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INTRODUCTION 
 

Obesity is a state of excessive fat accumulation in the 

adipose tissue and is closely associated with many 

metabolic diseases such as dyslipidemia, insulin 

resistance, and T2DM [1, 2]. Interestingly, not all obese 

individuals are diagnosed with T2DM [3]. Most gene 

expression profiling studies have examined differences 

in adipose tissue gene expression between obese and 

lean individuals and found that obesity is accompanied 

by the upregulation of proinflammatory genes [4, 5]. 

However, these studies do not indicate that genes 

associated with obesity are necessarily associated with 

T2DM. In fact, there are some genes associated with 

both obesity and T2DM among obese individuals that 

increase the risk of T2DM. 

 

Adipocytes are the main constituent of adipose tissue 

and are considered an important bridge that link obesity 

and T2DM due to their strong secretory function [6, 7]. 

In adipocytes, many cytokines are synthesized, which 

are related to insulin-mediated processes, including lipid 

metabolism and glucose homeostasis [8]. An increase in 

these cytokines can impair insulin signaling in the 
adipocyte, leading to a decrease in insulin-mediated 

glucose uptake and lipid accumulation, and increase 

ectopic lipid accumulation [9], which eventually 

exacerbates insulin resistance and can even lead to 
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ABSTRACT 
 

The aim of the present study was to evaluate the involvement of CD52 in adipocytes as well as to explore its 
effect on type 2 diabetes mellitus (T2DM), and to improve our understanding of the potential molecular events 
of obesity with type 2 diabetes. Global changes in the CD52 expression patterns were detected in adipocytes and 
preadipocytes derived from obese and lean individuals. In particular, CD52 was identified as significantly 
differentially upregulated and was analyzed, both in vitro and in vivo, using various approaches. In vitro 
experiments, CD52 was a significantly up-regulated mRNA in mature adipocytes and preadipocytes. In addition, 
CD52 gradually increased with the differentiation of preadipocytes. In vivo experiments, the expression of CD52 
in high-fat diet (HFD) -fed mice tended to be higher than that in regular diet (RD) -fed mice. Further analysis 
showed that CD52 expression was positively correlated with Smad3 and TGF-β in mice, and the downregulation 
of CD52 was accompanied by increased glucose tolerance and insulin sensitivity. Moreover, a comparison of 
CD4+CD52high T cells and CD4+CD52low T cells showed that many T2DM-related genes were aberrantly expressed. 
Overall, CD52 may functioned as an important potential target for obesity with T2DM via TGF-β/Smad3 axis. 
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T2DM [10]. CD52 is a low-molecular weight 

glycoprotein consisting of 12 amino acids, with a 

glycosylphosphatidylinositol (GPI) anchored at its C-

terminus [11], found in abundance on a variety of 

lymphoid cells, especially B and T cells, and is 

expressed at very high density [12]. Because the GPI 

anchor is cleavable by phospholipases [13], CD52 can 

be detached from the cell surface and become soluble 

CD52 [14]. Although the function of soluble CD52 is 

uncertain, but it seems that CD52 may be involved in 

migration and activation of T-cells [15], leukemia [16] 

and autoimmune diseases [14]. Esther’s study not only 

showed that CD52high cells may protect humans and 

mice from autoimmune disease, but also indicates that 

transfer of lymphocyte populations depleted of CD52high 

cells resulted in a substantially accelerated onset of Type 

1 diabetes [14]. However, the roles of CD52 in T2DM is 

unclear. Interestingly, genomics studies indicate that 

CD52 is up-regulated in individuals with a phlegm-

dampness constitution, and they have a much higher risk 

of obesity, metabolic syndrome, hypertension, and 

diabetes [17]. However, phlegm-dampness constitution 

is a diagnosis given by traditional Chinese medicine to 

disease and does not accurately define obesity and 

T2DM. In addition, while the genome sequencing results 

come from blood, the expression level of CD52 in 

adipose tissue or adipocytes is unknown. 

