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INTRODUCTION 
 

Acute pancreatitis (AP) is one of the most common 

gastrointestinal emergency conditions [1, 2]. Its clinical 

severity is stratified into three categories according to 

Revised Atlanta Classification (RAC): mild, moderately 

severe, and severe [3]. While both mild (MAP) and 
severe AP (SAP, including moderately severe and 

severe cases) patients suffer from pancreatic inflam-

mations, SAP patients are further characterized by 

failure of one or more organs, and local or systemic 

complications. Compared to MAP, SAP patients have a 

much worse prognosis: on average they require 

significantly longer hospital stay, suffer more frequent 

complications, and most notably, have a significantly 

higher mortality rate (up to 20%) [4]. 

 

Existing widely used AP severity stratification systems are 

either imaging-based (for example, Balthazar CT-

enhanced scoring system and the computed tomography 
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higher accuracy and broader applicability, which holds promises for reducing SAP mortality and improving its 
clinical outcomes. 
Materials and Methods: Nine hundred and forty-five AP patients were enrolled into this study. Clinical venous 
blood tests covering 65 biomarkers were performed on AP patients within 24 hours of admission. An SAP 
prediction model was built with statistical learning to select biomarkers that are most predictive for AP severity. 
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severity index, or CTSI) [5], or clinical test-based, such as 

Ranson’s score [6], APACHE-II [7], and BISAP [8], or 

based on a combination of both clinical tests and patient 

self-reporting, including pancreatic activity scoring system 

(PASS) and RAC itself [3, 9]. However, while generally 

useful, so far all of the aforementioned stratification 

systems have been shown to predict SAP with a moderate 

accuracy: for example, two recent studies show that those 

systems typically achieved an AUC between 0.6 to 0.8 

during SAP prediction [10, 11]; additionally, some of 

those systems demonstrated higher specificity than 

sensitivity in SAP prediction, or vice versa [12]. Some 

systems, such as APACHE-II, which requires a total of 16 

tests to predict AP severity, are too complicated to perform 

in typical clinical settings. Some, such as Ranson’s scores, 

require a minimum of 48 hours to collect all the data points 

after hospitalization to predict SAP, limiting the time 

window to initiate medical intervention [13]. Furthermore, 

imaging-based systems can be influenced by inspectors’ 

personal experiences [5] when interpreting data. Last but 

not least, while enhanced CT is essential to detect localized 

pancreas complications, it may actually complicate 

treatment by causing deterioration in pancreatic 

microcirculatory disturbance [14]. 

 

Given the limitations of the current AP severity 

prediction systems, we sought to develop a clinical tests-

based scoring model to predict SAP more accurately 

within the first 24 hours after admission. We focused on 

blood tests that are routinely performed in hospital, and 

therefore are practical to implement. We also utilized 

machine learning techniques to select most-predictive 

tests and develop prediction models to improve accuracy 

in stratifying AP severity. 

 

RESULTS 
 

Patient characteristics and sample description 

 

We in total collected 945 AP cases admitted to First 

Affiliated Hospital of Wenzhou Medical University 

between July 2017 and April 2019. Patients were 

randomly assigned to a training or a validation cohort at a 

ratio of 30:70 while maintaining matched age 

distributions and gender ratios between these 2 cohorts: 

the 289 AP cases assigned to the training cohort have a 

median age of 49.2 years (ranging from 20 to 84), and a 

male-female ratio of 63.1%–36.9%; the 656 AP cases in 

the validation cohort have a median age of 51.4 years 

(ranging from 18 to 95), and a male-female ratio of 

63.5%–36.5%. Summaries of demographics and clinical 

features of both cohorts were presented in Table 1. 

 

For all patients, on day 1 of their hospital admission, 

body fluids samples (venous blood, arterial blood and 

urine) were collected for clinical tests. 

Identify venous blood markers and build a 

stratification model to assess AP severity during the 

first 24 hours of admission 

 

Our analyses process includes biomarker discovery, 

model training and validation (summarized in Figure 1). 

