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INTRODUCTION 
 

Breast cancer (BC) is one of the most commonly 

diagnosed cancers worldwide. Although its incidence 

rates have declined continuously due to improvements 

in treatment strategies and early detection, BC is still 

the second leading cause of cancer-related deaths 

among women [1]. BC is a genetically heterogeneous 

group of tumors with a variety of morphologic features 

and is classified into four distinct molecular subtypes 

based on the immunohistochemical expression of 

estrogen receptor (ER), progesterone receptor (PR), and 

human epidermal growth factor receptor 2 (Her2): 

ER/PR+, Her2– (Luminal A); ER/PR+, Her2+ (Luminal 

B); ER/PR–, Her2+ (HER2+); and ER/PR–, Her2– 
(basal-like/triple-negative breast cancer [TNBC]) [2]. 

Endocrine therapy can improve the survival rate of 

patients with luminal subtype BC, whereas trastuzumab 

is effective against Her2+ subtype BC [3–5]. However, 

chemotherapy is the only available treatment approach 

against basal-like BC and TNBC due to the lack of 

effective biomarkers. Interestingly, a novel claudin-low 

molecular subtype of BC has been recently identified 

[6], characterized by low expression of tight junction 

and epithelial cell–cell adhesion proteins, including 

claudin 3, 4, and 7, and E-cadherin [6]. In addition, 

claudin-low tumors preferentially display a triple-

negative phenotype, with enhanced epithelial-to-

mesenchymal transition (EMT) features, immune 

system responses, and stem cell-associated biological 

processes [7–10]. Moreover, patients with claudin-low 

BC have a poor overall survival (OS) when compared to 

those with luminal A subtype BC [10]. 

 

Claudins (CLDNs) are structural and functional 

components of tight junctions that regulate cellular 
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ABSTRACT 
 

Claudins (CLDN) are structural components of tight junctions that function in paracellular transport and 
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of the expression and prognostic value of claudins in BC using various online databases. Compared with normal 
tissues, CLDN3, 4, 6, 7, 9, and 14 were upregulated in BC tissues, whereas CLDN2, 5, 8, 10, 11, 15, 19, and 20 
were downregulated. A high expression of CLDN2, 5, 6, 9, 10, 11, and 14–20 was associated with better relapse-
free survival (RFS), whereas a high CLDN3 expression correlated with poor RFS. In addition, a high expression of 
CLDN3, 4, 14, and 20 was associated with poor overall survival (OS), whereas that of CLDN5 and CLDN11 was 
linked to a better OS. Although METABRIC and TCGA datasets revealed 22% and 27% gene alterations, 
respectively, in the members of the claudin family, these were not associated with survival. These findings 
suggest CLDN3, 5, and 11 could be promising therapeutic targets for patients with BC. 
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adhesion and maintain cell polarity in epithelial and 

endothelial cell sheets [11, 12]. The human genome 

consists of 23 annotated CLDN genes (they lack 

CLDN13) [11, 12]. Claudins are abnormally expressed 

in several human cancers and could be used as 

promising targets for cancer detection, diagnosis, and 

treatment [13]. Literature reports only a few studies on 

the expression and functions of some claudin genes in 

BC ([14–33] Supplementary Table 1). We believe that 

understanding the expression patterns, functional roles, 

and prognostic values of claudins would assist in 

identifying potential therapeutic targets and survival 

biomarkers for BC. 

 

The advent of microarray technology has revolutionized 

the way DNA and RNA research is conducted [34]. We 

comprehensively analyzed different claudin genes using 

various online databases to determine their expression 

patterns, potential functions, and distinct prognostic 

values in patients with BC. 

 

RESULTS 
 

Transcriptional levels of claudins in patients with 

breast cancer 

 

We first compared the mRNA levels of claudins in BC 

and the corresponding normal samples using the 

ONCOMINE database (Figure 1 and Supplementary 

Table 2). Details of major datasets of the claudin family 

in BC are shown in Supplementary Table 2 [35–46]. In 

total, we identified 22 claudins in BC samples. 

 

The results indicated that the mRNA expression of 

CLDN2, 5, 8, 10, 11, 16, 18, 19, 22, and 23 was 

downregulated in BC samples (Figure 1 and 

Supplementary Table 2). The decreased mRNA 

expression of CLDN2 was found in two datasets with a 

fold change of –4.357 and –2.283. The mRNA 

expression of CLDN5 was only upregulated in one 

study but downregulated in 18 studies. The mRNA 

expression of CLDN8 was downregulated with a fold 

change ranging from –2.382 to –24.488 in all 18 studies 

of six published datasets and the TCGA dataset. The 

mRNA expression of CLDN10 was downregulated with 

a fold change ranging from –2.117 to –7.292 in all nine 

studies of two published datasets and the TCGA dataset. 

