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INTRODUCTION 
 

Idiopathic pulmonary fibrosis (IPF) is a chronic lung 

disease characterized by progressive pulmonary 

interstitial fibrosis and lung dysfunction. IPF patients 

usually show a poor prognosis with an average survival 

time of 3–5 years [1], and the specific etiology and 

pathogenesis of IPF remain unclear.  
 

N6-methyladenosine (m6A) is the most abundant mRNA 

modification in mammalian cells. There are three types 

of proteins that regulate m6A: 1) “writers,” including 

methyltransferase-like 3 (METTL3), METTL14, Wilms 

tumor 1-associated protein, and KIAA1429; 2) “easers,” 

including fat mass and obesity-associated protein and 

alkB homologue 5; and 3) “readers,” including 

members of the YT521-B homology domain-containing 

protein and the heterogeneous nuclear ribonucleoprotein 

families [2]. Recent studies have suggested that m6A is 

involved in the regulation of numerous physiological 

processes, including cell differentiation, tumorigenesis, 

and viral immunity [3–5]. In addition, studies have 

shown that it could serve as a potential prognostic 

predictor for cancer patients [6, 7]. Another study also 

demonstrated that m6A modification of pri-miRNA-126 

could activate the PI3K/AKT/mTOR pathway, 

contributing to pulmonary fibrosis in mice [8]. 

 

Since late 2019, a novel highly transmissible corona-

virus, which was later defined as severe acute 
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ABSTRACT 
 

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with a poor prognosis. The current 
coronavirus disease 2019 (COVID-19) shares some similarities with IPF. SARS-CoV-2 related genes have been 
reported to be broadly regulated by N6-methyladenosine (m6A) RNA modification. Here, we identified the 
association between m6A methylation regulators, COVID-19 infection pathways, and immune responses in IPF. The 
characteristic gene expression networks and immune infiltration patterns of m6A-SARS-CoV-2 related genes in 
different tissues of IPF were revealed. We subsequently evaluated the influence of these related gene expression 
patterns and immune infiltration patterns on the prognosis/lung function of IPF patients. The IPF cohort was 
obtained from the Gene Expression Omnibus dataset. Pearson correlation analysis was performed to identify the 
correlations among genes or cells. The CIBERSORT algorithm was used to assess the infiltration of 22 types of 
immune cells. The least absolute shrinkage and selection operator (LASSO) and proportional hazards model (Cox 
model) were used to develop the prognosis prediction model. Our research is pivotal for further understanding of 
the cellular and genetic links between IPF and SARS-CoV-2 infection in the context of the COVID-19 pandemic, 
which may contribute to providing new ideas for prognosis assessment and treatment of both diseases. 
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respiratory syndrome coronavirus 2 (SARS-CoV-2), has 

emerged, causing a global pandemic of acute respiratory 

disease, named “coronavirus disease 2019” (COVID-

19). To date, no effective treatment has been available. 

Recently, researchers identified 332 high-confidence 

SARS-CoV-2-human protein–protein interactions, 

revealing targets for drug repurposing [9]. Because 

COVID-19 is an acute pulmonary infection with a 

certain potential correlation with IPF, the association 

between COVID-19 and IPF at the cellular and genetic 

levels is worth exploring. 

 

In this study, we innovatively explored the association 

between m6A methylation regulators, COVID-19 

infection pathways, and immune responses. The 

characteristic gene expression networks and immune 

infiltration patterns of m6A-SARS-CoV-2 related genes 

in different tissues of IPF were revealed. Moreover, we 

evaluated the influence of these related gene expression 

and immune infiltration patterns on the prognosis/lung 

function of the IPF patients. During the COVID-19 

pandemic, these results would help to further 

understand the link between IPF and SARS-CoV-2 

infection and provide new insights for prognosis 

assessment and treatment of both diseases. 