For marker discovery, we surveyed the results of 92 

non-invasive clinical tests that were performed on our 

study cohorts, 65 of which were tests on venous blood, 

17 on arterial blood and 10 on urine samples (for a full 

list, see Supplementary Table 1). We also included body 

temperature in analyses. For benchmarking the 

performance of an AP stratification system, we 

developed based on those tests, each case was first 

classified by RAC for its severity. 

 

We performed a proof-of-principle prediction of 

SAP cases using all the available clinical test results 

on a small subset of AP cases in the cohort using 

the Random Forest method, and achieved a reasonably 

high accuracy (data not shown). We thus reasoned 

that by excluding less SAP-predictive tests and 

rebuilding the AP severity stratification models using 

only highly predictive tests, we may further improve 

the models’ accuracy and at the same time reduce 

models’ complexity. We also predicted that the 

highly predictive tests should be more indicative of 

the pathologies of SAP, such as organ damages, 

complications and/or systematical inflammatory 

responses. 

 

We focused on the 65 tests that measure biomarkers in 

venous blood because a venous blood sample is 

relatively safe and easy to collect from an AP patient. 

Also, the venous blood tests we selected for the initial 

screening can have their results returned within the first 

24 hours after blood was drawn, thus providing an 

optimal time window of AP classification. 

 

We filtered the 289 AP cases of the training cohort 

based on the availability of the 65 blood test results, and 

left with 234 cases. According to their RAC grades, this 

cohort consists of 106 MAP cases and 128 SAP cases 

(55 moderately severe AP cases, and 73 severe AP 

cases). 

 

During marker discovery and model building for AP 

severity stratification, we chose to combine 

moderately severe and severe AP cases into one group 

instead of treating them as two separate groups. This is 

because we aimed to maximize the sensitivity of our 

model to predict SAP cases to prevent further 

deterioration for even moderately severe AP cases. We 
reasoned our approach should increase the likelihood 

of identifying biomarkers highly indicative of SAP 

core pathologies. 
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The training cohort was randomly split into a training 

set and a test set at a ratio of 60:40. Data normalization 

was performed on all test results using python package 

“StandardScaler”. The model building process has three 

main steps: in step 1 we applied Recursive Feature 

Elimination algorithm (Python package “RFE”) on the 

training set to identify an optimal number of features 

based on their importance; in step 2, we built a logistic 

regression model using the identified features; finally, 

in step 3, we calculated he AUC of the logistic 

regression model in classifying the training set as a 

preliminary validation. 

 

In practice, in step 1 we repeatedly ran RFE with a 

preset feature number ranging from 1 to 15. Feature 

numbers greater than 15 were not considered to 

minimize the possibility of overfitting classification 

models and detracting from the simplicity and 

applicability of our models. We reached the highest 

AUC at 0.79 (sensitivity: 72.4%; specificity: 71.4%) 

with 14 features (Figure 2A). 

 

To further minimize the chance of model overfitting 

without compromising its accuracy, we exhaustively 

eliminated individual features one by one manually 

from the 14-feature model, and re-calculated the AUC 

scores of each new prediction model. We found that we 

were able to maintain the AUC score at 0.79 

(sensitivity: 73.7%; specificity: 74.6%) after eliminating 

3 features: mean hemoglobin quantity, mean hemo-

globin concentration and prothrombin activity 

(Supplementary Table 2). Further elimination of any of 

the remaining 11 tests caused significant decrease in the 

accuracy of SAP-prediction. We then built a logistic 

regression model using the remaining 11 features/ 

biomarkers to stratify AP cases based on severity 

(Figure 2B–2C), which we termed Acute Pancreatitis 

Stratification using Venous blood (APSAVE). 

APSAVE will calculate a score to each AP case based 

on the 11 tests’ results, and the threshold score was set 

at 0.5 to discriminate SAP from MAP cases: AP cases 

scored equal or above 0.5 are classified as SAP, while 

those scored below 0.5 are MAP cases. 

