in cancer tissues 

(Figure 2A, 2B, 2D). Immune cell fractions calculated 

with xCell showed similar results. The analysis validated 

the reliability of the CIBERSORT results and showed 

that the immune cell profile could be used as a potential 

prognostic marker, as it effectively distinguished normal 

tissue and cancer tissue (Figure 2D). Correlation analysis 

showed weak to moderate correlations between different 

immune cell types in the cancer group. CD8+ T cells 

were positively correlated with CD4+ memory T cells 

(activated) (r = 0.65, P < 0.001) and were negatively 

correlated with CD4+ memory T cells (resting) (r = -

0.46, P < 0.001) (Figure 2C). 

 

Feature selection and immunoscore calculation 

 

For the training cohort, each immune cell fraction was 

dichotomized based on the optimal cut-off value 

generated by the survminer package (Supplementary 

Table 1). The LASSO Cox regression analysis 
identified 12 non-zero coefficient features for the 

calculation of prognostic immunoscores (Figure 3A, 

3B). The immunoscore calculation formula is as 

follows: Immunoscore = (-0.294 × Memory B cells) + (-

0.567 × Plasma cells) + (-0.257 × CD8+ T cells) + 

(0.068 × CD4+ Memory T cells (resting)) + (0.161 × 

Regulatory T cells (Tregs)) + (-0.043 × Gamma delta T 

cells) + (-0.410 × Monocytes) + (-0.251 × M0 

Macrophages) + (-0.354 × M1 Macrophages) + (0.301 × 

Dendritic cells (resting)) + (-0.440 × Dendritic cells 

(activated)) + (-0.236 × Neutrophils), where 0 or 1 is 

assigned based on whether the immune cell fraction is 

below or above the corresponding cut-off value, 

respectively. For the training cohort, correlation 

analysis showed that a lower immunoscore was 

correlated with a higher survival rate of oesophageal 

cancer patients (Figure 4A). A time-dependent receiver 

operating characteristic (ROC) curve was used to 

evaluate the prognostic accuracy of 12 immune cell 

types over time. The AUC of the prognostic model was 

0.733 at year 2, 0.736 at year 3, and 0.747 at year 5 

(Figure 4B). Next, the training cohort was divided into a 

high-immunoscore group and a low-immunoscore 

group based on the median score (hazard ratio  

[HR], 2.70; 95% confidence interval [CI], 1.74-4.20; P 

< 0.001), which had 5-year survival rates of  

23.7% (95% CI, 14.1-33.2) and 55.0% (95% CI,  

43.0-67.0), respectively (Figure 4C). Stratification 

analysis of different clinical characteristics showed that 

immunoscore was significantly correlated with survival 

status (Figure 5 and Supplementary Table 2). 

 

Immunoscore validation in the TCGA cohort 

 

To evaluate the prognostic value of the immunoscore-

based prognostic model in different populations, we 

used the same formula to calculate the immunoscore in 

the validation cohort. As in the model above, a lower 

immunoscore was associated with a more favourable 

prognosis (Figure 4D). For the validation cohort, the 

AUCs were 0.649 at year 1, 0.664 at year 2, and 0.724 

at year 3. As in the training cohort, the patients in the 

validation cohort were divided into a high-immunoscore 

group and a low-immunoscore group based on the 

median score (Figure 4E). The 3-year survival rates 

were 66.9% (95% CI, 49.7-84.1) in the low-

immunoscore group and only 22.0% (95% CI, 6.1-37.9) 

in the high-immunoscore group (HR, 2.93; 95% CI, 

1.56-5.50; P < 0.001) (Figure 4F). 

 

Univariate and multivariate Cox regression analyses 

were performed with immunoscore as a continuous 

variable. After controlling for other clinical covariates, 

a significant between-group difference was still 

observed in the training cohort (HR, 4.78; 95% CI, 

2.64-8.67; P < 0.001) and the validation cohort (HR, 
2.15; 95% CI, 1.04-4.45; P = 0.040), suggesting that the 

immunoscore may be used as an independent predictor 

for the prognosis of oesophageal cancer (Table 2). 
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Table 1. Clinical and pathological characteristics of the training and validation cohorts of oesophageal 
cancer patients. 