 

RESULTS 
 

The networks of m6A-SARS-CoV-2 related genes 

and immune infiltration patterns in bronchoalveolar 

lavage (BAL) cells of the IPF 

 

The gene expression patterns related to m6A and 

SARS-CoV-2 in IPF 

The discovery cohort included 176 IPF patients from 

the GEO database (GSE70867). The batch effect was 

eliminated using the sva package (Figure 1A, 1B). We 

extracted the expression matrices of 19 m6A-related 

genes and 305 SARS-CoV-2 related genes from the 

GEO datasets. A total of 110 SARS-CoV-2 related 

genes were found to be significantly correlated with 

m6A-related genes, which were defined as m6A-related-

CoV genes. Combined with the survival information, 

univariate Cox regression was then applied to screen 

prognostic genes, and 9 m6A-related-CoV genes (p < 

0.01) were retained (Figure 1C). Then, we performed a 

LASSO regression, and eight optimal variables were 

obtained from the above 9 m6A-related-CoV genes. The 

correlations between the m6A-related genes and the 8 

m6A-related-CoV genes are shown in Figure 1D.  

 

Additionally, we used the expression levels of 8 m6A-

related-CoV genes and the corresponding coefficients 

derived from the multivariate Cox regression model to 

estimate the risk score for each patient: Score 1 =  

0.3869 × expression of BRD4 + 0.6027 × expression of 

ATP13A3 + 0.3401 × expression of MARK3 +  

0.3019 × expression of ACAD9 - 0.8837 × expression of 

REEP5 - 0.3489 × expression of REEP6 - 0.4576 ×  

expression of PPIL3 - 0.2066 × expression of POR. 

Based on the Score 1 of each patient, we divided the 

patients into two groups using the maximally selected 

rank method: high-risk group and low-risk group 

(Figure 1E, 1F). 

 

Due to the different prognostic outcomes, we sought 

to investigate the possible differences between the 

high-risk and low-risk groups using the gene set 

enrichment analysis (GSEA). The results suggested 

that high-risk patients had high levels of response to 

oxygen-containing compound signaling pathway, 

reactive oxygen species (ROS) metabolic process 

signaling pathway, and response to ROS signaling 

pathway (Figure 1G). In gene ontology (GO) 

functional annotation, biological process analysis 

suggested that overexpressed genes in the high-risk 

group were significantly enriched in the regulation of 

inflammatory response, cell adhesion, immune 

response, cell–cell signaling, and extracellular matrix 

organization. For cellular component analysis, these 

genes were significantly enriched in the integral 

components of the membrane, plasma membrane, and 

extracellular exosome. Molecular function analysis 

revealed that these proteins were significantly 

enriched in protein binding and receptor binding 

(Figure 1H). 

 

The m6A-CoV related lncRNAs in IPF 

To further explore the gene regulatory network, we 

identified eight lncRNAs that were significantly 

correlated with both SARS-CoV-2 related genes and 

m6A related genes, which were defined as m6A-CoV 

related lncRNAs. Figure 2A, 2B shows the correlations 

between the lncRNAs and SARS-CoV-2/m6A related 

genes, respectively (SARS-CoV-2/m6A related genes 

that are not significantly related are not shown in the 

figure). After univariate Cox and LASSO screening, 2 

m6A-CoV related lncRNAs were screened for a 

multivariate Cox regression model to estimate the risk 

score: Score 2 = -0.3251 × expression of MGC4859 - 

0.1319 × expression of HYMAI. The IPF patients were 

also divided into high-risk and low-risk groups based on 

Score 2 (Figure 2C, 2D).  

 

The SARS-CoV-2 related immune infiltration patterns 

in IPF 

The ESTIMATE algorithm was used to obtain stromal 

and immune scores. The LASSO-Cox analysis 

demonstrated that the stromal and immune scores were 
positively correlated with the risk of poor  

prognosis, suggesting that high immune infiltration 

might be a risk factor for prognosis. 
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Figure 1. (A, B) Eliminating the batch effect between different sequencing platforms. (A) is the principal component analysis (PCA) plot 
before elimination of the batch effect, and (B) is the PCA plot after elimination. (C) Forest plot of 9 DEGs with P < 0.01 by univariate Cox 
regression. (D) The correlations between the m6A-related genes and 8 m6A-related-CoV genes. (E) Histogram based on maximally selected 
rank grouping. (F) The cut-off point with the maximum standard log-rank statistic was marked with a vertical dashed line. (G) The plots of 
GSEA results. (H) GO enrichment analysis of risk DEGs. 
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Figure 2. (A) The heatmap of the correlations between the lncRNAs and SARS-CoV-2 related genes. (B) The heatmap of correlations between 
the lncRNAs and m6A related genes. (C) Histogram based on maximally selected rank grouping. (D) The cut-off point with the maximum 
standard log-rank statistic was marked with a vertical dashed line. (E) The box plot showed the difference of F2RL1, FBLN5, NINL and SLC27C 
between low-risk group and high-risk groups. (F) The expression profiles of DEGs between the low-risk group and high-risk groups. (G) Forest 
plot of 9 DEGs with P < 0.01 by univariate Cox regression. (H) The heatmap of the correlations between three DEGs and 4 immune cells. (I) 
The box plot showed the significant difference of the immune cell infiltration between two groups. 
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To further identify the immune infiltration patterns in 