 

We predicted 95 AP cases’ severity in the test set for a 

preliminary validation of APSAVE, and it achieved an 

AUC of 0.77 (sensitivity: 71.2%; specificity: 74.4%) 

(Figure 2D). To demonstrate the robustness of APSAVE,  

 

 

 
Figure 1. Flowchart of the training and validation of APSAVE, an AP severity stratification model based on venous blood 
biomarkers. 
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we randomly shuffled training/test splits 100 times and 

generated an average ROC curve for validations (Figure 

2E), which has an average AUC of 0.74 ± 0.04, 

demonstrating its consistency in SAP prediction. 

 

APSAVE demonstrated a high degree of accuracy in 

classifying validation AP cases in a single-blinded 

manner 

 

We performed a single-blinded prediction of AP cases 

to validate APSAVE. The validation cohort has 656 

AP cases collected from July 2017 to April 2019. 

Cases missing value for any of the 11 biomarkers were 

left out, which resulted in 568 cases for validation 

(Table 1). According to RAC, this cohort consists of 

406 MAP cases and 162 SAP cases (84 moderately 

severe AP cases, and 78 severe AP cases). Data 

normalization was performed in the same way as in 

model building. We applied APSAVE to the validation 

cohort to predicted SAP cases and compared the 

prediction results with their RAC grades, which 

showed a sensitivity of 78.4% and a specificity of 

61.8% (an AUC = 0.73, Figure 3), which was similar 

to the results in the training cohort. 

 

 
 
Figure 2. (A) Dynamic changes of AUC scores in classifying training set AP cases with gradually decreased number of features. 
The 14 features identified in initial biomarker screening are: mean hemoglobin level, albumin-globulin ratio, alanine aminotransferase, 
thrombin time ratio, plateletcrit, albumin, prothrombin time, creatinine, serum potassium, BUN, prothrombin activity, mean hemoglobin 
concentration, triglyceride, lymph percentage. (B) ROC curve for the classification of AP training set; (C) Components of APSAVE and their 
corresponding coefficients; (D) ROC curve for the classification of AP test set; (E) Average ROC curve when training set and test set samples 
were reshuffled 100 times. 
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Table 1. Demographics and clinical characteristics, which are included in APSAVE, of the two study cohorts after 
cases with missing values were filtered out. 

 Training cohort Validation cohort 

Patient demographics   

AP case (n) 234 568 

Median age (range) 47 (20–84) 50 (18–95) 

Male 63.1% 63.5% 

Clinical parameters: median (range)   

SAP according to RAC (n) 128 162 

SIRS (n) 131 310 

Organ damage (kidney or lung, n) 67 103 

Triglyceride (mmol/L) 1.665 (0.2–66.62) 1.215 (0.16–76.36) 

Lymphocyte percentage (%) 0.102 (0.011–0.477) 0.1115 (0.009–0.894) 

Blood urea nitrogen (BUN) (mmol/L) 4.6 (1.3–22.5) 4.6 (1–34.1) 

Creatinine (mol/L) 62 (5–527) 63 (10–996) 

Thrombin time ratio (%) 0.925 (0.78–1.85) 0.95 (0.74–3.45) 

Prothrombin time (s) 13.7 (11.4–26.8) 13.7 (10.8–49.5) 

Serum potassium (mmol/L) 3.815 (2.68–5.38) 3.91 (2.68–6.29) 

Plateletcrit (L/L) 0.23 (0.06–0.55) 0.23 (0.02–0.9) 

 

APSAVE is highly accurate and more sensitive in 

detecting SAP during its early phase than other AP 

stratification systems 

 

To further assess the accuracy of APSAVE, we 

classified the validation cohort using 3 clinically 

frequently used SAP prediction systems: APACHE II, 

BISAP, and Ranson’s Criteria, and compared their 

classification results with those of APSAVE. 