Characteristics 
Training cohort 

(n = 147) 

Validation cohort 

(n = 123) 
χ2 P value 

Age   0.657 0.418 

  <60 73 (49.7) 55 (44.7)   

  ≥60 74 (50.3) 68 (55.3)   

Sex   0.486 0.486 

  Female 30 (20.4) 21 (17.1)   

  Male 117 (79.6) 102 (82.9)   

Alcohol   7.603 0.006* 

  Yes 83 (56.5) 88 (71.6)   

  No 64 (43.5) 33 (26.8)   

  Missing  2 (1.6)   

Tumour grade   1.683 0.431 

  G1 24 (16.3) 12 (9.8)   

  G2 83 (56.5) 51 (41.5)   

  G3 40 (27.2) 33 (26.8)   

  Missing 0 27 (21.9)   

Tumour stage   13.633 < 0.001* 

  T1 + T2 32 (21.8) 48 (39.0)   

  T3 + T4 115 (78.2) 63 (51.2)   

  Missing 0 12 (9.8)   

Lymph node stage   4.393 0.036* 

  N0 + N1 120 (81.6) 100 (81.3)   

  N2 + N3 27 (18.4) 10 (8.1)   

  Missing 0 13 (10.6)   

Pathologic tumour stage   3.756 0.053 

  I + II 73 (49.7) 68 (55.3)   

  III + IV 74 (50.3) 42 (34.1)   

  Missing 0 13 (10.6)   

* P < 0.05. 

Nomogram plotting and validation 

 

Cox regression analysis was performed to determine the 

immunoscore, which showed that age and tumour  

stage were independent predictors of the prognosis 

of oesophageal cancer. For quantitative prognostic 

predictions, we used the training cohort to build a model 

containing the above independent predictors, which is 

presented as a nomogram (Figure 6A). The calibration 

curve demonstrated good agreement between the 

prediction model and the ideal model for the prognosis of 

oesophageal cancer (Figure 6B). The C-index of the 

nomogram was 0.718 (95%, 0.668-0.768) in the training 

cohort. The C-index of the prediction model was 0.716 

(95%, 0.612-0.820) in the validation cohort. Decision 

curve analysis showed that when the threshold probability 

was greater than 0.3, the use of the plotted nomogram for 

prognostic prediction had more net benefits than 

indiscriminate treatment or no treatment, suggesting that 

the nomogram was clinically useful (Figure 6C). 

 

Biological functions underlying the immunoscore 

 

To further investigate the biological functions 

underlying the immunoscore, we divided the 

oesophageal cancer patients into the high-immunoscore 

group and the low-immunoscore group and then 

performed gene set enrichment analysis (GSEA) to 

identify potential biological pathways based on the gene 

expression data of oesophageal cancer. Many immune-

related pathways, such as the inflammatory response, 

IL-6-JAK-STAT3 signalling pathway, interferon-

gamma response, chemokine-signalling pathway, T-cell 

receptor signalling pathway, and cytokine–cytokine 
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receptor interaction pathways, were significantly 

enriched in the low-immunoscore group (false 

discovery rate (FDR) < 0.05 for all; Figure 7A, 7B). 

Correlation analysis of the immunoscore signature and 

immune-related gene expression showed that a high 

immunoscore was significantly correlated with the 

expression of antigen processing and presentation and 

B-cell receptor signalling pathway genes, while a low 

immunoscore was correlated with the expression of T-

cell receptor signalling pathway genes and cytokine 

receptors (Figure 7C, 7D and Supplementary Table 3). 

These high correlations with immune-related pathways 

provide clues for further molecular mechanism studies 

related to the immunoscore. 

 

 
 

Figure 2. Different immune cell profiles between normal tissue and cancer tissue. (A) Relative immune cell fractions in the normal 

and cancer groups estimated with CIBERSORT based on gene expression profile data (GSE53625). (B) Heat map of differential immune cell 
fractions between the normal and cancer groups (FDR < 0.05). P values were calculated with the Mann–Whitney U test and adjusted for 
multiple testing (FDR). The left side bar shows the type of immune cells in A. (C) Correlation matrix of 22 immune cell types in the cancer 
group. Correlation coefficients were used to sort the cells by hierarchical clustering. (D) Violin plots of the abundance of CD8+ T cells and M1 
macrophages calculated with CIBERSORT and xCell. The box plots in the violin indicate the median and interquartile range of the data 
distribution. 
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Figure 3. Immune feature selection based on the LASSO Cox regression model. (A) Optimal feature subsets based on the minimum 

criteria with 10-fold cross-validation of the LASSO regression. The vertical dashed lines represent the optimal values using the minimum 
criteria and the 1-standard error (SE) of the minimum criteria. The λ selected with 10-fold cross-validation (minimum criteria) was 0.039, and 
log (λ) was -3.245. (B) Regression coefficient profiles of 22 immune signatures in the LASSO model. The vertical dotted line is the optimal λ 
selected with 10-fold cross-validation, which resulted in 12 non-zero coefficients. 