In addition, the mRNA expression of CLDN11 was 

downregulated with a fold change ranging from –2.382 

to –13.276 in all 18 studies of five published datasets 

and the TCGA dataset. The mRNA expression of 

CLDN19 was downregulated with a fold change 

ranging from –3.652 to –10.49 in all six studies of the 

TCGA dataset. In addition, the TCGA dataset revealed 

that the mRNA expression of CLDN16 (p = 0.001, fold 

change = −2.053) decreased in intraductal cribriform 

breast adenocarcinoma. In the BC dataset of 

Turashvili’s study [38], CLDN18 was downregulated in 

invasive ductal breast carcinoma with a fold change of –

2.301 (p = 1.89E-04) and CLDN23 was downregulated 

in invasive lobular breast carcinoma with a fold change 

of –3.776 (p = 0.025). Moreover, the TCGA dataset 

revealed reduced mRNA expression of CLDN22 (p = 

5.33E-06, fold change =−2.229) in invasive ductal and 

lobular carcinoma. 

 

The results showed that the mRNA expression of CLDN7, 

9, and 14 was upregulated in BC samples (Figure 1 and 

Supplementary Table 2). The mRNA expression of 

CLDN7 was upregulated with a fold change ranging 

 

 
 

Figure 1. The mRNA expression of the claudin family in different types of cancers (ONCOMINE). Notes: The figure is generated 

from ONCOMINE with exact thresholds (p-value: 0.05; fold change: 2; gene rank: top 10%). The cell number represents the dataset number 
that meets all the thresholds, with blue for underexpression and red for overexpression. The cell color is determined by the best gene rank 
percentile for the analyses within the cell. 
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from 2.007 to 3.625 in all eight studies of three datasets. 

CLDN9 was overexpressed in the BC dataset of Finak’s 

study with a fold change of 3.269 [40]. In addition, the 

mRNA expression of CLDN14 was only downregulated 

in one study but upregulated in six studies. However, 

the mRNA expression of CLDN1, 3, 4, and 12 was both 

overexpressed and underexpressed in one study. 

Unfortunately, we did not find any study on the mRNA 

expression of CLDN6, 15, 17, 20, and 24 in samples 

obtained from patients with BC and normal individuals 

(Figure 1 and Supplementary Table 2). 

 

To further confirm the expression of members of the 

claudin family, we used the ULACAN database to 

compare the mRNA levels of claudins in the samples 

obtained from patients with BC with those obtained 

from normal individuals (Supplementary Table 3). We 

found that the mRNA expression of CLDN3, 4, 6, 7, 9, 

and 14 was higher in BC tissues than in normal tissues 

(Figure 2A, 2B, 2D, 2E, 2G, 2I), whereas the mRNA 

expression of CLDN5, 8, 11, 15, 19, and 20 was 

higher in normal tissues than in BC tissues (Figure 2C, 

2F, 2H, 2J–2L). Therefore, comprehensive results 

indicated that the mRNA expression of CLDN3, 4, 6, 

7, 9, and 14 was upregulated in patients with BC 

compared with normal individuals, whereas that of 

CLDN2, 5, 8, 10, 11, 15, 19, and 20 was down-

regulated in patients with BC. The expression of other 

claudin genes remains controversial. 

 

In addition, we analyzed the promoter methylation 

levels of claudins in BC and normal tissues. The beta 

values of CLDN2, 4, 5, 6, 9, 15, 16, 17, 18, 19, and 20 

indicated hypermethylation, whereas those of CLDN1, 

7, 8, 10, 11, 12, and 23 indicated hypomethylation 

(Supplementary Table 3). However, we found that 

CLDN1, 5, 6, 9, 10, 11, 15, 19, and 23 had higher 

promoter methylation levels in BC tissues than in 

normal tissues, whereas CLDN2, 4, 7, 8, 12, 16, 17, 18, 

and 20 had lower promoter methylation levels in BC 

tissues than in normal tissues (Supplementary Figure 1). 

 

Relationship between mRNA levels of claudins and 

the clinicopathologic parameters of patients with 

breast cancer 

 

We next analyzed the relationship between claudins and 

the clinicopathologic parameters of BC using the bc-

GenExMiner v4.3 database (Supplementary Table 4). 

With respect to age, the mRNA expression of CLDN2, 

8, 10, 11, 19, and 23 was low in the age group above 51 

years, whereas only CLDN3 mRNA was upregulated in 

the older group. The mRNA expression of CLDN3, 4, 
7, and 15 was upregulated, whereas that of CLDN2, 10, 

19, and 23 was downregulated in the node-positive BC 

group. In addition, the mRNA expression of CLDN3, 5, 

7, 11, and 12 was upregulated, whereas that of CLDN1, 

4, 6, 8, 9, 10, 14, 16, 17, 23, and 24 was downregulated 

in patients positive for estrogen receptor (ER). Patients 

positive for progesterone receptor (PR) had a higher 

mRNA expression of CLDN5, 7, 11, and 12 and lower 

expression of CLDN1, 2, 4, 6, 8, 9, 10, 14, 16, 22, 23, 

and 24 mRNAs as compared with normal samples. 