 
In addition to adipocytes in adipose tissue, the remaining 

cellular components are preadipocytes at different stages 

and various immune cells such as macrophages, 

neutrophils, lymphocytes, and T cells, which also play a 

major role in obesity and diabetes [18]. CD4+CD52 T 

cells are components of a specialized population of 

Tregs with high expression of glycoprotein CD52 on the 

cell surface [14]. It has been reported that the release of 

CD52 from CD4+CD52high T cells can inhibit the 

activation of CD4+CD52low T cells, which induces these 

cells in a quiescent state [14, 19]. Because CD52 on the 

cell surface is down-regulated as resting CD4+ T 

lymphocytes are activated and is up-regulated after the 

induction of cell quiescence [20], the final result of 

CD52 inhibiting T cell activation is the conversion of 

CD4+ CD52low T cells into CD4+ CD52high T cells. For 

this reason, we suspect that there is a huge difference in 

gene expression between CD4+ CD52low T cells and 

CD4+ CD52high T cells, and this difference is likely to be 

related to insulin resistance and T2DM. 

 

In this study, we analyzed the expression profile of 

mature adipocytes from lean individuals, non-diabetic 

obese individuals, and obese individuals with T2DM. 

We found that the expression level of CD52 in mature 

adipocytes from obese individuals with T2DM was 

much higher than that of non-diabetic obese individuals, 

and the latter was higher when compared to lean 

individuals. In addition, CD52 in the preadipocytes of 

obese patients was also significantly higher than that in 

lean subjects, and with the differentiation of adipocytes, 

the CD52 expression level was increased. Further 

analysis revealed that the expression of CD52 is 

regulated by the TGF-β/Smad3 signaling pathway, and 

CD52 may promote the development of T2DM by 

inhibiting the activation of CD52low T cells. 

 

RESULTS 
 

Overexpression of CD52 in mature adipocytes of 

obese or diabetic patients 

 

Using public microarray datasets, we studied the 

expression profiles of mRNA in mature adipocytes. In 

non-diabetic individuals, we identified 1131, 341, and 

296 significantly differentially expressed mRNAs 

between obese and lean subjects in GSE133099, 

GSE2508 (GPL8300), and GSE2508 (GPL91), 

respectively. In obese individuals (GSE133099), we 

identified 283 significantly differentially expressed 

mRNAs between diabetic and non-diabetic individuals. 

In the four pairs, a total of 3 mRNAs were both 

significantly differentially expressed (Figure 1A). Of 

these, CD52 and COL1A2 were the most up-regulated 

mRNAs (Figure 1B). 

 

Time-course of CD52 changes in adipocytes during 

differentiation 

 

To assess CD52 expression changes during adipocyte 

differentiation, we first analyzed whether CD52 was up-

regulated in the preadipocytes of obese individuals. After 

comparing the preadipocyte samples, it was determined 

that CD52 was highly expressed in obese individuals 

(Figure 2A, P = 0.0245, 14 obese vs 14 lean, GSE2510). 

Additionally, CD52 mRNA expression was also 

consistently up-regulated during the development of 

adipocyte differentiation over a 12-day period (Figure 

2B, GSE41352). To further evaluate the expression level 

of CD52 in the preadipocytes and its change during 

differentiation, qRT-PCR and western blot experiments 

were carried out. The results showed that CD52 

expression levels were found to be significantly up-

regulated in the preadipocytes of 3 obese patients without 

diabetes relative to 3 lean controls (Figure 2C, 2D). Also, 

there was a significant up-regulated in adipocytes during 

differentiation (Figure 2E, 2F). 

 

Associations between CD52 expression and the TGF- 

β/Smad3 signaling pathway 

 

To further explore CD52 in preadipocytes, CD52 

expression was examined from preadipocytes of 3 mice 

fed regular diet (RD) and 3 mice fed high-fat diet (HFD) 
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using qRT-PCR and western blot. And significantly 

increased expression of CD52 was observed in 

preadipocytes of mice fed high-fat diet (HFD) (Figure 

3A, 3B). Previous studies have shown that TGF-

β/Smad3 plays an important role in promoting diet-

induced diabetes [21, 22]. To further investigate whether 

CD52 is the transcriptional regulatory target of the TGF-

β/Smad3 signaling pathway, a microarray of white 

adipose tissue (WAT) isolated from Smad3+/+ mice 

(WT) and Smad3−/− mice (KO) fed either a regular diet 

(RD) or a high-fat diet (HFD) was analyzed (based data 

in GSE28598). The results showed that regardless of 

whether the sample originated from the WT group or the 

KO group, the expression of CD52 in HFD-fed mice 

tended to be higher than that in RD-fed mice (Figure 3C, 

P = 4.78E-07, WT-HFD vs WT-RD; P = 2.57E-04, KO-

HFD vs KO-RD, GSE28598). Moreover, in the HFD 

group, the expression of CD52 in WT mice tended to be 

higher than that in KO mice (Figure 3C, P = 2.65E-05, 

WT-HFD vs KO-HFD, GSE28598). In addition, in the 

microarray analyses of WAT from diet-induced obese 

(DIO) mice, we observed significantly increased 

expression of CD52 in mice treated with IgG, as 

compared to mice treated with anti-TGF-β antibody 

(1D11) (Figure 3D, P = 1.69E-06, GSE28598). The 

studies thus far indicated a beneficial effect of 

suppressing TGF-β/Smad3 signals on glucose tolerance. 