 

It should be noted that APSAVE shares several markers 

with those 3 systems. Both APSAVE and APACHE II 

measure potassium and creatine levels in serum; 

similarly, APSAVE, BISAP and Ranson’s Criteria all 

measure blood urea nitrogen (BUN) in blood. Such 

agreements indicate APSAVE may have captured 

dynamical changes of metabolites in blood that are 

highly indicative of AP pathology. 

 

All 568 AP cases from the validation cohort contain 

complete data required for those 3 classification 

systems. Therefore, scores for those systems were 

calculated without imputation and were used to 

classify AP cases in accordance with their individual 

formula [6, 8, 15]. The ROC curves of those systems 

were shown in Figure 3B, and their sensitivity, 

specificity and AUC values were summarized in 

Table 2. 

 

 
 

Figure 3. (A) Distribution of APSAVE scores of MAP and SAP cases in the validation cohort; the dashed black line indicates the numeric cutoff 

of 0.5 to classify an AP case as mild or severe. (B) AUC curves of APSAVE, APACHE II, BISAP, Ranson’s criteria and the combined model 
(“Combined”) of APSAVE + Ranson’s on classifying AP cases of the validation cohort. 
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Table 2. AUC, sensitivity and specificity in classifying validation AP cases by APSAVE, APACHE II, BISAP, Ranson’s 
criteria and the combined model of APSAVE and Ranson’s (“Combined”). 

Model/System AUC  Sensitivity Specificity 

APACHE II 0.69 42.0% 84.0% 

BISAP 0.66 40.1% 81.5% 

Ranson 0.74 56.2% 81.8% 

APSAVE 0.73 78.4% 61.8% 

Combined 0.79 74.1% 72.7% 

 

Overall APSAVE and Ranson’s Criteria have the 

highest degree of accuracy (AUC = 0.73 and 0.74, 

respectively, Figure 3B and Table 2) in classifying the 

validation cohort, performing better than APACHE II 

and BISAP (AUC = 0.69 and 0.66, respectively). 

Furthermore, APSAVE has a higher degree of 

sensitivity in predicting SAP cases than all other 3 

systems (Table 2), suggesting that APSAVE is more 

likely to detect SAP cases in their early stage than the 

other 3 systems. 

 

The combined model of APSAVE and Ranson’s 

criteria had an increased accuracy in classifying AP 

cases on the validation cohort 

 

Given that APSAVE is more sensitive but less specific 

in classifying SAP cases compared to the 3 established 

AP stratification systems, we reasoned that it is possible 

to further improve the accuracy of AP stratification by 

integrating APSAVE with one of the other 3 systems. 

We explored this possibility by combining the score of 

APSAVE with that of APACHE II, BISAP or Ranson’s 

criteria, respectively and used each aggregate score to 

classify the validation cohort. We found that each 

aggregate score showed improvement over its parental 

score alone (Supplementary Figure 1). Among them, the 

aggregate score formulated by adding a Ranson’s 

criteria’s score of an AP case to twice of its APSAVE 

score has the highest overall accuracy on the validation 

cohort: indeed, it substantially improved APSAVE’s 

specificity at a relatively small tradeoff of its sensitivity 

(sensitivity 74.1%, specificity 72.7%, AUC = 0.79, 

Table 2). 

 

DISCUSSION 
 

Early detection of SAP remains a challenge in the 

emergency care of AP patients, and is key to SAP 

patients’ immediate survival and long-term prognosis. 

RAC, being the gold standards of AP diagnosis, requires 

more than 48 hours to assess the severity of an AP case, 
which limits its utility. Other diagnostic protocols either 

require more than 48 hours to have results returned, or 

are challenging to perform and score. 