Compared with the HER2-negative group, CLDN2 and 

CLDN4 mRNAs were overexpressed in the human 

epidermal growth factor receptor 2 (HER2)-positive 

group. Moreover, patients with HER2-positive BC had 

reduced mRNA expression of CLDN5 and CLDN12. 

 

TNBC is a special type of BC with negative ER, PR, 

and HER2. Although the triple-negative status 

positively correlated with CLDN1, 6, 8, 9, 10, 16, 20, 

and 23, it had a negative correlation with CLDN3, 5, 7, 

11, 12, and 19 mRNA expression. Moreover, basal-like 

status was positively correlated with CLDN1, 2, 4, 6, 8, 

9, 10, 14, 16, 22, and 23 but negatively correlated with 

CLDN3, 5, 7, 11, 12, and 19 mRNA expression 

(Supplementary Table 4). 

 

Scarff–Bloom–Richardson (SBR) grading system is 

considered a prognostic factor in BC. A higher SBR 

grade status correlated with a higher mRNA expression 

of CLDN3 and CLDN4 (Figure 3A, 3B) and with lower 

mRNA expression of CLDN5, 11, and 12 (Figure 3C, 

3H, 3I). For CLDN6, 7, 9, 10, 14, 15, 16, 17, 23, and 24 

(Figure 3D–3G, 3J–3O), although a substantial 

difference was detected in Welch’s test, certain 

comparison groups by Dunnett’s Tukey–Kramer test did 

not show a difference (the cutoff value of p was 0.05) 

(Supplementary Table 5). Other claudin genes showed 

no difference in the SBR grade status (Supplementary 

Table 5). 

 

The Nottingham prognostic index (NPI) is another 

prognostic model for patients with BC. A higher NPI 

grade status was found to be correlated with higher 

mRNA expression of CLDN3 and CLDN9 (Figure 4B, 

4G). For CLDN1, 4, 5, 6, 7, 10, 11, 12, and 23 (Figure 

4A, 4C–4F, 4H–4K), not all pairwise comparisons in 

the NPI criteria were significant (p < 0.05) 

(Supplementary Table 5). Other claudin genes showed 

no difference in the NPI grade status (Supplementary 

Table 5). 

 

Prognostic values of claudin mRNA expression in all 

breast cancer groups 

 

The Kaplan–Meier plotter was used to examine the 

prognostic values of claudin mRNA expression in all 
BC groups. Figure 5 shows all relapse-free survival 

(RFS) curves associated with the members of the 

claudin family. The results revealed that a high mRNA 
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expression of CLDN2, 5, 6, 9, 10, 11, 14–20 was 

associated with better RFS (Figure 5A, 5C–5N). In 

contrast, a high mRNA expression of CLDN3 was 

associated with a poor prognosis of RFS (Figure 5B). In 

addition, we analyzed the relationship between mRNA 

expression of claudins and other prognostic indexes, 

including overall survival (OS), distant metastasis-free 

survival (DMFS), and post-progression survival (PPS). 

 

 
 

Figure 2. Significant changes in claudin mRNA expression between breast cancer and normal tissues (UALCAN database). (A) 

CLDN3; (B) CLDN4; (C) CLDN5; (D) CLDN6; (E) CLDN7; (F) CLDN8; (G) CLDN9; (H) CLDN11; (I) CLDN14; (J) CLDN15; (K) CLDN19; (L) CLDN20. 
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Figure 6 shows all OS curves associated with members 

of the claudin family. We found that a high mRNA 

expression of CLDN3, 4, 14, and 20 was associated 

with poor OS (Figure 6A, 6B, 6E, 6F), whereas a high 

mRNA expression of CLDN5 and CLDN11 was 

associated with better OS (Figure 6C, 6D). Similarly, a 

high mRNA expression of CLDN3 and CLDN7 was 

associated with a poor prognosis of DMFS and a high 

 

 
 