 

 
 

Figure 4. The immunoscore for each patient, the time-dependent ROC curve, and the Kaplan–Meier curves in (A–C) the training cohort and 
(D–F) the validation cohort. The 2-, 3-, and 5-year AUCs were used in the training cohort, and the 1-, 2-, and 3-year AUCs were used in the 
validation cohort to evaluate the accuracy of the prognostic model. The log-rank test was performed to analyse survival status. 
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Figure 5. Kaplan–Meier survival analysis based on the immunoscore signature of oesophageal cancer patients in the training 
cohort stratified based on clinical characteristics. (A, B) Age. (C, D) Sex. (E, F) TNM stage. The log-rank test was performed to calculate 
P values. 
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Table 2. Univariate and multivariate cox regression analyses of immunoscores and clinical data in different cohorts of 
oesophageal cancer patients. 

 Training cohort  Validation cohort 

 HR in UVA P value HR in MVA P value  HR in UVA P value HR in MVA P value 

Immunoscore 5.00 (2.91-8.59) < 0.001 4.78 (2.64-8.67) < 0.001  2.59 (1.35-4.98) 0.004 2.15 (1.04-4.45) 0.040 

Age 1.04 (1.01-1.06) 0.006 1.03 (1.00-1.06) 0.025  0.98 (0.96-1.00) 0.107   

Sex 

(Female vs. male) 
0.79 (0.48-1.30) 0.351    2.60 (0.92-7.31) 0.070   

Alcohol 

(No vs. yes) 
0.88 (0.58-1.34) 0.564    0.91 (0.49-1.69) 0.760   

Tumour grade 

(G1) 
Reference     Reference    

G2 1.06 (0.58-1.97) 0.842    1.73 (0.51-5.84) 0.379   

G3 1.56 (0.81-3.01) 0.188    1.49 (0.42-5.24) 0.533   

T stage 1.43 (0.84-2.43) 0.184    0.95 (0.50-1.82) 0.886   

N stage 1.88 (1.15-3.08) 0.012 1.54 (0.86-2.75) 0.146  2.59 (1.07-6.30) 0.035 1.25 (0.48-3.24) 0.645 

tumour stage 

(I + II vs. III + IV) 
2.56 (1.65-3.96) < 0.001 1.75 (1.05-2.90) 0.031  3.64 (1.82-7.28) < 0.001 3.26 (1.54-6.89) 0.002 

HR, hazard ratio; UVA, univariate analysis; MVA, multivariate analysis. 

DISCUSSION 
 

In this study, we built a novel prediction model based on 

a signature of 12 immune cell types to improve survival 

predications after a diagnosis of oesophageal cancer. The 

results showed a significant difference in the overall 

survival between the high-immunoscore group and 

 the low-immunoscore group. After controlling for 

confounding clinical characteristics, multivariate analysis 

showed that immunoscore was still an independent 

prognostic factor, which was further validated in  

an independent cohort. These data indicate that 

immunoscore has similar predictive efficacy as 

conventional predictors. 

 

Previous studies on the potential mechanisms of 

oesophageal cancer have focused on tumour cell-

intrinsic features [13–15]. Tumour cells are in a 

complex microenvironment, which is critical for tumour 

cell survival and plays an important role in the 

proliferation, invasion, and metastasis of oesophageal 

cancer [16, 17]. The tumour microenvironment contains 

many non-tumour cells, including different subtypes 

 of tumour-infiltrating immune cells, and the interaction 

of these cells determines the balance of their 

oncogenic/anticancer effect [18]. Some researchers have 

performed immunohistochemistry to quantify 

infiltrating immune cells and evaluate their role in 

oesophageal cancer progression and treatment responses 
[5, 6, 19, 20], and others have used the immunoprofile 

to build models to predict postoperative survival [21]. 

These studies mainly used immunohistochemistry to 

analyse immune cells, but immunohistochemistry relies 

on the identification of cell-surface markers and cannot 

comprehensively assess different immune cell types or 

effectively distinguish closely related cell populations. 

In addition, the selection of visual fields on a slide is 

highly subjective, with low intra-rater and inter-rater 

reproducibility. These factors have limited the sample 

size and the number of cell types in previous studies. 