We pursued a strategy by unbiasedly identifying clinical 

tests on body fluids whose results collectively can 

accurately stratify AP’s severity. By perusing over 90 

different tests and applying machine-learning algorithms 

in feature selection and modeling, we selected 11 tests 

and built APSAVE, an AP severity stratification model 

using the 11 tests’ measurements to diagnose SAP cases 

during the first 24 hours of admission. Using 

retrospective AP cases from a single center for validation, 

their RAC classification results as gold standards, and 3 

widely used AP stratification systems for comparisons, 

we demonstrated that APSAVE has a comparable 

accuracy as the Ranson’s criteria in diagnosing SAP, and 

outperformed APACHE II and BISAP, confirming 

APSAVE’s accuracy and robustness. Notably, our 

system has a much higher sensitivity than the other 3 

systems to diagnose SAP, which may be advantageous 

for SAP’s timely treatment to improve its prognosis, 

especially to reduce its mortality rate. Also, our system 

uses the same tests for all AP cases regardless of whether 

they were caused by gallbladder stones or not, which 

simplifies the procedure. 

 

The 11 clinical tests included in APSAVE were 

performed on venous blood, which is relatively safe and 

easy to be collected from AP patients. These tests are 

routinely performed in hospitals, even in primary care 

settings, which may reduce the cost to implement our 

system. While these clinical tests may need to be 

performed in different laboratories in a hospital, with 

recent advancements in electronic medical recording 

and data transmission, test results collection and AP 

severity scoring can be automated and easily accessible 

to physicians caring AP patients, thus streamlining the 

diagnosis process. 

 

Among the 11 tests that consist of APSAVE, we have 

independently identified several that also have been 

included in other classification systems: BUN (BISAP 

and Ranson’s Criteria), creatinine level (APACHE II), 

serum potassium (APACHE II) and Albumin (Glasgow 

pancreatitis score [16]). These agreements demonstrate 

APSAVE captured the same key features of AP patho-

logies, such as kidney damages and inflammatory 
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responses [17], as other systems did, supporting the 

validity of our approach and identified biomarkers. 

 

We also found that APSAVE is complementary to 

Ranson’s in AP classification: we combined scores 

between APSAVE and each of the other three system 

to predict AP severity, and found that the aggregate 

score from APSAVE and Ranson’s criteria predicted 

SAP cases substantially more accurately overall than 

either score alone, and better than the aggregate scores 

consisting APSAVE and APACHE II or BISAP, 

respectively. This indicates potential benefits in 

building a combined SAP classification system using 

APSAVE and Ranson’s criteria. However, it should be 

noted that to apply such a model clinically, more blood 

samples and tests are required for each AP patient; 

how such requirements affect its clinical applicability 

and affordability needs further investigations to 

address. 

 

Besides markers shared between APSAVE and other 

established AP stratification systems described above, 

several other biomarkers in APSAVE have also 

previously been proposed for AP classification. The 

blood level of alanine aminotransferase (ALT) has been 

shown to be highly positively predictive for gallbladder 

stone-caused AP [15], thus as a marker to classify AP 

into subtypes based on etiology. In our study, we found 

ALT level is higher on average in MAP than in SAP 

cases (Supplementary Figure 2), suggesting that 

etiology may be a factor in the severity of AP. 

 

Coagulation abnormalities, including intravascular 

thrombosis to disseminated intravascular coagulation 

(DIC) [18, 19], were caused by system inflammatory 

response syndrome (SIRS) during AP episodes (for 

review, see Kakafika et al. [20]). Indeed, prothrombin 

time was reported to be longer in AP cases, especially 

in SAP [18, 21]. Here, for the first time, we propose 

that additional coagulation-related metrics, such as 

plateletcrit and thrombin time, are also quantitative 

biomarkers to assess AP severity. We speculate that 

together with lymphocyte percentage, these 

biomarkers may monitor SIRS induced by pancreas 

damages. 

 

There are several limitations on APSAVE. First, it was 

developed using retrospective AP cases from a single 

hospital, which limits sizes of study cohorts, and their 

demographic and the behavioral diversity. Significant 

ethnical and/or regional differences in clinical AP cases’ 

etiology and epidemiology have been reported globally 

and within China [22–25], some of which may be 
attributed to risk factors such as genetics, environment and 

lifestyle (e.g., smoking, alcohol consumption, etc.), etc. 