IPF, the composition of 22 immune cells was assessed 

using CIBERSORT. Univariate Cox analysis showed 

that activated natural killer (NK) cells, activated mast 

cells, and resting dendritic cells (DCs) were 

significantly correlated with the survival of IPF patients 

(p < 0.01). LASSO-Cox analysis showed that activated 

NK cells and activated mast cells were positively 

correlated with the risk of poor prognosis. In addition, 

resting DCs negatively correlated with the risk score. 

Based on the risk score calculated by these three types 

of immune cells, we divided the patients into two 

groups, and four differentially expressed SARS-CoV2-

related genes were identified as DEGs (Figure 2E, 2F). 

Univariate Cox regression demonstrated that four DGEs 

had significant associations with survival prognosis (p < 

0.01) (Figure 2G). The correlations between the four 

DGEs and three immune cells are shown in Figure 2H, 

which suggests a co-expression pattern of SARS-CoV2-

related genes and immune cell infiltration.  

 

Furthermore, we included 3 immune cells and 4 DGEs 

in the multivariate Cox regression model to estimate the 

risk score: Score 3 = 5.57 × composition of activated 

NK cells + 2.33 × composition of activated mast cells - 

19.4 ×  composition of resting DCs - 0.0269 × 

 expression of NINL + 0.0497 × expression of 

SLC27A2 + 0.156 × expression of F2RL1 + 0.22 × 

expression of FBLN5. We also identified differences in 

the activation/resting state of NK cells, mast cells, and 

DCs in the two groups, which showed that the 

activation ratio of the three immune cells was higher in 

the high-risk group, while the resting ratio was higher in 

the low-risk group (Figure 2I). 

 

The combined model based on Score 1–3 and survival 

prognosis verification 

Based on the risk models of m6A-related-CoV genes 

(Score 1), m6A-CoV related lncRNAs (Score 2), and 

SARS-CoV-2 related immune infiltration patterns 

(Score 3), multivariate Cox regression was used to 

establish the combined model: Score-combined = 

0.7902 × Score 1 + 0.576 × Score 2 + 0.4434 × Score 3. 

 

Finally, we performed a prognostic validation using 

three independent models and a combined model. The 

results demonstrated that the group survival 

verifications of the three independent models and the 

combined model were significant (Figure 3A–3F). The 

receiver operating characteristic (ROC) curve showed 

that the area under the curve (AUC) values of the 

combined model within 1–5 years were all greater than 

0.75 in the discovery cohort, which were also greater 
than the AUC of the independent models (Figure 3G–

3J). This suggests that the combined model has a better 

predictive value for the prognosis of the IPF patients. 

We further developed a nomogram for 1–5 years of 

overall survival prediction based on the combined Cox 

model (Figure 3K). 

 

The networks of m6A-SARS-CoV-2 related genes 

and immune infiltration patterns in the whole blood 

of IPF 

 

We further verified the above prediction method in 

external data sets (GSE93606), which included the 

peripheral whole blood from 57 patients with IPF. 

Similarly, we screened nine m6A-related-CoV genes 

(Figure 4A). Multivariate Cox regression model to 

estimate the risk score was used as follows: Score 1 

 = 0.8919  × expression of ZC3H7A  - 0.1496 

 × expression of YIF1A - 1.4191 × expression of BAG5 + 

3.9659 × expression of RHOA + 2.3642 × expression of 

NUP214 + 0.4134 × expression of INTS4 + 0.7913 

× expression of GLA + 1.4476 × expression of AAR2 + 

1.4582 × expression of ATP1B1. 