Figure 3. Relationship between the claudin family and the SBR criterion. (A) CLDN3; (B) CLDN4; (C) CLDN5; (D) CLDN6; (E) CLDN7; (F) 
CLDN9; (G) CLDN10; (H) CLDN11; (I) CLDN12; (J) CLDN14; (K) CLDN15; (L) CLDN16; (M) CLDN17; (N) CLDN22; (O) CLDN24. Global differences 
between the groups were assessed by Welch’s test, and p < 0.05 was considered significant, with Dunnett’s modified Tukey–Kramer test 
computed for each pairwise comparison. Abbreviations: AQP, aquaporin; NPI, Nottingham Prognostic Index; SBR, Scarff–Bloom–Richardson. 
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Figure 4. Relationship between the Claudin family and the NPI criterion. (A) CLDN1; (B) CLDN3; (C) CLDN4; (D) CLDN5; (E) CLDN6; (F) 
CLDN7; (G) CLDN9; (H) CLDN10; (I) CLDN11; (J) CLDN12; (K) CLDN23. Global differences between the groups were assessed by Welch’s test, 
and p < 0.05 was considered significant, with Dunnett’s Tukey–Kramer test computed for each pairwise comparison. Abbreviation: NPI, 
Nottingham Prognostic Index. 
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Figure 5. The RFS of mRNA levels of claudins in all patients with breast cancer (Kaplan–Meier plotter). (A) CLDN2; (B) CLDN3; (C) 
CLDN5; (D) CLDN6; (E) CLDN9; (F) CLDN10; (G) CLDN11; (H) CLDN14; (I) CLDN15; (J) CLDN16; (K) CLDN17; (L) CLDN18; (M) CLDN19; (N) 
CLDN20. Abbreviation: RFS, relapse-free survival. 
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CLDN2 mRNA expression indicated better DMFS 

(Supplementary Table 6). In addition, a high mRNA 

expression of CLDN3, 4, and 14 was associated with 

poor PPS and a high mRNA expression of CLDN6 and 

CLDN18 indicated better PPS (Supplementary Table 6). 

Prognostic values of claudin mRNA expression in 

different molecular subtypes of breast cancer 

 

We next analyzed the prognostic values of claudin 

mRNA expression in different molecular subtypes, 

 

 
 

Figure 6. The OS of mRNA levels of claudins in all patients with breast cancer (Kaplan–Meier plotter). (A) CLDN3; (B) CLDN4; (C) 
CLDN5; (D) CLDN11; (E) CLDN14; (F) CLDN20. Abbreviations: OS, overall survival. 
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including basal-like, luminal A, luminal B, and HER2+ 

(Supplementary Table 7). 

 

In basal-like BC, a high mRNA expression of CLDN1 

and CLDN7 correlated with poor RFS, whereas a high 

mRNA expression of CLDN6, 9, 10, 16, and 18 

correlated with better RFS. In addition, a high mRNA 

expression of CLDN8 indicated better OS, whereas that 

of CLDN10 was associated with better DMFS. 

Moreover, a high mRNA expression of CLDN20 

indicated poor PPS. The mRNA expression of other 

members of the claudin family members did not 

correlate with prognosis in basal-like BC. 

 

In patients with luminal A BC, a high mRNA 

expression of CLDN1, 2, 5, 6, 8, 9, 10, 11, and 14 to 20 

correlated with better RFS, whereas only a high CLDN3 

expression was associated with poor RFS. In addition, a 

high mRNA expression of CLDN2 was associated with 

the poor OS but indicated better DMFS. Other members 

of the claudin family were not associated with any 

prognosis in patients with luminal A BC. 

 

In patients with luminal B BC, a high mRNA 

expression of CLDN6, 8, 9, 10, 11, 15–18, 20, and 23 

correlated with better RFS. In addition, a high 

expression of CLDN7 was associated with poor RFS 

and OS. No correlation with prognosis was found in the 

remaining members of the claudin family. 

 

In patients with HER2+ BC, a high mRNA expression 

of CLDN9 and CLDN14 correlated with better RFS, 

whereas only a high CLDN8 expression was associated 

with poor RFS. In addition, a high expression of 

CLDN20 was associated with poor OS. No correlation 

with prognosis was found in the remaining members of 

the claudin family. 

 

Prognostic values of claudin mRNA expression in 

breast cancer with different clinicopathologic 

classifications 

 

Next, we investigated the prognostic values of claudin 

mRNA expression in BC with different clinico-

pathologic classifications, including lymph node status 

and histologic grades (Supplementary Table 8). We 

found that a high mRNA expression of CLDN6, 9, 17, 

18, and 20 correlated with poor PPS, whereas only high 

CLDN1 expression had better PPS in patients with 

lymph node positivity. In addition, a high CLDN11 

expression was associated with better RFS in patients 

with lymph node positivity. A high CLDN8 expression 

resulted in poor DMFS, whereas a high CLDN20 
expression was associated with poor OS in patients with 

lymph node positivity. In patients with lymph node 

negativity, a high CLDN3 expression correlated with 

the poor OS, DMFS, and PPS, whereas a high CLDN8 

expression correlated with better DMFS. In addition, a 

high mRNA expression of CLDN9, 18, and 19 

correlated with better PPS, whereas a high CLDN20 

expression was associated with poor PPS. Moreover, a 

high CLDN9 expression indicated a better OS. 