To examine these findings, we also observed the 

expression of typical genes that are beneficial to 

improving insulin resistance, i.e., PGC-1α [23], PGC-1β 

[24], DIO2 [25], UCP1 [26], and PRARγ [27]. Our 

results showed increased mRNA expression of these 

genes in the group with low expression of CD52 

(Supplementary Figure 1, GSE28598). 

Comparison of CD4+CD52high T cells and 

CD4+CD52low T cells 

 

Considering the elevated levels of CD52 expression in 

the adipocytes of obese and obese T2DM patients, it is 

likely that this may lead to an increase in the ratio of 

CD4+CD52high T cells to CD4+CD52low T cells, thereby 

promoting the development of diabetes. To further 

confirm whether CD52 is involved in the pathogenesis 

of diabetes, we performed microarray analyses of 

CD4+CD52high T cells and CD4+CD52low T cells based 

on GSE94815. Compared to CD4+CD52low T cells, 222 

genes were up-regulated and 177 genes were down-

regulated (P <0.05 and FC ≥ 2 or FC ≤ 1/2,). These 

aberrant genes are presented as an expression of 

heatmap and volcano plot (Figure 4A, 4B). 

 

WGCNA 

 

We used the expression profiles of 1002 significantly 

differently expressed mRNAs (P < 0.05) in GSE94815 

to construct a coexpression network with the WGCNA 

software package in R software. In the coexpression 

network analysis, the β values were 24 (Figure 5A). The 

results of screening module and gene clustering are 

shown in Figure 5B. The clustering relationship 

between the WGCNA module and the module and the 

correlation coefficient distribution between the module 

and the gene expression within the module are shown in 

Supplementary Figure 2. Figure 5C shows the TOM 

diagram of gene clustering and module relationship in 

each module of WGCNA. The relationship between 

intra-module connectivity and gene significance in each 

module of WGCNA is shown in Figure 5D, and it is 

 

 
 

Figure 1. Identification of differentially expressed genes in mature adipocytes. (A) Venn diagram of the differentially expressed 

genes in 4 pairs group. (B) There are three genes that are significantly differentially expressed in all four groups, and the number in the 
rectangle represents logFC. 
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obvious that the darkgreen module is the most significant. 

Ultimately, we obtained 6 modules in the coexpression 

network of mRNAs (Figure 5E). Moreover, we calculated 

and plotted the relationship between each module  

and clinical features. However, as shown in Figure 5F, 

there is a significant positive correlation between the 

darkgreen module and CD52 characteristics (module-

feature weighted correlation = 0.90, P = 9.6E-191). 

 

 
 

Figure 2. Characterization of CD52 in preadipocytes and the process of adipocyte differentiation. (A) The expression levels of 

CD52 in preadipocyte by microarray analysis. (B) The expression levels of CD52 during preadipocytes differentiation by microarray analysis. 
(C, D) The expression levels of CD52 in preadipocyte between three obese people and three lean people by Real-time RT-PCR and western 
blot analysis. (E, F) The expression levels of CD52 during preadipocytes differentiation by Real-time RT-PCR and western blot analysis. 
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Figure 3. Anti-TGF-β/Smad3−/− mediated CD52 downregulation counteracts HFD-induced obesity and insulin resistance.  
(A, B) The expression levels of CD52 in preadipocytes from RD-fed or HFD-fed mice by Real-time RT-PCR and western blot analysis. (C) The 
expression levels of CD52 in WAT from RD-fed or HFD-fed KO mice and WT mice, and the expression levels of CD52 in WAT from HFD-fed KO 
mice and HFD-fed WT mice by microarray analysis. (D) The expression levels of CD52 in WAT from HFD-fed mice treated with anti-TGF-β 
antibody (1D11) and HFD-fed mice treated with control IgG by microarray analysis. 
 