 

Univariate Cox regression showed that γδT cells and 

M2 macrophages were significantly correlated with the 

survival of patients with IPF (p < 0.01). LASSO-Cox 

analysis showed that γδT cells and M2 macrophages 

were positively correlated with the risk of poor 

prognosis. We included two immune cells in the 

multivariate Cox regression model to estimate the risk 

score: Score 2 = 14.4 × composition of γδT cells + 24.7 

× composition of M2 macrophages. Based on Score 2, 

we divided the patients into two groups, and three 

differentially expressed SARS-CoV2-related DEGs 

were obtained (Figure 4B). The co-expression patterns 

of SARS-CoV2-related genes and immune cell 

infiltration are shown in Figure 4C.  

 

Based on the risk models of m6A-related-CoV genes 

(Score 1), the SARS-CoV-2 related immune infiltration 

patterns (Score 2), and the multivariate Cox regression 

model was used to establish the combined model: 

Score-combined = 1.0217 × Score 1 + 1.0217 × Score 2. 

Prognostic validations of the two independent models 

and the combined model were performed. The results 

demonstrated that the group survival verifications of the 

two models and the combined model were significant 

(Figure 4D–4F). The AUC of the combined model 

within 1–3 years was greater than that of the two 

independent models (Figure 4H, 4I). 
 

The networks of m6A-SARS-CoV-2 related genes 

and immune infiltration patterns in peripheral blood 

mononuclear cells (PBMC) of the IPF 
 

We verified the above prediction method in the external 

dataset “GSE28221,” which included 120 IPF patients’ 

peripheral blood mononuclear cells. Similarly, we 
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Figure 3. (A) Kaplan–Meier plot of overall survival in two clusters based on the risk models of m6A-related-CoV genes (Score 1). (B) Kaplan–
Meier plot of overall survival in two clusters based on the risk models of m6A-CoV related lncRNAs (Score 2). (C) Kaplan–Meier plot of overall 
survival in two clusters based on the risk models of ESTIMATE immune score. (D) Kaplan–Meier plot of overall survival in two clusters based 
on the risk models of 3 immune cells’ infiltration. (E) Kaplan–Meier plot of overall survival in two clusters based on the risk models of SARS-
CoV-2 related immune infiltration patterns (Score 3). (F) Kaplan–Meier plot of overall survival in two clusters based on the risk models of the 
combined Cox regression model. (G) The ROC curve in the risk models of m6A-related-CoV genes (Score 1). (H) The ROC curve in the risk 
models of m6A-CoV related lncRNAs (Score 2). (I) The ROC curve in the risk models of SARS-CoV-2 related immune infiltration patterns (Score 
3). (J) The ROC curve in the risk models of the combined Cox regression model. (K) The nomogram for the 1–5-year overall survival based on 
the combined Cox regression model. 
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Figure 4. (A) The heatmap of the correlations between the m6A-related genes and 9 m6A-related-CoV genes in the whole blood of IPF. (B) 

Patients were divided into the low-risk group and high-risk group according to the infiltration of γδT cells and M2 macrophages. The box plot 



 

www.aging-us.com 6280 AGING 

showed the difference of the COLGALT1, HOOK1, and OS9 between low-risk and high-risk groups. (C) The heatmap of the correlations 
between the 2 immune cell composition and 3 SARS-CoV-2 related DEGs. (D) Kaplan–Meier plot of overall survival in two clusters based on 
the risk models of m6A-related-CoV genes (Score 1). (E) Kaplan–Meier plot of overall survival in two clusters based on the risk models of the 
immune infiltration patterns (Score 2). (F) Kaplan–Meier plot of the overall survival in two clusters based on the risk models of the combined 
Cox regression model. (G) The ROC curve in the risk models of m6A-related-CoV genes (Score 1). (H) The ROC curve in the risk models of the 
immune infiltration patterns (Score 2). (I) The ROC curve in the risk models of the combined Cox regression model. 

screened seven m6A-related-CoV genes (Figure 5A). 

Meanwhile, there were 5 m6A-CoV related lncRNAs 

extract from the datasets. The alluvial diagram showed 

a correlation between m6A-CoV related lncRNAs and 

m6A related genes and SARS-CoV-2 related genes 

(Figure 5B). LASSO-Cox analysis suggested that the 

composition of naïve CD4+ T cells was significantly 

correlated with the survival of the IPF patients, which 

could be seen as a protective factor (p < 0.01). HOOK1 

expression correlated with the infiltration of naïve CD4+ 

T cells, showing a co-expression pattern. Therefore, the 

expression of HOOK1 and infiltration of naïve CD4+ T 

cells were combined to build a model. After the 

multivariate Cox regression analysis, Figure 5C, 5D 

plots the discrepancy between HOOK1 expression and 

naïve CD4+ T cell infiltration in the high-risk and low-

risk groups. 