 

The second clinicopathologic classification we 

investigated was histologic grade (Supplementary Table 

9). In patients with grade 1 BC, only high CLDN11 

expression indicated better RFS, whereas high 

expression of CLDN3 and CLDN4 correlated with poor 

OS in patients with grade 2 BC, whereas a high 

CLDN12 expression had better OS. In addition, a high 

CLDN3 expression correlated with poor DMFS. A high 

expression of CLDN3, 4, 10, 16, and 18 correlated with 

poor PPS, whereas a high CLDN12 expression had 

better PPS. In patients with grade 3 BC, a high 

expression of CLDN1, 3, and 7 correlated with poor 

RFS, whereas a high CLDN16 expression was found to 

have better RFS. In addition, a high expression of 

CLDN1 and CLDN7 correlated with poor DMFS. 

 

Claudin gene alteration analysis 

 

We used the cBioPortal for Cancer Genomics database 

to analyze the alterations in the genes of the claudin 

family. As for the TCGA dataset (with 963 patients), 

256 (27%) patients had altered claudin genes (Figure 

7A). In addition, 485 (22%) patients had altered claudin 

genes as per the METABRIC dataset (Figure 7B). The 

genetic alterations included missense mutations, 

truncating mutations, amplifications, and deep 

deletions. However, the results from the two datasets 

showed no differences between OS/DFS and BC 

patients with or without alterations in claudin genes 

(Figure 7C–7E). 

 

DISCUSSION 
 

We explored the mRNA expression, the correlation with 

clinicopathologic parameters, and prognostic values of 

22 claudin genes in patients with BC. The majority of 

these genes had altered expression that could impact the 

survival of patients with BC. CLDN3, 5, and 11 could 

be used as promising therapeutic targets for BC. 

Compared with normal tissues, the expression of 

CLDN3, 4, and 7 was upregulated in BC tissues, a 

finding consistent with that of a previous study that 

reported elevated expression of these claudins in BC 

[22]. Although CLDN3 is known to function as a tumor 

suppressor in certain cancers [47–51], we found that a 

high CLDN3 expression was associated with poor RFS, 

OS, DMFS, and PPS in all patients. A high expression 

of CLDN3 and CLDN7 was associated with poor RFS 

in TNBC [23]. Moreover, CLDN3 expression correlated 
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with SRB and NPI. In addition, CLDN3 expression 

correlated with almost all clinicopathologic parameters 

and impacted the prognosis in patients with lymph node 

negativity or grade 2 BC. These results indicated that 

CLDN3 could serve as a potential therapeutic 

intervention for BC. 

 

Although a previous study associated upregulated 

CLDN5 expression in BC with poor RFS [27], we 

found that the low expression of CLDN5 and CLDN11 

was associated with poor RFS and OS in all patients. 

Moreover, both of them correlated with SRB and with 

almost all clinicopathologic parameters. Similarly, 

another study found upregulated CLDN11 expression in 

BC [21]. However, the samples in these studies were 

small. Moreover, overexpressed CLDN5 reduced the 

paracellular permeability of hCMEC/D3 cells and 

decreased the invasion of lung adenocarcinoma A549 

cells [52]. Insertion of Claudin-5 gene in HECV cells 

substantially reduced the motility of the cells and their 

adhesiveness to the matrix, along with reduced 

angiogenic potential [53]. Downregulation of claudin-5 

increased the permeability of the blood–tumor barrier 

[54, 55], suggesting it could prevent brain metastasis. 

Low CLDN11 expression has been used as a prognosis 

biomarker in certain cancers [56–58]. Moreover, miR-

99b-induced downregulation of CLDN11 promoted 

metastasis of hepatocellular carcinoma [59]. Similarly, 

miR-421 promoted the proliferation and metastasis of 

gastric cancer cells by targeting claudin-11 [60]. In 

addition, low expression of CLDN5 and CLDN11 is 

associated with poor RFS in patients with luminal A 

BC. Based on these bioinformatics data, we speculate 

that the downregulated expression of CLDN5 and 

CLDN11 could be exploited to devise therapeutic 

strategies against BC. 

 

Our study had some limitations. First, the expression or 

prognostic values of certain claudins in BC or its 

subtypes are still unknown due to limited samples. 

Second, mechanisms regulating the expression of 

claudins remain elusive. Based on the literature and 

functional modules available in online databases, we 

analyzed the methylation levels of claudins in BC. The 

results showed that CLDN4, 5, 6, 15, and 19 were 

hypermethylated in BC with lower mRNA expression 

compared to normal tissues. However, although 

CLDN16, 17, and 18 were hypermethylated, their 

mRNA expression did not differ. Interestingly, we 

found that CLDN11 was hypomethylated in BC with 

lower mRNA expression than in normal tissues. 

