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ABSTRACT

Werner syndrame (WS),also known as adult progeria, is characterizedby acceleratedagingsymptomsfrom a
young age. Patientswith WS experiencepainful intractable skin ulcerswith calcificationsin their extremities.
subcutaneouslipoatrophy, and sarcopenia.However, there is no significant abnormality in the trunk skin.
where the subcutaneoudat relatively accumulates.The causeof suchdifferencesbetweenthe limbs and trunk
is unknown. Toinvestigatethe underlying mechanismbehind these phenomena,we establishedand analyzec
dermalfibroblasts from the foot and trunk of two WSpatients. Asaresult, WSfoot-derived fibroblasts showec
decreasedproliferative potential compared to that from the trunk, which correlated with the telomere
shortening. Transcriptomeanalysis showed increasedexpressionof genesinvolved in osteogenesisn the foot
fibroblasts, while adipogenic and chondrogenicgeneswere downregulated in comparisonwith the trunk.
Consistentwith these findings, the adipogenic and chondrogenicdifferentiation capacity was significantly
decreasedn the foot fibroblastsin vitro. Onthe other hand, the osteogenicpotential was mutually maintainec
and comparablein the foot and trunk fibroblasts. Thesedistinct phenotypesin the foot and trunk fibroblasts
are consistentwith the clinical symptomsof WSand may partially explain the underlying mechanismof this
diseasephenotype.
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INTRODUCTION

Werner syndrome (WS) is a rare autosomal recessive
premature aging disorder that begins at a young age
with graying and loss of hair and cataracts, followed by
accelerated aging symptoms such as diabetes,
atherosclerosis, and cancgti4]. The median life
expectancy is in the mifi0s, and most deaths are due to
arteriosclerosis and malignandp]. Owing to the
founder mutation, a high incidence of WS is observed in
Japar6, 7].

The causative gene is WRN, which is located on
chromosome 8 and is involved IDNA replication,
DNA repair, and telomere maintenand8]. WS
fibroblasts with deficient or dysfunctional WRN
proteins show premature cellular senesceimceitro

[9]. This phenotype is largely dependent on telomere
shortening and can be overcome by telcase
overexpressiofil0, 11]

WS mimics various symptoms of general aging.
However, there are also phenotypes specific to WS,
such as refractory skin ulcers with severe pain in the
extremities, which affect over 80% of patients and may
even result in lim amputatiof12]. Common sites for
ulceration are the heels, soles, toes, Achilles tendons,
and elbows. Painful subcutaneous calcification has been
reported to precede skin ulcels3]. The atrophy of
subcutaneous fat and muscle when present in the
extrenities resembles branches of dried trees, which is
diagnosed as sarcopenfé4]. In contrast, there is
an accumulation of subcutaneous fat in the triirk

16]. While the skin of the extremities, frequently
accompanied by ulcers, is atrophic and tighdt tf the
trunk retains its elasticity and does not develop ulcers.
The underlying mechanism behind these differences
remains unknown.

To clarify the relationship between the skin properties
and the high prevalence of skin ulcers in the extremities,
we esgablished fibroblasts from the skin of the trunk and
that of the foot from the vicinity of ulceration in two
WS patients.

RESULTS

Foot fibroblasts exhibited reduced proliferation
compared to the trunk fibroblasts in a telomere
dependent manner

In WS, te skin in the extremities atrophies and
hardens, and a skin ulcer develops, while there is no
obvious abnormality in the trunk skin. Therefore, plastic
surgery is often performed to graft skin from the trunk
to the ulcer site in order to treat the skioauk. In this

study, we established fibroblasts from the foot skin
(normal skin adjacent to the ulcer) and trunk skin (graft)
of two WS patients (WS1 and WS2) who were admitted
to our hospital for plastic surgery. We hypothesized that
the difference in ski symptoms between the limb and
trunk was related to a reduced proliferative capacity of
the limb fibroblasts compared to that of the trunk. As
expected, the proliferation rate of foot skierived
fibroblasts was lower than that of the trunk (Figure 1A).
In previous reports, the cause of the reduced
proliferative potential of WS fibroblasts was explained
by shortened telomere lengihO, 11] Consistent with
these reports, there was a significant difference in the
telomere lengths between the foot and krfibroblasts
(Figure 1B, 1C andSupplementary Figre 1). These
results suggest that the difference in proliferation ability
between skin fibroblasts of the foot and trunk is
dependent on the telomere length.