 

Therefore, based on the risk models of m6A-related-

CoV genes (Score 1), m6A-CoV related lncRNAs 

(Score 2), and SARS-CoV-2 related immune infiltration 

patterns (Score 3), a multivariate Cox regression model 

was used to establish the combined model: Score-

combined = 0.73795 × Score 1 + 0.09324 × Score 2 + 

0.09324 × Score 3. The group survivorship curve and 

ROC curve of the three models and the combined model 

are shown in Figure 5E–5L. The group survival 

verifications of these three independent models and the 

combined model were remarkable. The AUC of the 

combined model within 1–3 years was greater than that 

of the three independent models. 

 

Validation of the prognostic prediction of pulmonary 

function in IPF 

 

Lastly, we verified the correlation between our 

prediction method and pulmonary function in patients 

with IPF. We screened five m6A-CoV related genes that 

were significantly related to forced vital capacity (FVC) 

and carbon monoxide diffusing capacity (DLCO). The 

correlations between the 5 m6A-CoV related genes and 

FVC/DLCO are plotted in Figure 6A. LARP7 and 

CHPF levels were significantly correlated with DLCO. 

LARP7 was identified as a protective gene, and CHPF 

was considered a dangerous gene. GRPEL1, DNAJC11, 

and SEPSECS were significantly correlated with FVC, 
which were both identified as protective genes. Based 

on the expression of LARP7 and CHPF, patients were 

divided into high and low DLCO clusters. Meanwhile, 

based on the expression of GRPEL1, DNAJC11, and 

SEPSECS, patients were divided into high FVC and 

low FVC groups. The discrepancies in DLCO and FVC 

in different clusters are plotted in Figure 6B, 6D, and 

the different expressions of the above-described genes 

in different groups are shown in Figure 6C, 6E. In 

addition, Table 1 summarizes the networks of m6A-

SARS-CoV-2 related genes and the immune infiltration 

patterns of patients with IPF. 

 

DISCUSSION 
 

There is some overlap in the progress between COVID-

19 and pulmonary fibrosis [10–12]. In addition, IPF is a 

risk factor for COVID-19 as IPF patients have a higher 

expression of some SARS-CoV-2 related genes, which 

may play a crucial role in SARS-CoV-2 entry, 

processing, and attachment [13, 14]. Considering the 

connections between these two diseases, researchers 

have identified common differentially expressed genes, 

pathogenic pathways, and candidate drug targets for IPF 

and COVID-19 [14]. Here, we identified the association 

between m6A methylation regulators, COVID-19 

infection pathways, and immune responses in IPF. 

 