Methylation of CLDN11 promoter is known to be 

 

 
 

Figure 7. Analysis of alterations in claudins in breast cancer (using cBioPortal for Cancer Genomics). (A) OncoPrint of the TCGA 
dataset in cBioPortal. (B) OncoPrint of the METABRIC dataset in cBioPortal. (C) DFS analysis in cases with or without alterations in claudin 
genes of the TCGA dataset. (D) OS analysis in cases with or without alterations in claudin genes of the TCGA dataset. (E) OS analysis in cases 
with or without alterations in claudin genes of the METABRIC dataset. OncoPrint represents the distribution and proportion of samples with 
different kinds of alterations in the claudin family. Abbreviations: DFS, disease/progression-free survival; OS, overall survival. 
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associated with the development and poor survival in 

several cancers [56–58]. Moreover, miRNA-induced 

reduced expression of CLDN11 promoted metastasis 

[59, 60], implying DNA methylation as one of the 

underlying regulatory mechanisms of at least certain 

claudins in BC. Third, this study showed that certain 

claudins functioned as tumor suppressors. Fourth, the 

results of bioinformatics analysis need to be validated 

by performing biological experiments. 

 

In summary, we systematically analyzed the expression 

and prognostic value of claudins in BC. Our findings 

suggested that CLDN3, 5, and 11 could be used as 

promising therapeutic targets for BC. 

 

MATERIALS AND METHODS 
 

ONCOMINE analysis 

 

ONCOMINE (http://www.oncomine.com), an online 

cancer microarray database, was used to analyze the 

mRNA levels of the claudin family in different cancers 

[61]. The search filters were set to the following: 

differential analysis (cancer vs. normal), cancer type 

(breast cancer), sample type (clinical specimen), data 

type (mRNA), and genes (CLDN1-12, CLDN14-20, 

and CLDN22-24). Thresholds were set as the 

following: gene rank, 10%; fold change, 2; and p-

value, 0.05. 

 

UALCAN database 

 

UALCAN (http://ualcan.path.uab.edu/index.html) is a 

portal for facilitating tumor subgroup gene expression 

and survival analyses [62]. It was used to evaluate the 

mRNA levels and promoter methylation levels of the 

claudin family in patients with BC and normal 

individuals. In addition, we evaluated the effects of the 

claudin family on the survival of patients with BC. The 

beta value indicates the level of DNA methylation 

ranging from 0 (unmethylated) to 1 (fully methylated). 

Different beta cut-off values have been considered to 

indicate hypermethylation (beta value: 0.7–0.5) or 

hypo-methylation (beta-value: 0.3–0.25). A p-value < 

0.05 was considered significant. 

 

Breast cancer gene expression miner (bc-

GenExMiner) v4.3 

 

bc-GenExMiner v4.3 (http://bcgenex.centregauducheau. 

fr/BC-GEM/GEM-Accueil.php?js=1) [63], a statistical 

mining tool of published annotated BC transcriptomic 

data, was used to assess the correlation of expression of 

members of the claudin family with specific 

clinicopathologic features of BC, including age, nodal 

status, hormonal receptors status (ER and PR), HER2, 

pathologic subtype, NPI, and SBR grade. A p-value < 

0.05 was considered significant. 

 

Kaplan–Meier plotter database 

 

Kaplan–Meier plotter (https://kmplot.com/analysis/) 

[64], an online database established using gene 

expression data and survival information of 1,809 

patients with BC downloaded from GEO, was used to 

analyze the prognostic values of members of the 

claudin family in all patients, in different molecular 

subtypes of BC, and different kinds of clinico-

pathologic classifications of BC. Only the best probe 

set of the claudin family was selected for this analysis. 

The hazard ratio (HR) with 95% confidence intervals 

and log-rank p-value were calculated and shown. 

 

The cancer genome atlas (TCGA) data and 

cBioPortal for cancer genomics database 
 

The Cancer Genome Atlas consists of both sequencing 

and pathological data on 30 different cancers [65]. The 

cBioPortal for Cancer Genomics (http://www. 

cbioportal.org) contains large-scale cancer genomics 

datasets with functions such as visualization, 

downloading, and analysis [66]. We selected two BC 

datasets with most patients (TCGA, Provisional and 

METABRIC, Nature 2012 and Nat Commun, 2016) 

for further analysis using cBioPortal. The OncoPrint, 

OS, and DFS of the claudin family were analyzed 

online. 

 

Statistical analysis 

 

Gene expression data from the Oncomine database were 

analyzed using the p-values, fold changes, and ranks. 