Foot and trunk fibroblasts in WS showed
differ ential expression of genes, especially those
involved in embryogenesis and differentiation

Next, transcriptome analysis was performed using RNA
sequences to characterize the gene expression profiles
of the foot and trunk fibroblasts. In the hierarchical
clustering analysis, the WS foot and trunk fibroblasts
were classified into different cluster beyond
individual differences (Supplementary kg 2A and
Supplementary Tablé&). The analysis of differentially
expressed genes (DEGs) was performed to identify
genes with more than-fId differences in expression,
and a total of 140 upegulated and 19 downregulated
genes were identified in the foot (ki@ 2A and
Supplementary Talde 2, 3). Enrichment analysis of
DEGs revealed that their pathways are mainly involved
in differentiation and embryogenesis (Figure 2B).
Among them, Homeobox Al1l3 (HOXA)3 was
explicitly expressed in the foot, while Homeobox B5
(HOXB5), Homeobox B6 (HOXB6), Homeobox B7
(HOXB7), and Homeobox D4 (HOXD4) expression
were specific to the trunk (Figure 2C), which is
consistent with the sispecific gene expression of
fibroblass from normal individuals in previous reports
[17, 18] Intriguingly, the foot fibroblasts showed an
elevated expression of genes that relate to the promotion
of osteogenesis and suppression of adipogenesis and
chondrogenesis, including Stathmin 2 (STMN2),
Copine 7 (CPNE7), Protein Tyrosine Phosphatase
Receptor Type B (PTPRB), Solute Carrier Family 2
Member 5 (SLC2A5), and HOXA Distal Transcript
Antisense RNA (HOTTIP) (Figure 2Cp19i23]. In
contrast, in the fibroblasts of the trunk, the expression
of the bllowing genes were increased; Clusterin (CLU),
Peroxisome Proliferatefctivated Receptor Gamma
(PPARG), InsulinLike Growth Factor 2 MRNA
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Binding Protein 3 (IGF2BP3), Cysteine Dioxygenase
Type 1 (CDO1), and Zinc Finger Protein, FOG Family
Member 2 (ZFPMR (Figure 2C), which are associated
with the promotion of adipogenesis or chondrogenesis
and suppression of osteogenefisli 29]. However,
regarding senescenessociated genes, no significant
differences were observed in the expression of Gyclin
DependentKinase Inhibitor 1A (CDKN1A, p21) and
Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A, p16)
(Supplementary Figure 2B)30, 31] These results
suggest that the foot and trunk fibroblasts in WS have
distinct gene expressions that regulate mesenchymal
lineage dfferentiation, but these differences are
independent of cellular senescence.
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Foot fibroblasts in WS were less capable of
adipogenesis compared with the trunk

WS patients present with subcutaneous lipoatrophy in
the extremities, Wile subcutaneous fat tends to
accumulate in the trunk. Several reports have previously
shown that human dermal fibroblasts can differentiate
into mesodermal lineagés vitro, including adipocytes
[32i 34]. Taken together with the above results, we
hypotheized that the adipogenesis potential is lower in
foot fibroblasts than in the trunk. Thus, we investigated
the adipogenic capacity of WS fibroblasts by culturing
them in the adipogenic differentiation medium. After
induction of adipogenesis, Oil red O igiag results
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Figure 1.Foot fibroblasts exhibited reduced proliferative capacity compared to that from the trunk in a telomere length
dependent manner.(A) Growth curves of the fibroblasts from the trunk and foot in two WS patieB)sT élomere length quantification