Our results suggest that some SARS-CoV-2 related 

genes in IPF are broadly regulated by m6A. Increasing 

evidence has shown a relationship between m6A RNA 

modification and antiviral responses [15–17]. Among 

the eight m6A-SARS-CoV-2 related genes in BAL cells, 

BRD4 appears to be the most promising drug target for 

pulmonary fibrosis [18]. Emerging evidence has 

revealed the role of BRD4 in fibrosis and airway 

remodeling. It was found that BRD4 was involved in 

pulmonary fibrosis by downregulating signals after 

growth factor stimulation [19], driving TGF-β-induced 

NOX4 expression in human lung fibroblasts [20],  

and mediating NF-kappaB-dependent epithelial-

mesenchymal transition of airway epithelium [21]. In 

COVID-19, BRD4, ubiquitous hubs commonly found in 

multiple tissues, is also expected to be drug targets for 

rescuing multiple organ injuries and dealing with 

inflammation [22]. As another risk gene, RHOA 

encodes a member of the Rho family of small GTPases, 

which cycles between inactive GDP-bound and active 

GTP-bound states and functions as a molecular switch 

in signal transduction cascades [23]. RHOA signaling 

can regulate cyclin D1 expression and activate 

proliferation in IPF lung fibroblasts [24]. In summary, 

patients with high expression levels of these risk genes 

should be considered. For IPF patients, more attention 
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Figure 5. (A) The heatmap of the correlations between the m6A-related genes and 9 m6A-related-CoV genes in the peripheral blood 
mononuclear cell of IPF. (B) The alluvial diagram of the correlation between m6A-CoV related lncRNAs, m6A related genes, and SARS-COV-2 
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related genes. (C) The box plot of the discrepancy of the HOOK1 expression in two clusters based on the risk models of SARS-CoV-2 related 
immune infiltration patterns (Score 3). (D) The box plot of the discrepancy of the infiltration of the naïve CD4+ T cells in two clusters based on 
the risk models of SARS-CoV-2 related immune infiltration patterns (Score 3). (E) Kaplan–Meier plot of the overall survival in two clusters 
based on the risk models of m6A-related-CoV genes (Score 1). (F) Kaplan–Meier plot of the overall survival in two clusters based on the risk 
models of m6A-CoV related lncRNAs (Score 2). (G). Kaplan–Meier plot of the overall survival in two clusters based on the risk models of SARS-
CoV-2 related immune infiltration patterns (Score 3). (H) The ROC curve in the risk models of m6A-related-CoV genes (Score 1). (I) The ROC 
curve in the risk models of m6A-CoV related lncRNAs (Score 2). (J) The ROC curve in the risk models of SARS-CoV-2 related immune infiltration 
patterns (Score 3). (K) Kaplan–Meier plot of the overall survival in two clusters based on the risk models of the combined Cox regression 
model. (L) The ROC curve in the risk models of the combined Cox regression model. 

should be paid to prevent viral infection. For COVID-

19 patients, the possible development of fibrosis should 

be prevented in advance.  

 

In addition, the role of immune cells in the pathogenesis 

of IPF has attracted increasing attention. Our study 

found six types of immune cells and their co-expression 

patterns with SARS-CoV-2 related genes that 

significantly affected the prognosis of IPF. High 

infiltration of activated NK cells, activated mast cells, 

γδT cells, and M2 macrophages were risk factors, while 

naive CD4+T cells and resting DCs were protective 

factors. This suggests that the high activation state of 

immune cells in IPF is detrimental to patient prognosis.  

 

NK cells play a role in blocking fibrotic liver diseases 

[25]; however, their role in the lung is still under debate 

[26]. Our study showed that activated NK cells had high 

infiltration in the high-risk group, which might be 

associated with infection and inflammation in patients. 

Compared with other pulmonary fibrosis diseases, more 

mast cells and a high level of TGF-β were found in 

patients with IPF [27]. Mast cells not only secrete TGF-

β, a profibrotic mediator that contributes to fibroblast 

proliferation, but also enhances their response [28]. 

Moreover, mast cells and fibroblasts are closely related 

and may promote the development of pulmonary 

fibrosis through synergistic action [29–31]. Our study 

also suggests that activated CD4+ T cells may be a risk 

factor. T-helper (Th) 1 secretes IFN-γ to reduce 

pulmonary fibrosis, whereas Th2 cytokines IL-4, IL-5, 

and IL-13 stimulate fibroblast proliferation, collagen 

production, and fibroblast activation [32]. Th17 has a 

pro-fibrotic effect by promoting fibroblast proliferation

 

 
 

Figure 6. (A) The heatmap of the correlations between the 5 m6A-related-CoV genes and FVC/DLCO in the GSE38958 validation cohort. (B) 

The box plot shows the difference of the DLCO between high DLCO and low DLCO clusters. (C) The box plot shows the different expressions of 
LARP7 and CHPF between high DLCO and low DLCO clusters. (D) The box plot shows the difference of FVC between high FVC and low FVC 
clusters. (E) The box plot shows the different expressions of GRPEL1, DNAJC11, and SEPSECS between high FVC and low FVC clusters. 
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Table 1. The network of m6A-SARS-Cov-2 related genes and immune infiltration patterns IPF patients' 
different organizations. 