Gene expression and methylation levels from the 

UALCAN or bc-GenExMiner v4.3 database were 

compared using the t-test. Survival curves were 

generated using the Kaplan–Meier plots. The pairwise 

comparison in the SBR and NPI criteria was performed 

using Dunnett’s Tukey–Kramer test. P-values < 0.05 

were considered significant. The details can be found on 

the webpage of the databases used. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Significant changes in claudin promoter methylation levels between breast cancer and normal 
tissues (UALCAN database). (A) CLDN1; (B) CLDN2; (C) CLDN4; (D) CLDN5; (E) CLDN6; (F) CLDN7; (G) CLDN8; (H) CLDN9; (I) CLDN10; (J) 
CLDN11; (K) CLDN12; (L) CLDN15; (M) CLDN16; (N) CLDN17; (O) CLDN18; (P) CLDN19; (Q) CLDN20; (R) CLDN23. The beta value indicates the 
level of DNA methylation ranging from 0 (unmethylated) to 1 (fully methylated). Different beta cut-off values have been considered to 
indicate hypermethylation (beta value: 0.7–0.5) or hypomethylation (beta-value: 0.3–0.25). A p-value < 0.05 was considered significant. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–4, 6–9. 

 

Supplementary Table 1. Expression and functions of claudin in breast cancer. 

Genes Types of cancer Expression level Function role References 

CLDN1 breast cancer vs normal down NA [14] 

 
recurrent group BC vs non-

recurrent group 
down 

correlated with disease-free interval and 
lymph node metastasis 

[15] 

 TNBC NA 
associated with worse relapse-free survival 

(RFS)and overall survival 
[16] 

 basal-like breast cancer up 
involved in epithelial-mesenchymal-transition 

(EMT) 
[17] 

 breast cancer cells NA 
silencing CLDN1 inhibited epithelial to 

mesenchymal transition (EMT) 
[18] 

CLDN2 TNBC NA 
associated with the risk of recurrence in the 

lymph node positive subgroup 
[16] 

 breast cancer vs normal down 
associated with 

lymph node metastasis 
[19] 

 
BC liver metastases compared 

to 
other metastatic sites 

up associated with metastasis-free interval [20] 

 breast cancer vs normal down NA [21] 
CLDN3 breast cancer vs normal no difference NA [14] 
 breast caner up NA [22] 

 TNBC 
strong cytoplasmic 

claudin 3 expression 
associated with survival. [23] 

CLDN4 breast cancer vs normal no difference NA [14] 

 
recurrent group BC vs non-

recurrent group 
no significance NA [15] 

 TNBC NA not associated with survival. [16] 
 breast caner up NA [22] 

 
basal-like 

group BC as compared to not 
basal-like 

up NA [24] 

 breast caner NA 
 

correlated with tumour grade, Her2,   
ER and survival 

[25] 

 breast carcinoma in situ up 
claudin-4-low expression 

had a worse prognosis in carcinoma in situ 
[26] 

CLDN5 
recurrent 

breast cancer 
up with lower relapse-free survival (RFS) [27] 

CLDN6 
breast invasive ductal 

carcinomas 
down correlated with lymph node metastasis [28] 

 MCF-7/MDR cells NA 
High expression of CLDN6 confers 
chemoresistance on breast cancer 

[29] 

 TNBC cell line MDAMB231 NA CLDN6 enhances chemoresistance to ADM [30] 
 breast cancer vs normal down NA [21] 
CLDN7 TNBC NA not associated with survival. [16] 
 breast caner up NA [22] 

 TNBC 
strong cytoplasmic 

claudin 7 expression 
associated with survival [23] 

CLDN11 breast cancer vs normal up NA [21] 

CLDN12 
estrogen receptor (ER)-negative  

breast cancer 
NA associated with survival. [31] 

CLDN16 breast cancer vs normal up 
no significant association with overall 

survival 
[32] 

 
node positive tumors compared 

to negative 
down associated with aggressive phenotype [33] 

 breast cancer vs normal down NA [21] 

Note: “up” means high expression; “down” means low expression; BC; breast cancer; TNBC, triple negative breast cancer; NA, 
not available. 
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Supplementary Table 2. Datasets of the claudin family in breast cancer (ONCOMINE database). 

 

 

Supplementary Table 3. The expression of the claudin family of breast cancer (UALCAN database). 

 

Supplementary Table 4. Relationship between the claudin family and the clinicopathologic parameters of breast 
cancer (bc-GenExMiner v4.3). 

 

Supplementary Table 5. Results of Dunnett’s Tukey–Kramer test for pairwise comparison in Scarff bloom and 
Richardson and Nottingham prognostic index criteria. 