 
 

Figure 4. Identification of differentially expressed mRNAs in different CD4+ T cells. (A) Clustered heat map of the differentially 
expressed mRNAs between CD52high T cells CD52 low T cells. up-regulated mRNAs are shown in red, and down-regulated mRNAs are shown in 
blue. (B) Volcano plots comparing the expression of mRNAs in between CD52high T cells CD52 low T cells. The red dots represent the 
significantly up-regulated differentially expressed mRNAs (fold-change ≥ 2 and P < 0.05), the blue dots represent the significantly down-
regulated differentially expressed mRNAs (fold-change ≤ -2 and P < 0.05). 
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Figure 5. WGCNA. (A) Analysis of the scale-free topology model fit index for various soft-thresholding powers (β) and the mean 

connectivity for various soft-thresholding powers. Overall, 24 was the best fitting power value. (B) Dendrogram of the gene modules based 
on a dissimilarity measure. The branches of the cluster dendrogram correspond to the different gene modules. Each piece of the leaves on 
the cluster dendrogram corresponds to a gene. (C) TOM Diagram of Gene clustering and Module relationship in each Module of WGCNA. (D) 
The relationship between intra-module connectivity and gene significance in each module of WGCNA. (E) Module-trait relationships. 
Heatmap of the correlation between module eigengenes and expression of CD52. (F) The relationship between each module and clinical 
features. The horizontal axis represents the correlation coefficient between gene expression and module, and the vertical axis represents the 
correlation coefficient between gene expression and phenotype. 
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Functional enrichment analysis 

 

Differentially expressed gene functions and pathways, 

acting as important functional units of gene groups, play 

key biological roles in the development and progression 

processes of many diseases. Thus, we analyzed pathway 

enrichment and functions using the 525 genes in the 

darkgreen module in WGCNA. The results indicated that 

the enriched biological processes mainly involved 

response to insulin, response to peptide hormone, glucose 

metabolic process, cellular response to insulin stimulus 

and so on (Figure 6A). The cell components that were 

correlated with the resulting terms included transferase 

complex, transferring phosphorus−containing groups, 

membrane raft, membrane microdomain, membrane 

region and so on (Figure 6B). The results also showed 

that the molecular functions were related to protein 

serine/threonine kinase activity, phosphoric ester 

hydrolase activity, phosphatase activity, transferase 

activity, transferring glycosyl groups, phosphoprotein 

phosphatase activity and so on (Figure 6C). KEGG 

pathway analysis showed that these genes were mainly 

enriched in Insulin resistance, Insulin signaling pathway, 

AMPK signaling pathway, and PI3K−Akt signaling 

pathway (Figure 6D). 

 

These functions and pathways were consistent with our 

known understanding regarding T2DM and might 

further explain the involvement between CD52 and the 

pathogenesis of T2DM. 

 

PPI network and hub gene 

 

After PPI network analysis of 525 genes in the 

darkgreen module of WGCNA, we obtained a network 

diagram containing all the interacting proteins 

(Supplementary Figure 3). In the analysis of hub gene 

network, we extracted the first 35 gene with the highest 

network connectivity (Figure 7). Interestingly, 20 of 

these gene are closely related to the occurrence and 

 

 
 

Figure 6. GO and KEGG pathway enrichment of genes in the darkgreen module. (A) Biological process; (B) cellular component; (C) 

molecular function; (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 
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development of diabetes. Among the 20 molecules, the 

up-regulated (P <0.05 and FC ≥ 2) genes included: (1) 

genes involved in insulin resistance such as APOC3 

[28], PPARD [29], CASP9 [30], and CBR3 [31]; (2) 

risk loci for type 2 diabetes such as MTHFR [32] and 

CDKN2B [33]; (3) genes correlated with complications 

of T2DM; for instance, casp-9, which mediates high-

glucose-induced diabetic neuropathies [34]; EBF1, 

which is a cardiovascular and metabolic risk gene [35]; 

and APOM, which is associated with lipid disturbances 

and rheumatoid arthritis [36]; (4) BCL11A, which is a 

candidate regulator of pancreatic endocrine cells, 

downregulates target genes Ins2, glucagon, and Ppy 

[37]. The down-regulated genes (P <0.05 and FC ≤ 0.5) 

included: (1) genes modulating the lipolytic program 

and promoting brown adipose tissue function, such as 

JAK2 [38]; (2) genes downregulating insulin resistance, 

such as PCNT [39], RAP2A [40], AQP9 [41], MCL1 

[42], AGTRAP [43], TF [44] and FASLG [45]; and (3) 

TCF7L2, which plays an important role in glucose 

homeostasis [46]; (4)Human GDPD5 restores insulin 

expression in Gdpd5a-depleted zebrafish embryos [47]. 