Series 
Cell type / 

Tissue 

IPF 

patients 

Score1 

(m6A-related 

CoV genes) 

Score2 

(m6A-CoV related 

lncRNAs) 

Score3 

(SARS-CoV-2 related 

immune infiltration) 

Clinical 

information for 

validation 

GSE70

867 

Bronchoalveolar 

lavage cells 
176 

BRD4/REEP5/AT

P13A3/REEP6/PP

IL3/POR/MARK3

/ACAD9 

MGC4859/HYMAI 

NK cells/DC cells/Mast 

cells 

NINL/SLC27A2/F2RL1/F

BLN5 

Survival status and 

time 

GSE28

221 

Peripheral blood 

mononuclear 

cells 

120 

MOV10/HOOK1/

BCKDK/DNAJC1

9/AKAP9/PABPC

4/MAT2B 

SNHG1/SNHG12/MI

AT/FLJ20021/C9orf62 

Naive CD4+ T cells 

HOOK1 

Survival status and 

time 

GSE93

606 
Whole blood 56 

ZC3H7A/YIF1A/

BAG5/RHOA/NU

P214/INTS4/GLA

/AAR2/ATP1B1 

/ 
γδT cells/M2 Macrophages 

OS9/COLGALT1/HOOK1 

Survival status and 

time 

GSE38

958 

Peripheral blood 

mononuclear 

cells 

60 

GRPEL1/DNAJC

11/SEPSECS/LA

RP7/CHPF 

/ / FVC/DLCO 

 

and cytokine secretion in a bleomycin-induced 

systemic sclerosis mouse model [33]. Th9 cells, which 

produce IL-9, also play dual roles in pulmonary 

fibrosis. Overexpression of IL-9 in vivo leads to the 

accumulation of collagen and laminin in bronchial 

tubes, resulting in a pro-fibrotic effect [34]. M2 

macrophages had recognized pro-fibrotic effects. The 

M2-type macrophage marker CCL18 was significantly 

increased in the serum and BAL of IPF patients, 

involved in the formation of fibrosis [35]; M2 

macrophages can also produce TGF-β and PDGF to 

continuously activate fibroblasts and promote 

myofibroblast proliferation [36].The role of γδT cells 

in pulmonary fibrosis remains controversial. A recent 

study showed that pulmonary inflammation and 

fibrosis were promoted by PM2.5-induced secretion 

of IL-17A, which inhibits autophagy in bronchial 

epithelial cells [37]. In contrast, a previous study also 

suggested that pulmonary γδT cells seemed to play a 

regulatory role in suppressing fibrosis via the 

suppression of IL-17A production and IL-17A(+) 

CD4(+) T cells. The results of our study support this 

former viewpoint.  

 

Therefore, high immune infiltration in the lung 

microenvironment is a risk factor for poor prognosis. At 

the same time, these immune cells may be widely 

associated with SARS-CoV-2 and fibrosis-related 

genes. The control of pulmonary inflammation has 

clinical significance in relieving the symptoms of IPF or 

COVID-19 patients. 

 
In conclusion, we identified SARS-CoV-2 related 

genes associated with IPF prognosis and lung function 

and demonstrated that their expression was widely 

regulated by m6A regulators. In addition, we found 

some characteristic co-expression networks of 

immune cells and SARS-CoV-2 related genes that 

were thought to mediate special immune response 

patterns in IPF. Our research is important for further 

understanding the genetic and cellular links between 

IPF and SARS-CoV-2 infection in the context of the 

COVID-19 pandemic. These associations could also 

be beneficial for the management of IPF and  

COVID-19. 

 

MATERIALS AND METHODS 
 

The general ideas and methodologies used in this study 

are drawn as a flow chart (Figure 7). 

 

Patient cohort and data preparation 

 

The discovery cohort of the study contained 176 IPF 

patients from the Gene Expression Omnibus  

(GEO, available at: https://www.ncbi.nlm.nih.gov/geo/) 

database (GSE70867), including 176 IPF patients’ BAL 

cells. Three validation cohorts were used for the 

external validation (GSE93606, GSE28221, and 

GSE38958) to examine the predictive effect of the 

prediction method. The microarray data of GSE93606 

included 57 patients with IPF and peripheral whole 

blood samples. The microarray data of GSE28221 

included 120 peripheral blood mononuclear cells from 

patients with IPF. The microarray data of GSE38958 

included 60 IPF patients’ peripheral whole blood 

samples. All procedures in this study complied with the 

protocol. For analyses of data from a public database, 

approval and informed consent from the local ethics 

committee were not required. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70867
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70867
https://www.ncbi.nlm.nih.gov/geo/
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Identification of gene expression patterns related to 

m6A and SARS-CoV-2 in IPF 

 

Human genes that may be relevant for SARS-CoV-2 

infection were defined as SARS-CoV-2 related genes. 