Gene Pairwise comparison of SBR P-value Pairwise comparison of NPI P-value 

CLDN1 No significant 0.0553 NPI2 > NPI1 < 0.01 

   NPI3 = NPI1 > 0.10 

   NPI3 = NPI2 > 0.10 

CLDN2 No significant 0.568 No significant 0.2713 

CLDN3 SBR2 > SBR1 <0.0001 NPI2 > NPI1 <0.0001 

 SBR3 > SBR1 <0.0001 NPI3 > NPI1 <0.0001 

 SBR3 > SBR2 <0.0001 NPI3 > NPI2 <0.0001 

CLDN4 SBR3 > SBR1 <0.0001 NPI2 > NPI1 <0.0001 

 SBR3 > SBR2 <0.0001 NPI3 > NPI1 <0.0001 

 SBR2 > SBR1 <0.0001 NPI3 = NPI2 >0.1 

CLDN5 SBR2 < SBR1 <0.0001 NPI2 < NPI1 <0.0001 

 SBR3 < SBR1 <0.0001 NPI3 < NPI1 <0.0001 

 SBR3 < SBR2 <0.0001 NPI3 = NPI2 >0.1 

CLDN6 SBR3 > SBR1 <0.01 NPI2 > NPI1 <0.05 

 SBR3 > SBR2 <0.01 NPI3 = NPI1 >0.1 

 SBR2 = SBR1 >0.1 NPI3 = NPI2 >0.1 

CLDN7 SBR2 > SBR1 <0.05 NPI2 > NPI1 <0.05 

 SBR3 < SBR2 <0.1 NPI3 > NPI1 <0.05 

 SBR3 = SBR1 >0.1 NPI3 = NPI2 >0.1 

CLDN8 No significant 0.3213 No significant 0.1274 

CLDN9 SBR3 > SBR1 <0.0001 NPI2 > NPI1 <0.0001 

 SBR3 > SBR2 <0.0001 NPI3 > NPI1 <0.0001 

 SBR2 = SBR1 >0.1 NPI3 > NPI2 <0.01 

CLDN10 SBR3 > SBR1 <0.0001 NPI2 > NPI1 <0.0001 

 SBR3 > SBR2 <0.0001 NPI3 > NPI1 <0.001 

 SBR2 = SBR1 >0.1 NPI3 = NPI2 >0.1 

CLDN11 SBR2 < SBR1 <0.0001 NPI2 < NPI1 <0.0001 

 SBR3 < SBR1 <0.0001 NPI3 < NPI1 <0.01 

 SBR3 < SBR2 <0.0001 NPI3 = NPI2 >0.1 

CLDN12 SBR3 < SBR1 <0.0001 NPI2 < NPI1 <0.01 

 SBR3 < SBR2 <0.0001 NPI3 < NPI1 <0.01 

 SBR2 < SBR1 <0.1 NPI3 = NPI2 >0.1 

CLDN14 SBR3 > SBR1 <0.01 No significant 0.1355 

 SBR3 > SBR2 <0.05   

 SBR2 = SBR1 >0.1   

CLDN15 SBR3 < SBR1 <0.05 No significant 0.0732 

 SBR3 < SBR2 <0.05   

 SBR2 = SBR1 >0.1   

CLDN16 SBR3 > SBR2 <0.0001 No significant 0.6659 
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 SBR3 > SBR1 <0.05   

 SBR2 = SBR1 >0.1   

CLDN17 SBR3 > SBR2 <0.05 No significant 0.6285 

 SBR2 = SBR1 >0.1   

 SBR3 = SBR1 >0.1   

CLDN18 No significant 0.5717 No significant 0.9423 

CLDN19 No significant 0.5957 No significant 0.1165 

CLDN20 No significant 0.0907 No significant 0.8386 

CLDN22 No significant 0.8599 No significant 0.7234 

CLDN23 SBR3 > SBR1 <0.0001 NPI2 > NPI1 <0.0001 

 SBR3 > SBR2 <0.0001 NPI3 > NPI1 <0.0001 

 SBR2 = SBR1 >0.1 NPI3 = NPI2 >0.01 

CLDN24 SBR2 > SBR1 <0.1 No significant 0.7341 

 SBR3 > SBR1 <0.1   

 SBR3 = SBR2 >0.1   

 

 

Supplementary Table 6. Survival analyses of the claudin family in all patients with breast cancer (Kaplan–Meier 
plotter). 

 

Supplementary Table 7. Survival analyses of the claudin family with different molecular subtypes in breast cancer 
(Kaplan–Meier plotter). 

 

Supplementary Table 8. Survival analyses of the claudin family with different lymph node status in breast cancer 
(Kaplan–Meier plotter). 

 

Supplementary Table 9. Survival analyses of the claudin family with different histologic grades in breast cancer 
(Kaplan–Meier plotter). 