These up-regulated genes and down-regulated genes are 

respectively presented in Supplementary Tables 1, 2. 

 

DISCUSSION 
 

Obesity is significantly closely associated with T2DM, 

which is characterized by a decreased response to 

insulin signaling in several types of peripheral tissues, 

including adipose, liver, and muscle [48]. However, not 

all obese patients have T2DM [49] and many non-obese 

patients do [50]. This suggests that there may be some 

genes that are related to both obesity and T2DM. These 

genes probably cause type 2 diabetes on the basis of 

obesity. In order to identify these genes, we performed 

microarray analyses of mature adipocytes between 

obese and lean individuals, and mature adipocytes 

between obese patients and obese T2DM patients. 

Finally, we selected the intersection of the two 

differentially expressed genes that were most relevant to 

obesity and diabetes. After focusing on only the most 

profoundly up-regulated and the most profoundly down-

regulated genes known to affect these two conditions, 

CD52 was identified, and this has never been reported 

in adipocytes. 

 

Cluster of differentiation (CD) Ags are cell surface 

molecules expressed on leukocytes and other cells 

involved in the immune system. They are commonly 

used as cell markers, allowing for the identification and 

isolation of leukocyte populations and subsets [51]. 

CD52 is a newly discovered leukocyte differentiation 

antigen. It was first found in humans as expressed on 

the surface of lymphocytes, monocytes, and eosinophils 

[52]. Previous studies have shown that CD52 in blood is 

correlated with T2DM and obesity [17]. However, to 

our knowledge, there are no reports on CD52 involved 

 

 
 

Figure 7. Hub gene network. The figure contains the first 35 gene with the highest network connectivity. The darker the color, the higher 

the connection. 
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in obesity and T2DM in adipocytes. Our study found 

that the level of expression of CD52 in adipocytes from 

obese patients was higher than in adipocytes from lean 

people. Obese patients with T2DM also showed a 

higher level of CD52 than obese non-diabetic patients. 

All of these results further indicate that CD52 has 

important value for the study of obesity combined with 

T2DM. 

 

Preadipocytes and mature adipocytes are the two main 

populations studied in the adipocyte differentiation 

process. It has been reported that preadipocytes and 

mature adipocytes assume different functions during the 

differentiation process [53]. Various investigators have 

also shown that preadipocytes and mature adipocytes 

have different gene transcription levels [54]. Our data 

clearly show that CD52 in preadipocytes differed 

significantly between obese patients and lean people, 

and the level of expression of CD52 gradually increased 

with the differentiation of preadipocytes. During the 

differentiation of preadipocytes, the lipolytic capacity of 

adipocytes was significantly reduced, while the lipid 

synthesis capacity increased [55, 56]. Adiposome-

derived GPI proteins within the adipocytes were found 

to mediate the inhibition of lipolysis [57]. Because it is 

a GPI protein, the elevation of CD52 at the terminal 

differentiation stage is also likely related to lipolysis. If 

adipocytes are unable to carry excess energy, the 

calories are stored in the liver, muscles, and blood, and 

insulin resistance and T2DM ultimately result [55]. 

 

Transforming growth factor beta (TGF-β) is a 

multifunctional growth factor that plays important roles 

in cell growth and differentiation, extracellular matrix 

deposition, cell adhesion, and immunomodulation [58]. 

It has been reported that appropriate TGF-β suppression 

may have therapeutic value for diabetic patients who are 

also obese [22]. Furthermore, some studies also showed 

that TGF-β can regulate cluster of differentiation (CD) 

expression [59]. TGF-β exerts its biological functions 

mainly through its downstream signaling molecules, 

such as Smads [60]. For this purpose, we examined the 

expression of CD52 in the adipose tissue of genetically 

obese mice (ob/ob mice), TGF-β-deficient mice, and 

Smad3 knockout (KO) mice based on GSE28598. The 

results show that Smad3 deletion and anti-TGF-

βantibody each reduced CD52 expression. In addition, as 

previously reported, some genes beneficial to glucose 

tolerance were up-regulated in the group with low 

expression of CD52, suggesting that high expression of 

CD52 is associated with insulin resistance. Smad3-/-

mice (KO) exhibited more insulin sensitivity than 

Smad3+/+ mice (WT), as evidenced by elevated glucose 
infusion rate and increased whole-body glucose uptake, 