through QASH. Data are median values * interquartile range of each cell line. More than 150 cells for each cell line were amalyzed. Fo
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Figure 2. Transcriptome analysis showed distinct gene expression profiles between the trunk and foot fibrob{asts.
Heatmap of differentially expressed genes between the trunk and foot. Cutoff: |log2(Foot/Trunkgreel EDR < 0.05BJ List of the top
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showed foot fibroblasts with significantly fewer oil
droplets than the trunk (Figure 38B andSupplementary
Figure 3). In gene expression analysis by gRCR,
adipocyte marker genes, PPARG, Fatty Acid Binding
Protein 4 (FABP4), CCAAT Enhancer Binding Protein
Alpha (CEBPA), and Leptin (LEP) were significantly
decreased in the foot group compared with the trunk
(Figure 3C)[35]. These results indicate that the trunk
fibroblasts of WS maintain adipogenic capacity but the
foot fibroblasts do not.

Foot fibroblasts in WS exhibited an attenuated
capacity for chondrogenesis

Next, we performed chondrogenic differentiation to
confirm a disparity in chondrogenesis between the trunk
and foot fibroblasts. After the induction of
chondrogenesis using the pellet method, the spheroid

diameter was significantly smaller in theofdibroblasts
from WS1 than in the trunk group (Figure 4A, 4B). On
the other hand, WS2 foot fibroblasts failed to maintain
spheroid morphology (Supplementary Figure 4).
The chondrogenesis differentiation marker, SBXx
Transcription Factor 9 (SOX9), wasignificantly
decreased in the foot group, and this tendency was also
observed for Aggrecan (ACAN) (Figure 4[36]. These
results suggest that WS foot fibroblasts tend to have a
reduced capacity for chondrogenic differentiation
compared with the trunk.

Foot and trunk fibroblasts in WS were equally
capable of osteogenesis

Next, the osteogenic differentiation ability was
compared. After culturing in the osteogenesis medium,
no clear difference was observed in the Alizarin-red
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Figure 3. Adipogenesis was impaired in the foot fibroblagty. Representative images of Qil red O staining after two weeks induction
of adipogenesis in the trunk and foot fibroblasts of WS1. Bar 3u800B) Quantification of relative Oil red O staining area. Data are means
SEM of two patients from four microsdepviews. For statistical analysis, studeriest was performed (**p<0.01).(f Relative gene
expression analyzed by ¢fRCR. Data are meatisSEM of two patients with three technical replicates. For statistical analysis, stutisit t
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stained area between the trunk and foot groups (Figure
5A, 5B and Supplementary Figure 5). The expression of
Alkaline Phosphatase, Biomineralization Associated
(ALPL), a marker of osteogenesis, was significantly
elevated in the foot group (Figure 5C). On the other
hand, RUNX Family Transcription Factor 2 (RUNX2)
expression was significantly elevated in the trunk group,
and there were no significant differences in other
differentiation markers (Secreted Phosphoprotéin
SPP1; Collagen Type | Alpha 1 Chain, COL1Al)
(Figure 5C) [37]. These results suggest that foot

fibroblasts in WS maintain the equivalent level of
osteogenic differentiation capacity to the trunk.

DISCUSSION

This is the firstreport comparing the phenotypes of
dermal fibroblasts taken from different parts of the
body of the same WS patient. The WS foot fibroblasts
showed a reduced proliferative capacity with shorter
telomeres, in comparison to the trunk fibroblasts.
Transcriptane analysis showed increased gene
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Figure 4. Chondrogenesis tended to be reduced in the foot fibrobla@sRepresentative images of Alcian blue staining after two
weeks induction of chondrogenesis in the trunk and foot fibroblasts of WS1. Bar sB0@) Quantification of the diameter of
chondrogenic spheroids. W&Link, WS2trunk, and WSToot were included. Data are meaasSEM. For statistical analysis, studemedt
was performed (*p<0.05).J Relative gene expression analyzed by-BRR. Cta are meanst SEM of two patients with three technical
replicates. For statistical analysis, studeites$t was performed (ns, not significant; *p<0.05; **p<0.01).
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expression related to osteogenic differentiation in the
foot group and that of adipogenic and chondrogenic
differentiation in the trunk group. Indeedh vitro
induction of adipogenesis and chondrogenesis of the
foot fibroblasts showed significantly reduced
differentiation capacity compared with the trunk.
However, therewas no difference in osteogenic
capacity between the trunk and foot fibroblasts.