 

Unlike previous studies, this study investigated the 

infiltration pattern of immune cells in oesophageal 

cancer by using CIBERSORT to estimate infiltrating 

immune cell fractions in oesophageal cancer tissue and 

normal tissue based on the gene expression data  

of oesophageal cancer from public databases. 

CIBERSORT uses the expression profiles of 22 purified 

leukocyte subpopulations to define gene expression in 

immune cells and effectively distinguish these cell types 

without the need for cell type-specific markers. It 

characterizes the relative immune cell fraction by using 

the complex gene expression profile in the tissue. In this 

study, we found significant differences in the abundance 

of different immune cells between tumour tissue and 

normal tissue. In addition, the LASSO Cox regression 

model was used to evaluate the correlation between 

immune cell profile and prognosis and select 12 

potential predictors from 22 candidate cell sets. Unlike 

other methods that select predictors based on univariate 

correlation, the LASSO Cox regression model generates 

the immunoscore signature based selected immune cell 

sets and thus significantly improves predictive 

accuracy. Recent studies have used this strategy to 
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integrate multiple features into a single variable. For 

example, Li et al [22] built a new prognostic model for 

oesophageal cancer based on eight lncRNAs, and 

Huang et al [23] used the radiomics signature as a 

preoperative predictor of lymph node metastasis in 

patients with colorectal cancer. Similarly, this study 

demonstrated good predictive efficacy of the 

immunoscore signature that combined multiple immune 

features, in both the training cohort and the validation 

cohort. Stratified analysis showed that immunoscore 

may be used to divide patients with the same TNM 

stage or other clinical characteristics into the high-risk 

group and the low-risk group, with significantly 

different survival probabilities. This finding may help 

clinicians make decisions about adjuvant therapy in 

high-risk patients to improve patient outcomes. 

 

In addition, we built a nomogram based on 

immunoscore and significant clinical characteristics, 

which may be used for individualized prediction of 

survival probability. The most important use of 

nomograms is to decide on additional clinical treatment 

or care for individual patients. Methods based on 

accuracy evaluation, such as ROC analysis, 

discrimination, and calibration, cannot evaluate the 

clinical consequences of their predictions. To 

investigate clinical usefulness, we performed decision 

curve analysis to evaluate the efficacy of nomogram-

based decision-making in improving patient outcomes. 

The results showed that when the threshold probability 

was greater than 0.3, the decision based on the 

immunoscore nomogram was associated with more 

clinical benefit to patients. 

 

This study has some limitations. First, the data sets used 

for the prognostic model were retrieved from public 

databases that have limited clinical information. 

Therefore, some patients with acute infections or 

immune disorders may have been included in the study 

and skewed the results. Second, many factors are related 

 

 
 

Figure 6. Nomogram plotting and evaluation. (A) Clinical characteristics and immunoscores were used to develop a nomogram for 

prediction of the 2-, 3-, and 5-year survival rates of oesophageal cancer patients. (B) The calibration curve demonstrated agreement between 
the predictive and observed outcomes for 2-, 3-, and 5-year survival. The 45-degree dashed line indicates a perfect prediction of the ideal 
model, while the dotted lines indicate the actual performance of the nomogram. The closer the dotted line matches the dashed line, the 
better the prediction accuracy. (C) Decision curve analysis of the nomogram and tumour stage for the 5-year risk among patients with 
oesophageal cancer. 
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to the progression of oesophageal cancer. We were 

unable to use potential risk factors (such as genetic 

history, occupation, dietary habits, and environmental 

exposure) to improve predictive accuracy due to 

incomplete information. Third, this was a retrospective 

study with a small sample size, so researchers should 

exercise caution in interpreting our data. 

 

In summary, we used CIBERSORT to estimate the 

infiltration pattern of immune cells in oesophageal 

cancer based on gene expression data and built a 

nomogram that included immunoscore, age, and tumour 

stage for the prediction of the overall survival of 

oesophageal cancer patients. This method provides new 

directions for investigating the relationship between 

immune cells and tumours, tumour treatment, and the 

search for efficacy measures. 