during a hyperinsulinemic-euglycemic clamp experiment 

[22]. When challenged with a high-fat diet (HFD), 

Smad3-/-mice (KO) exhibited enhanced glucose 

tolerance and insulin sensitivity, leading to lower fasting 

blood glucose and insulin levels [22]. Compared to 

animals treated with the isotype control 13C4 antibody 

(IgG), mice treated with anti-TGF-β (α-TGF-β) antibody 

had significantly lower fasting blood glucose and fasting 

insulin levels [22]. These results offer insight into the 

role of CD52 in adipose tissue biology, specifically with 

regard to a strong potential for translation of these 

observations for the treatment of obesity and diabetes. 

 

CD52 on the cell surface and soluble CD52 appear to 

have different mechanisms [15]. Cross-linkage of CD52 

molecules by an as-yet unidentified endogenous ligand 

that is mimicked by a bivalent anti-CD52 antibody 

results in the expansion of CD52-expressing T cells [15]. 

Soluble CD52 released from the cell surface of 

CD4+CD52high T cells results in inhibition of the 

proliferation of CD4+CD52low T cells by preventing the 

activation of these cells [14, 15]. Thus, elevation of 

soluble CD52 can cause an imbalance in the ratio of 

CD4+ CD52low T cells to CD4+ CD52high T cells, and it 

ultimately results in an increase in the number of CD4+ 

CD52high T cells. After comparing CD4+CD52high T cells 

to CD4+CD52low T cells, we found many aberrantly 

expressed genes, some of which were up-regulated and 

found to play a role in promoting the development of 

T2DM, and some of which were down-regulated and act 

to protect against T2DM. The consistency in the role 

CD52 played with these aberrantly expressed genes in 

T2DM could also be seen in the functions and pathway 

enrichment. These results suggest that the effect of 

CD52 on T cells may be an important mechanism 

underlying its impact on T2DM. 

 

In summary, our study provides a potential gene target 

for adipocytes that promote T2DM. High expression of 

CD52 in adipocytes may be an adverse biomarker for 

obesity and T2DM. Functionally, CD52 is involved in 

adipocyte differentiation and the TGF-/Smad3 signaling 

pathway and influences CD4+CD52low T cells. Taken 

together, our results complement the role of CD52 in 

obesity and metabolic diseases and offers a unique 

opportunity for the treatment of T2DM. 

 

MATERIALS AND METHODS 
 

Clinical samples 

 

Adipose tissue samples were prospectively collected 

from 3 patients undergoing laparoscopic hernia repair [in 

lean (Ln) volunteers] and 3 patients undergoing bariatric 

surgery [in obese (Ob) subjects] at the Third People’s 

Hospital of Chengdu, China between June 2018 and July 

2019. The specimens were frozen with liquid nitrogen 

immediately after removal and transferred to the −80° C 
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refrigerator. According to the China National Nutrition 

and Health Survey (CNNHS) data, a BMI of ≥28 kg/m2 

in Chinese adults suggests obesity [61]. This study was 

approved by the Institutional Ethics Review Board of the 

Third People’s Hospital of Chengdu (record #: 2018S75; 

Chengdu, Sichuan, China), and was conducted in 

accordance with the Chinese ethical guidelines for 

human genome/gene research. 

 

Preadipocyte isolation 

 

Preadipocytes from visceral adipose tissue (VAT) were 

isolated and cultured following standard protocols [62]. 

In brief, VAT was digested with collagenase to obtain 

stromal cells. Stromal cells were separated from mature 

adipocytes by centrifugation and then incubated in 

erythrocyte lysis buffer for 10 min at room temperature 

to eliminate red blood cells. The remaining debris was 

removed by filtering the cell suspension through a 70-

μm nylon filter and centrifuging the filtrate. Pelleted 

preadipocytes were plated in basal medium consisting 

of DMEM/F-12 (Gibco, Carlsbad, CA) supplemented 

with 10% fetal calf serum (FCS) and incubated for 16–

18 h. After incubation, attached cells were washed 

thoroughly with warm PBS, removed from plates with 

trypsin, resuspended, and counted. 