Previously, Rinn et al. conducted transcriptome
analyses among normal human fibroblasts taken from
different sites in the bodjl7, 18] Among the DEGs
between the extremite and trunk, the expression
distribution of HOX genes is consistent with cell

identified that HOXA13 was explicitly upegulated in
foot-derived fibroblasts, while the HOXB gene cluster
was trunkspecifc [17, 18} these data are consistent
with our results.

However, most of the genes we extracted through the
DEG analysis in this study did not show ssfecific
changes in the previous repdi3, 18] PPARG, which

we found to ke upregulated in the trunk fibroblasts of
the WS patients, is a master regulator of adipogenesis,
and its overexpression promotes adipose differentiation
[39]. In this study, the WS truntterived fibroblasts
showed higher PPARG expression than the-éeoted
ones, and there was a clear difference initheitro

migration during human developme38]. Rinn et al. adipose differentiation ability. These apparent
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discrepancies are reminiscent of WS phenotypes,
namely the trunk with relatively abundant subcutaneous
fat and the extremities with lipoatropH{5, 16] In
addition, althogh the anatomic origin of the fibroblast
is unclear, WRNdepleted fibroblasts exhibit
upregulation of PPAR®40]. Taken together with our
findings, these results suggest that the regulation of
PPARG gene expression in WRi¢pleted cells might

be contexdependent and that they can be dewn
regulated in the fibroblasts in the disease site. Further
research is needed to understand the mechanism of
downregulation of PPARG in WS foot fibroblasts
compared to the WS trurderived fibroblasts. In
addition, STMNZ2, amarker of osteogenesis, which is
up-regulated during the osteogenic induction of
mesenchymal stem cell$9], is the gene with the most
distinct regulation in this study: the expression was
overwhelmingly increased in the foot fibroblasts
compared with té trunk.

Honjo et al. reported that painful subcutaneous
calcification precedes skin ulcers in WS patidif3].
Patients with WS frequently suffer painful clavus and
callus on the feet, which leads to the development of
intractable skin ulcerd1, 12]. Ectopic soft tissue
calcification also occurs in the limbs of WS patients
[41]. Considering our findings that WS foot
fibroblasts have a diminished ability to differentiate
into adipocytes and chondrocytes while their
osteogenic differentiation capacity nmains fully
preserved, the ossification of fibroblasts in the dermal
and subcutaneous layers of the skin may result in
these symptoms. In addition, reversible direct
conversion of subcutaneous adipocytes into
fibroblasts, in vivo, has been reported42i 44].
Therefore, our results suggest the possibility that
subcutaneous lipoatrophy in WS extremities might
attribute to the inability of adipogenic differentiation
in fibroblasts in the disease site.

In this study, we revealed the distinct gene expression
profiles and phenotypes in WS dermal fibroblasts
derived from the foot and trunk. This study highlights
the relationship between fibroblast phenotypes and
WS-specific symptoms, refractory skin ulcers and
subcutaneous lipoatrophy in extremities. These results
could lead to a further u
mechanism and development of a new therapeutic
strategy in the future.

MATERIALS AND METHODS
Establishment of fibroblasts and cell culture

WS dermal fibroblasts were established from two WS
patiens (WS1 and WS2, Supplementary Teadh). Both

were hospitalized for treatment of their foot skin ulcers,
and the skin graft was taken from the trunk (groin). The
healthy skin neighboring the ulcer and the skin partly
taken from the graft were explanted into a dish as
previously described4d5]. Cell cdture was performed
with  DMEM (04330085, Wako, Osaka, Japan),
supplemented with 10% FBS (10270106, Gibco,
Waltham, MA, U.S.A), and antibiotantimycotic
(15240062, Gibco) in humidified 5% GQair. The
medium was changed every two days. When reaching
sub-confluency, cells were passaged at a 1:4 split ratio
until growth arrest and population doublings were
calculated.