Three hundred thirty-two SARS-CoV-2 related proteins 

were identified to be associated with 26 SARS-CoV-2 

proteins in human cells [9], which can also be 

downloaded from “http://geneontology.org/covid-

19.html.” Human genes related to m6A modification 

were defined as m6A-related genes, and 22 m6A-related 

genes were identified from the literature [38]. 

 

The expression matrices of available m6A-related and 

SARS-CoV-2 related genes were extracted. Pearson 

correlation analysis was performed to identify 

correlations between SARS-CoV-2 related genes and 

m6A-related genes. A SARS-CoV-2 related gene whose 

expression value was related to (with the | Pearson R | > 

0.5 and p < 0.05) one or more of the m6A-related genes 

was defined as an m6A-related-CoV gene.  

 

Identification of m6A-CoV related lncRNAs in IPF 

 

Based on the long non-coding RNA (lncRNA) 

annotation file of the Genome Reference Consortium 

Human Build 38 (GRCh38) acquired from GENCODE 

(https://www.gencodegenes.org/), expression matrixes 

of lncRNAs were identified in the GEO dataset. 

lncRNAs that were significantly correlated (with the | 

Pearson R | > 0.5, and p < 0.05) with both m6A-related 

genes and SARS-CoV2-related genes were defined as 

m6A-CoV related lncRNAs.  

 

Identification of immune infiltration patterns in IPF 

 

The ESTIMATE algorithm was applied to identify the 

degree of immune cell infiltration and to predict the 

immune status [39]. Furthermore, the CIBERSORT 

algorithm was utilized to assess the infiltration of 22 

types of immune cells in IPF [40]. Only those samples 

with a CIBERSORT output of p < 0.05 were deemed 

worthy of further analysis.  

 

Prognosis prediction model of IPF based on multiple 

factors 

 

Potential prognostic factors (such as genes, lncRNAs, 

and cells) were screened using univariate Cox analysis, 

and factors with p < 0.01 were retained. The least 

absolute shrinkage and selection operator (LASSO) was 

applied to select the optimal variables, which is a type

 

 
 

Figure 7. The flow chart of the general idea and methodologies used in this study. 

http://geneontology.org/covid-19.html
http://geneontology.org/covid-19.html
https://www.gencodegenes.org/
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of linear regression using shrinkage [41]. Then, we 

created a prognosis prediction model of IPF using the 

selected prognostic factors.  

 

For each patient, the formula for calculating the risk 

score was as follows: Score=∑i=1nCoefi*xi, where 

Coefi indicates that the coefficient is derived from the 

multivariate Cox regression, and xi is the value of each 

factor. According to the risk scores, the optimal cutting 

point was identified using the maximally selected rank 

method, and a prognosis prediction model of IPF was 

developed. 

 

The Kaplan–Meier method was employed to examine 

the survival curves and compare the differences in 

survival across different scoring subgroups. The ROC 

curve of the risk score model was constructed to evaluate 

the impact of different factors in patients with IPF. 

 

Analysis of differentially expressed genes and 

functional enrichment 

 

The limma algorithm was used to identify differentially 

expressed genes (DEGs) between the two groups. Genes 

with an FDR adjusted p-value < 0.0001 and an absolute 

value of log2 (fold change) > 1 were considered 

immune-related DEGs.  

 

GO analysis was used to evaluate the degree of 

enrichment of DEGs in biological processes, cellular 

components, and molecular functions. Those with p < 

0.05 and count (the number of enriched genes) ≥3 were 

considered as the cutoff criterion. GSEA was used to 

determine the functional or pathway enrichment under 

the proportion of genes with a log2FC greater than 1 (or 

lower than −1) within a given gene set. 

 

Statistical analysis 

 

All analyses were performed with R version 4.0.2 

(https://www.r-project.org/) and the corresponding 

packages. 

 

Data availability 

 

Data analyzed in this manuscript is already publicly 

available from the following GEO 

(https://www.ncbi.nlm.nih.gov/geo/) accession 

numbers: GSE70867, GSE93606, GSE28221, and 

GSE38958. 
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