Collaborations with additional hospitals on prospective 

patients are needed to further validate and refine APSAVE 

to improve its applicability on diverse populations. 

 

Additionally, while it has a higher sensitivity than the 

compared existing systems, APSAVE is admittedly less 

specific, which may lead to overtreatment of MAP 

cases. By analyzing false-positive cases classified by 

APSAVE (i.e., MAP cases mis-classified as SAP), we 

found that the false-positive cases as a group tend to be 

scored higher than the true-negative cases by APACHE-

II, BISAP or Ranson’s Criteria too (Man-Whitney test, 

p < 0.0001 for APACHE II and Ranson’s Criteria, and p 

= 0.0092 for BISAP, Supplementary Table 3 and 

Supplementary Figure 3). This indicates that broadly 

speaking, those false-positive cases are the more severe 

MAP cases. In addition, as to the false-positive outliers, 

we found that they have more similar test results as the 

true positives than the false-positive non-outliers do in 

majority of the 11 APSAVE tests (Supplementary 

Figure 4A, 4B), which suggested that those outliers, 

which were MAP cases, do have key clinical symptoms 

similar to genuine SAP cases. 

 

We further reviewed the comorbidities of the validation 

cohort, and found that the percentage of false-positive 

cases that also have SIRS is significantly higher than 

that of the true-positive cases (p < 0.0001, chi-square 

test). We speculate that SIRS may have been one of 

underlying pathologies that have caused those cases to 

be scored higher than average MAP cases, because 

SIRS not only enhances inflammatory responses, but 

also activates coagulation pathways, both of which 

increase APSAVE scores. 

 

The current numeric cutoff of APSAVE for SAP is set 

at 0.5 to balance both specificity and sensitivity. Indeed, 

when we increased the cutoff to 0.54, the APSAVE 

classified the validation cohort to a specificity of 80.3% 

and a sensitivity of 49.3%, which is comparable or even 

slightly better than APACHE-II or BISAP (date not 

shown), but the reduction of sensitivity from 78% to 

49% is substantial. Given the relatively small size of our 

single-center study cohort, the APSAVE’ cutoff value 

and the coefficients of its individual tests can and 

should be further optimized by applying it on 

substantially larger and more diverse cohorts of AP 

patients in future studies. 

 

In conclusion, we have demonstrated that APSAVE, an 

AP stratification system consisting of 11 venous-blood 

tests, has a high degree of accuracy, consistency, 

simplicity and applicability on predicting clinical SAP 

cases, and is highly sensitive to diagnose early-stage 
SAP cases. An integrated AP scoring system can be 

developed based on our model to improve the care and 

management of AP patients. 
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MATERIALS AND METHODS 
 

Study design and participants 

 

This was a retrospective study that was based on a case-

control design. Its participants were from AP patients 

prospectively recruited between July 2017 and April 

2019 by the Pancreatitis Unit of the First Affiliated 

Hospital of Wenzhou Medical University, a university-

affiliated tertiary-care public hospital. The study was 

preformed according to Standards for the Reporting of 

Diagnostic Accuracy Studies guidance for observational 

studies. The research protocol of the study was 

approved by the Ethics Committee of the First 

Affiliated Hospital of Wenzhou Medical University 

(2017-136) and written informed consent was obtained 

from each patient or their next of kin included in the 

study. The study was registered in Chinese Clinical 

Trial Registry (ChiCTR-DDD-17012200) 

 

AP was defined as two or more of the following 

conditions: characteristic abdominal pain; serum 

amylase and/or lipase levels three or more times of the 

upper limit of normal; and/or an imaging study 

(computed tomography (CT) or magnetic resonance 

imaging) demonstrating changes consistent with AP. 