 

MATERIALS AND METHODS 
 

Data source 

 

The expression profile and clinical data of oesophageal 

cancer were retrieved and downloaded from the public 

(https://www.ncbi.nlm.nih.gov/geo/) database with a 

query of GSE53625 [24]. The expression data were 

 

 
 

Figure 7. Biological functions underlying the immunoscore. GSEA of (A) h.all.v7.1.symbols and (B) c2.cp.kegg.v7.1.symbols identified the 
most significant pathways and processes related to a low immunoscore. Correlation analysis of (C) a high immunoscore and (D) a low 
immunoscore with immune-related gene expression. The red line indicates a positive correlation, and the green line indicates a negative 
correlation. A darker colour corresponds to a stronger correlation. 

https://www.ncbi.nlm.nih.gov/geo/
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generated with the Agilent human lncRNA + mRNA 

array v2.0 platform. Before the analysis, we re-

annotated Agilent array probes. The probe sequences 

were aligned with SeqMap [25] from the GENCODE 

database (GRCh38, release 29) [26]. Only probes that 

were uniquely mapped to the genome with no mismatch 

were retained. Validation was performed on an 

independent cohort of oesophageal cancer patients from 

TCGA. The high-throughput sequencing (HTSeq)-

fragments per kilobase of transcript per million mapped 

reads (FPKM) transcriptome data of the TCGA-ESCA 

project and survival information were obtained from 

Genomic Data Commons through the R package 

TCGAbiolinks [27]. 

 

Estimation of immune cell abundance 

 

We used CIBERSORT to estimate the fractions of 

different immune cells in tissues based on the reference 

signature (LM22) matrix of 547 genes [10]. We 

uploaded the gene expression data prepared based on 

the example mixture file to the CIBERSORT web portal 

(https://cibersort.stanford.edu/) and ran the program 

with the default LM22 feature matrix at 1000 

permutations. Only samples with significant 

CIBERSORT global deconvolution (P < 0.05) were 

included in subsequent analyses. For a given mixture 

sample, the relative fraction of immune cells was 

calculated with CIBERSORT and may be used directly 

for comparisons between immune cells or between 

studies. 

 

The main results from CIBERSORT were validated 

with xCell (https://xcell.ucsf.edu/), a new proven 

method for counting cell subpopulations from a tissue 

expression profile [28]. xCell is a gene signature-based 

method and performs single-sample gene set enrichment 

analysis (ssGSEA) from the gene expression data for 64 

immune and stromal cells. 

 

Gene set enrichment analysis 

 

To investigate biological pathways related to the 

immunoscore signature, we performed GSEA using the R 

clusterProfiler package on the gene expression profile 

[29]. The h.all.v7.1.symbols.gmt and c2.cp.kegg.v7.1. 

symbols reference gene set files used in this study were 

downloaded from the Molecular Signature Database 

(https://www.gsea-msigdb.org/gsea/index.jsp). Gene sets 

with an adjusted P < 0.05 after 1000 permutations were 

considered significantly enriched. 

 

Statistical analysis 

 

SPSS 22.0 and R 3.6.2 were used for statistical 

analysis. All statistical tests were two-tailed, and  

P < 0.05 was considered statistically significant. 

Count data were analysed with the chi-squared  

test or Fisher’s exact test. Normally distributed 

measurement data were analysed with the indepen-

dent t-test, and non-normally distributed measure-

ment data were analysed with the Mann–Whitney U 

test. To control for the FDR, the Benjamini-Hochberg 

method was used to adjust the P value when 

comparing immune cell fractions between the cancer 

group and the control group. Pearson correlation 

analysis was performed to identify any correlations 

between subsets of immune cells, and the corrplot 

package was used to visualize the resulting 

correlation matrix. The least absolute shrinkage and 

selection operator (LASSO) Cox regression method 

was used to screen the most significant immune cells 

for the prognosis of oesophageal cancer [30]. In the 

LASSO model, all immune cell fractions were 

dichotomized based on the optimal cut-off value 

calculated by the survminer package. The Kaplan–

Meier method was used to analyse survival rates, and 

the log-rank test was used to analyse survival time. 

The time-dependent ROC curve was used to analyse 

the sensitivity and specificity of immunoscore-based 

survival predictions, and the area under the ROC 

curve (AUC) was quantified with the timeROC 

package [31]. The Cox proportional hazards model 

was used for univariate and multivariate prognostic 

analyses, and the regplot package was used to plot a 

nomogram for statistically independent predictors. 

The performance of the nomogram was evaluated 

with the calibration curve and Harrell's concordance 

index (C-index). In addition, decision curve analysis 

was performed by quantifying the net benefits of 

different threshold probabilities in evaluating clinical 

usefulness [32, 33]. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Supplementary Table 1. Cut-off values of different 
immune cells. 