 

Animals [63] 

 

C57BL/6J mice (9-weeks-old) were kept in a pathogen-

free facility and maintained under a 12 h light–dark 

cycle at 22° C. 3 mice were fed ad libitum with a high-

fat diet (HFD; TD88137 Harlan Teklad) and 3 mice 

were fed ad libitum with a regular diet (RD). VAT were 

excised and isolation of preadipocytes [63]. Animal care 

and experimental procedures were approved by the 

Ethics Committee in Animal Experimentation of West 

China Hospital, Sichuan University, Chengdu, China 

(record #: 2019014A). 

 

In the GEO database GSE28598 data set, Smad3+/+ mice 

(WT) and Smad3−/− mice (KO) were fed with a regular 

diet (RD) or 55% high fat diet (HFD) for 8 weeks. Diet-

induced obese (DIO) mice were intraperitoneally injected 

with 1.5 mg/kg body weight of control 13C4 antibody 

(IgG) or anti-TGF-β antibody (1D11) three times a week 

for 8 weeks [22]. 

 

Cell culture and differentiation 

 

Preadipocytes were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM)/Nutrient Mix F12 (Gibco) 

containing 8 mg/l biotin, 4 mg/l pantothenate, 0.1 mg/mg 
streptomycin and 100 U/ml penicillin (OF medium) 

supplemented with 10% FBS in a humidified 

95%air/5%CO2 incubator. The cells were seeded into 

culture medium flasks or plates, which were coated with 

a solution of 10 microL/ml fibronectin and 0.05% 

gelatine in phosphate-buffered saline. Confluent cells 

were cultured in serum-free OF medium for 2 days 

followed by stimulation to differentiate with OF media 

supplemented with 0.01 mg/ml human transferrin, 200 

nM T3, 100 nM cortisol, 20 nM insulin, 500 microM 

IBMX and 100 nM rosiglitazone (Cayman Chemicals). 

After day 4, the differentiating cells were kept in OF 

media supplemented with 0.01 mg/ml human transferrin, 

100 nM cortisol and 20 nM insulin. Preadipocytes 

differentiate within 10–12 days as determined by 

microscopic analysis. RNA samples were collected at 0, 

4, 8 and 12 h and on days 1, 3 and 12 of differentiation 

[63]. The expression levels of C/EBP-α and PPAR-γ, 

which are biomarkers of preadipocyte differentiation [62]. 

 

Microarray and sequencing data analyses 

 

Several previously published datasets were used for  

gene expression profiles, including GSE133099, 

GSE2510, GSE2508, GSE41352, GSE28598, and 

GSE94815, all of which can be obtained from the NCBI-

GEO (https://www.ncbi.nlm.nih.gov/gds/) database. 

Microarray expression profiles were obtained by Illumina 

HiSeq 2500 (Homo sapiens), Affymetrix Human 

Genome U133A, Illumina HumanHT-12 V3.0 expression 

beadchip, Affymetrix Mouse Genome 430 2.0, and 

Agilent-039494 SurePrint G3 Human GE v2 8x60K 

Microarray 039381. All of the design, quality control, 

and data normalization for all experiments was in 

accordance with the standard protocols. 

 

Western blot analysis 

 

Proteins were extracted from cultured cells or adipose 

tissue using RIPA lysis buffer. The protein 

concentration was determined with a bicinchoninic acid 

protein assay kit (Sigma). Proteins were separated by 

12% SDS-PAGE and transferred to PVDF membranes. 

After blocking for 1 h, the membranes were incubated 

with primary antibody at 4C overnight. Membranes 

were incubated with the appropriate HRP-conjugated 

secondary antibody at room temperature for 2 h. The 

immunoreactive bands were visualized using ECL and 

normalized to GAPDH (the internal control). 

 

Real-time RT-PCR 

 

Total RNAs were reverse transcribed to complementary 

cDNA using Transcriptor First Strand cDNA Synthesis 

Kit (Roche, Penzberg, Germany), following the 

manufacturer’s instructions. Quantitative gene 
expression was measured by real-time RT-PCR using 

the FastStart Essential DNA Green Master Mmix 

(Roche, Penzberg, Germany) on a Roche LightCycler 

https://www.ncbi.nlm.nih.gov/gds/
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480 (Roche, Penzberg, Germany). RNA expression was 

normalized to GAPDH expression. All quantitative 

PCRs were conducted in triplicate. The sequence of 

primers is shown in Supplementary Table 3. 