in  situ

Telomere quantitative fluorescence

hybridization (Q-FISH)

Fibroblasts at PD10 were treated with the colcemid kit
(Chromocenter, Toto r i Japan) and
solution foll owing t he
fixed cells on coverslips were treated with ribonuclease
(31201931, Nippon Gene, Tokyo, Japan) and 0.005 %
pepsin (V1959, Promega, WI, U.S.), hybridized with
peptide ngleic acid oligonucleotide probes (F1002,
Panagene, Daejeon, South Korea), and imnrataimed
with Hoechst 33342 (H342, Dojindo, Kumamoto,
Japan), according t o t he
Images were recorded using a -BZ00 microscope
(Keyence, Osakaapan). Quantification was performed
using the Telometehftps://demarzolab.pathology.jhmi.
edu/telomete)/ as previously describgd6, 47]

Quantitative polymerase chain eaction (qPCR)

RNA was extracted and revessanscribed, as previously
described[48]. TagMan Gene Expression Assays for
PPARG (Hs01115513 m1), FABP4 (Hs01086177_m1),
CEBPA (Hs00269972_s1), LEP (Hs00174877_m1),
SOX9 (Hs00165814 m1), ACAN (Hs00153936_m1),
ALPL (Hs0102914 ml), SPP1 (Hs00959010 m1l),
RUNX2 (Hs01047973_m1), COL1Al (Hs00164004_
m1l), and B2M (Hs00187842_m1) were purchased from
Applied Biosystems (Waltham, MA, U.S.). Quantification
was performed with thel <1 Ct method using B2M as
an internacontrol.

mrikihdagetdifficnedtiatiory of t he
In vitro differentiation potentials of the fibroblasts into
three mesenchymal lineages were evaluated by
using adipogenesis, chondrogenesis, and osteogenesis
differentiation  kits (A1007001, A1007101, and
A1007201, respectively; Gibco) according to
manufacturer's protocols. Cells at PD 9 to 10 were used.
After two weeks of differentiation, cells were sampled
and stained. For each staining assay, Oil red O, Alcian

6660-TAFE2Y

ndopo

Il DLb D

ma n

di sease


https://demarzolab.pathology.jhmi.edu/telometer/
https://demarzolab.pathology.jhmi.edu/telometer/

blue, and Alizarin red staining (Sigp#ddrich, St.
Louis, MO, U.S.A) were used, respectively.
Quantification of the stains was performed using a BZ
X700 microscope (Keyence, Osaka, Japan).

Transcriptome analysis

MRNA was extracted from fibroblasts at PD 10 and the
cDNA library was synthesized using the NEBNext
Ultra RNA Library Prep Kit (E7370S, New England
BioLabs, Beverly, MA, U.S.A). Sequencing was carried
out (technically n=2 in each sample) bySEq1500
(lumina, San Diego, CA, U.S.A) with 60bp single
reads. The reference genome mapping (UCSC/hgl9)
was performed using TopHat (version 2.0.13; with
default parameters) with annotation data from
iGenomes (lllumina). Cuffdiff (Cufflinks version 2.2.1
with default parameters) was used to quantify the gene
expression levels. FPKM data were analyzed by iDEP
(http://bicinformatics.sdstate.edu/idg@s described by
the author$49].

Study approval

All experiments were approved by the institutional
review boards at the Chiba University Graduate School
of Medicine (Chiba, Japan). Written informed consent
was obtained from study participants beforee t
commencement of this research.
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SUPPLEMENTARY MATERIALS

Supplementary Figures

WS2-Trunk WS2-Foot

Telomere/Hoechst

Supplementary Figure Representative image of telomere-BISH of WSZBar = 10 um.

Supplementary Figure 2. Results of transcriptome analysis of the trunk and foot fibroblgsjs-Heatmap of the hierarchical
clustering analysisBf FPKM results dDKN1A (p21) and CDKN2A (p16). Data are means + SEM of two patients (technically n=2 in each
sample).
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