Immune cell type Cut-off value 

Naive B cells 0.047 

Memory B cells 8.0*10-4 

Plasma cells 0.147 

CD8+ T cells 0.121 

CD4+ naive T cells 0 

CD4+ memory T cells (resting) 0.003 

CD4+ memory T cells (activated) 0.013 

Follicular helper T cells 0.071 

Regulatory T cells (Tregs) 0.071 

Gamma delta T cells 0 

NK cells (resting) 0 

NK cells (activated) 0.008 

Monocytes 0.024 

M0 Macrophages 0.013 

M1 Macrophages 0.039 

M2 Macrophages 0.073 

Dendritic cells (resting) 0.178 

Dendritic cells (activated) 0.009 

Mast cells (resting) 0.03 

Mast cells (activated) 0.127 

Eosinophils 0 

Neutrophils 8.0*10-4 

 

Supplementary Table 2. Univariate cox regression analysis of 
immunoscore in the training cohort stratified based on clinical 
characteristics. 

Subgroup HR (95% CI) P value 

Age (years)   

  <60  4.37 (1.95-9.80) < 0.001 

  ≥60 5.14 (2.40-10.98) < 0.001 

Sex   

  Female 6.76 (2.36-19.39) < 0.001 

  Male 4.74 (2.52-8.93) < 0.001 

Pathologic tumour stage   

  I + II 9.86 (3.35-29.06) < 0.001 

  III + IV 2.80 (1.47-5.32) 0.002 

Note: Immunoscore was used as a continuous variable in regression 
analysis. 
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Supplementary Table 3. Correlation analysis of immunoscore and gene expression in the high-immunoscore group 
and low-immunoscore group of the training cohort. 

 Gene 
High-immunoscore group  Low-immunoscore group 

r 95% CI P value  r 95% CI P value 

Antigen Processing and Presentation HFE 0.45 0.25~0.61 < 0.001  -0.24 -0.45~-0.01 0.041 

Antigen Processing and Presentation HSPA1B 0.44 0.24~0.61 < 0.001  0.00 -0.24~0.23 0.979 

Antigen Processing and Presentation HLA-E 0.39 0.18~0.57 < 0.001  -0.02 -0.25~0.21 0.859 

Antigen Processing and Presentation PSMC6 0.42 0.22~0.59 < 0.001  0.03 -0.20~0.26 0.785 

Antigen Processing and Presentation MICA 0.43 0.22~0.60 < 0.001  0.05 -0.18~0.28 0.660 

Antigen Processing and Presentation HSP90AB1 0.41 0.21~0.58 < 0.001  0.06 -0.18~0.29 0.640 

B-cell receptor Signaling Pathway IGHV3-7 -0.47 -0.63~-0.28 < 0.001  -0.25 -0.45~-0.01 0.038 

B-cell receptor Signaling Pathway CD79A -0.42 -0.59~-0.22 < 0.001  -0.21 -0.43~0.02 0.072 

B-cell receptor Signaling Pathway IGLV5-37 -0.42 -0.59~-0.21 < 0.001  0.00 -0.24~0.23 0.976 

B-cell receptor Signaling Pathway IGLV1-36 -0.41 -0.58~-0.20 < 0.001  -0.18 -0.40~0.05 0.129 

B-cell receptor Signaling Pathway PIK3CD 0.18 -0.04~0.39 0.114  -0.36 -0.55~-0.14 0.002 

Cytokine Receptors TACR1 -0.40 -0.58~-0.20 < 0.001  0.02 -0.22~0.25 0.885 

Cytokine Receptors TNFRSF10C 0.15 -0.08~0.36 0.210  -0.32 -0.52~-0.10 0.006 

Cytokine Receptors NR4A3 0.11 -0.11~0.33 0.327  -0.31 -0.51~-0.09 0.008 

Cytokine Receptors BMPR1A -0.15 -0.36~0.08 0.194  0.30 0.07~0.50 0.011 

Cytokine Receptors TNFRSF9 -0.03 -0.26~0.19 0.773  -0.33 -0.52~-0.10 0.005 

T-cell receptor signaling Pathway TRAV8-3 0.00 -0.23~0.22 0.974  -0.35 -0.54~-0.13 0.003 

T-cell receptor signaling Pathway TRAV21 -0.13 -0.35~0.10 0.259  -0.44 -0.61~-0.23 < 0.001 

T-cell receptor signaling Pathway TRBV19 -0.11 -0.33~0.12 0.340  -0.39 -0.57~-0.18 < 0.001 

T-cell receptor signaling Pathway TRAV1-2 -0.19 -0.40~0.03 0.094  -0.46 -0.62~-0.25 < 0.001 

 