 

Microarray analysis 

 

Differentially expressed RNAs were identified by the 

edgeR [64] package in R software. Significantly 

expressed RNAs were identified by setting the adjusted 

P value to < 0.05 and the |log2FC (fold change) | > 

1(|log2FC > 1| and adjusted FDR < 0.05). GO and 

KEGG analyses were realized through the org.Hs.eg.db 

package and clusterProfiler in R software. GO consists 

of three terms: biological process (BP), molecular 

function (MF), and cellular composition (CC). All 

important GO terms and KEGG pathways were filtered 

according to a P < 0.05 and at least two associated 

mRNAs. 

 

Construction of the weighted gene coexpression 

network 

 

The WGCNA [65] package implemented in R software 

was used to build a gene coexpression network based on 

the gene expression characteristics. A scale-free plot 

was used to evaluate whether the network exhibited 

scale-free topology. The power value of the soft 

threshold of the adjacency matrix met the scale-free 

topology criterion. On this basis, we built a scale- 

free network and topological overlap matrix (TOM). 

The dynamic tree cutting method was used to generate 

modules with the following main parameters: deepSplit 

of 2 and min module size of 10. The height cut-off was 

set to 0.25, and if the module’s similarity was > 0.8, the 

modules were merged. Based on Pearson’s tests, we 

further determined the association between module 

eigengenes (MEs) and external clinical information, 

including sample status. If the P-value was < 0.05 and 

the correlation coefficient was > 0.9, it was considered a 

significant correlation. 

 

Protein protein interaction (PPI) network 

 

All the genes in the module most positively related to 

CD52 expression in WGCNA analysis were analyzed 

by PPI through STRING website (https://string-

db.org/). Finally, visualization and hub network analysis 

are carried out with Cytoscape (version 3.7.2) [66]. 

 

Statistical analyses [67] 

 

All statistical analyses were performed with R (version 
3.6.3) and SPSS v26.0 (SPSS Inc, Chicago, IL). 

Statistical significance between groups was determined 

using two tailed Student s t test. P value of <0.05 was 

considered statistically significant and all tests were two 

sided. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. The expression of typical genes that are beneficial to improving insulin resistance. (A) The expression 

of PGC-1α, PGC-1β, DIO2, UCP1, and PRARγ between KO-HFD and WT-HFD group. (B) The expression of PGC-1α, PGC-1β, DIO2, UCP1, and 
PRARγ between KO-RD and WT-RD group. (C) The expression of PGC-1α, PGC-1β, DIO2, UCP1, and PRARγ between anti-TCGA-β and IgG 
group. 
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Supplementary Figure 2. The clustering relationship between the WGCNA module and the module (A) and the correlation coefficient 
distribution between the module and the gene expression within the module (B). 
 

 
 

Supplementary Figure 3. PPI network. 
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Supplementary Tables 
 

 

Supplementary Table 1. The up-regulated genes associated with T2DM. 

Genes Fold -change P-value 

EBF1 1.72 0.002 

BCL11A 1.69 0.001 

CBR3 1.62 0.021 

CDKN2B 1.41 0.013 

APOM 1.87 0.033 

APOC3 1.95 0.005 

MTHFR 1.84 0.013 

casp-9 1.02 0.041 

PPARD 1.34 0.022 

CASP9 1.32 0.018 

 

Supplementary Table 2. The down-regulated genes associated with T2DM. 

Genes Fold -change  P-value 

JAK2 -1.29 0.016 

AQP9 -1.64 0.001 

GDPD5 -2.05 0.004 

FASLG -2.81 0.035 

TCF7L2 -1.30 0.016 

PCNT -1.83 0.002 

RAP2A -2.03 0.027 

MCL1 -1.79 0.003 

AGTRAP -1.33 0.018 

TF -1.75 0.001 

 

Supplementary Table 3. Primer sequences for qRT-PCR. 

Gene name Forward primer Reverse primer bp 

CD52 5'- CTGCCCTTACCAGAGCTGAAA-3' 5'-TCCTTTCCAGCTGTCCCTAGA-3' 64 

GAPDH 5'- GAAAGCCTGCCGGTGACTAA -3' 3'- GCCCAATACGACCAAATCAGAG -5' 150 

qRT-PCR, quantitative real-time polymerase chain reaction. 