Inclusion criteria were: the first episode of AP as 

defined by the revised Atlanta classification; 18 years 

and older; male or female; and availability of blood 

samples within 24 h of admission. Patients were 

excluded with following criteria: advanced pulmonary, 

cardiac, renal diseases (chronic kidney disease stage 4–

5), liver cirrhosis (Child–Pugh grade B-C) or 

malignancy; pregnancy; chronic pancreatitis or trauma 

as the etiology; nonpancreatic infection or sepsis caused 

by a second disease; the duration of abdominal pain 

before admission exceeds 24 h. The severity of AP was 

stratified as mild AP or moderately severe/severe AP 

according to revised 2012 Atlanta criteria [3]. 

 

The primary objective of this study was to identify 

predictive blood markers for SAP diagnosis and use 

them to establish an SAP classification system that was 

both accurate and applicable in a standard clinical 

setting. For this purpose, the new model was compared 

with the existing systems being run in clinics, including 

Ranson’s score, APACHE-II and BISAP. 

 

The demographic, clinical, and laboratory data of all 

patients with AP at the first day of admission was 

prospectively collected and maintained in an electronic 

database in accordance with the protocol for this study, 
including age, gender, vital signs, physical exam 

findings, and all available clinical test results. All clinical 

tests were performed according to standard protocols. 

AP classification modeling 

 

All recruited AP cases were filtered based on 

availability of test results, then divided into training and 

test sets for model building and validation, respectively. 

We first built an SAP prediction model with all 

available biomarkers using Random Forest algorithm. 

For the SAP model using only venous blood 

biomarkers, we implemented Recursive Feature 

Elimination algorithm (Python package “RFE”) to 

identify a preset number of tests whose results classified 

MAP and SAP samples with the highest accuracy in the 

training set, and further reduced the number of required 

tests until the AUC of classifying the training set  

began to decrease. We used Python package 

“LogisticRegression” to build the APSAVE prediction 

model. 

 

Validation 

 

To demonstrate the accuracy and robustness of 

APSAVE, we performed further validation on the 

validation set in a single-blinded manner, and compared 

its performance with three most widely used AP 

stratification systems: APACHE-II, BISAP and Ranson’ 

criteria. 

 

To test whether APSAVE can be further improved for 

accuracy, we integrated APSAVE with APACHE II, 

BISAP or Ranson’s criteria, respectively, to re-classify 

the validation set, and compared the SAP-prediction 

accuracy of the integrated systems with that by the 

parental systems alone. The codes for model building 

and validation were listed in. 

 

Abbreviations 
 

AP: acute pancreatitis; MAP: mild acute pancreatitis; 

SAP: severe acute pancreatitis. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 

 
Supplementary Figure 1. AUC curves of combinatorial models of APSAVE plus APACHE II, BISAP or Ranson’s criteria classifying AP cases of 

the validation cohort. 
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Supplementary Figure 2. Distributions of test results of the 11 biomarkers consisting the APSAVE model from the validation cohort are 

visualized in violin plots. 
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Supplementary Figure 3. False_neg cases (MAP cases mis-classified by APSAVE as SAP) were generally scored higher by either of the 3 

stratification systems than the Ture_neg cases (Man-Whitney test, p < 0.0001 for APACHE II and Ranson’s Criteria, and p = 0.0092 for BISAP). 
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Supplementary Figure 4A. The  case distributions of true negative, false-negative outliers, false-negative non-outliers, false-positive non-

outliers, false-positive outliers and true positive of 11 biomarkers in the APSAVE model. 
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Supplementary Figure 4B. The case distributions of true negative, false-negative outliers, false-negative non-outliers, false-positive non-

outliers, false-positive outliers and true positive of 11 biomarkers in the APSAVE model. 
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Supplementary Tables 

 

Supplementary Table 1. List of 93 biomarkers and vital signs which were measured/collected from AP patients of 
study cohorts used in this study. 

Biomarker Body fluid 

Body temperature Vital sign 

HCO3-（Bicarbonate） Arterial blood 

Blood pH 

Buffer base 

Arterial carbon dioxide partial pressure (PaCO2) 

Total carbon dioxide 

Fraction of inspiration Oxygen (FIO2) 

Hydrogen ion concentration 

Oxygen concentration 

Arterial oxygen partial pressure (PaO2) 

Arterial oxygen saturation (SaO2) 

pH (temperature) 

PO2 (temperature) 

Pulmonary arterial oxygen partial pressure 

Pulmonary arterial oxygen partial pressure differential 

Base Excess 

Standard bicarbonate 

Standard pH 

Crystal by IQ200 Urine 

Mucus by IQ200 

Squamous epithelia by IQ200 

Tube type by IQ200 

Urea creatinine ratio 

Urine amylase 

Urine Specific Gravity 

Urine pH 

White blood cell counts 

White blood cell counts by IQ200 

Activated partial thromboplastin Venous blood 

Alanine aminotransferase 

Albumin 

Albumin/globulin ratio 

Alanine aminotransferase / Aspertate aminotransferase ratio 

Apolipoprotein AI 

APTT ratio 

Aspartate aminotransferase 

Basophil (absolute count) 

Basophil (percentage) 
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Blood urea nitrogen  

Blood urea nitrogen (Emergency room measurement) 

Indirect bilirubin 

Total bilirubin 

C peptide level after fasting 

C reactive protein 

Total cholesterol 

Creatinine 

Creatinine (emergency room) 

Estimated glomerular filtration rate eGFR 

Eosinophil (absolute count) 

Eosinophil percentage 

Fibrinogen 

Globulin 

Glucose 

Glucose (Emergency room measurement) 

High density lipoprotein cholesterol 

Hematocrit 

Insulin during fasting 

Large platelet ratio 

Low density lipoprotein cholesterol 

Lipoprotein (a) 

Lymphocyte (absolute count) 

Lymphocyte (percentage) 

Mean hemoglobin 

Mean hemoglobin concentration 

Mean platelet volume 

Mean RBC volume 

Monocyte (absolute count) 

Monocytes (percentage) 

Neutrophil (absolute count) 

Neutrophil (percentage) 

Platelet 

Platelet distribution  

Plateletcrit 

Protein total 

Prothrombin activity 

Prothrombin time 

Red blood cell volume distribution  

Red blood cell volume distribution width 

Red blood cell 

Red blood cell by IQ200 

Serum amylase 

Serum amylase (Emergency room measurement) 
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Serum chloride 

Serum chloride (Emergency room measurement) 

Serum potassium 

Serum potassium (Emergency room measurement) 

Serum sodium 

Serum sodium (Emergency room measurement) 

Thrombin time 

Thrombin time ratio 

Triglyceride 

Uric acid 

 

Supplementary Table 2. 14 clinical tests were selected by RFE algorithm based on feature importance; 3 of them 
were further eliminated to obtain the minimal set of features while maintaining accuracy for classification. 

Clinical Test Selected by RFE Kept in APSAVE 

Mean hemoglobin Yes No 

Albumin globulin ratio Yes Yes 

Alanine aminotransferase Yes Yes 

Thrombin time ratio Yes Yes 

Plateletcrit Yes Yes 

Albumin Yes Yes 

Prothrombin time Yes Yes 

Creatinine Yes Yes 

Serum potassium Yes Yes 

Blood urea nitrogen (BUN) Yes Yes 

Prothrombin activity Yes No 

Mean hemoglobin concentration Yes No 

Triglyceride Yes Yes 

Lymph percentage Yes Yes 

 

Supplementary Table 3. Numbers of true negatives, false positives, true positives and false negatives predicted by 
APACHE II, BISAP, Ranson’s criteria, and APSAVE on validation cohort using RAC grades as the gold standard. 

 RAC APACHE II BISAP Ranson APSAVE  

Mild 406 341 331 332 251 True negative 

65 75 74 155 False positive 

Severe 162 68 65 91 127 True positive 

94 97 71 35 False negative 

 


