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ABSTRACT 
 

With the continued transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) throughout 
the world, identification of highly suspected COVID-19 patients remains an urgent priority. In this study, we 
developed and validated COVID-19 risk scores to identify patients with COVID-19. In this study, for patient-wise 
analysis, three signatures, including the risk score using radiomic features only, the risk score using clinical 
factors only, and the risk score combining radiomic features and clinical variables, show an excellent 
performance in differentiating COVID-19 from other viral-induced pneumonias in the validation set. For lesion-
wise analysis, the risk score using three radiomic features only also achieved an excellent AUC value. In 
contrast, the performance of 130 radiologists based on the chest CT images alone without the clinical 
characteristics included was moderate as compared to the risk scores developed. The risk scores depicting the 
correlation of CT radiomics and clinical factors with COVID-19 could be used to accurately identify patients with 
COVID-19, which would have clinically translatable diagnostic and therapeutic implications from a precision 
medicine perspective. 
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INTRODUCTION 
 

The novel severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) has been identified as the cause of 

coronavirus disease 2019 (COVID-19) in Wuhan, Hubei 

Province, China in late 2019 [1]. It spread rapidly, 

resulting in a global pandemic, with over 23,342,798 

confirmed cases and 807,383 deaths globally as of 

August 2020 [2]. COVID-19 developed through person-

to-person spread of SARS-CoV-2 via respiratory droplets 

is associated with adverse outcomes, and increased  

short- and long-term morbidity and mortality [1]. The 

identification of suspected patients with COVID-19 is 

urgently needed so that we can evaluate patients at greater 

risk and/or more vulnerable to COVID-19 and facilitate 

appropriate clinical decision making for earlier quarantine 

and interventions that could minimize the severity of 

COVID-19, thus substantially improving patient outcome. 

 

Currently, the standard for the diagnosis of COVID-19 is 

the use of the reverse transcription polymerase chain 

reaction (RT-PCR) to detect SARS-CoV-2 in lower 

throat respiratory tract secretions, sputum, swabs, or 

blood samples [3]. However, the sensitivity of the RT-

PCR varies within a range of 60–71% because its 

accuracy could be compromised by the quality of the 

RT-PCR kit, the varying lowest limit of detection (LOD) 

of virus RNA copies per mL with the kits of different 

vendors, the quality and location of specimens collected 

(upper vs. lower respiratory tract), the low viral load in 

test specimens collected, and/or sampling timing 

(different phases of the disease), thus easily leading to 

false negative results [3, 4]. 

 

Recently, the European Society for Radiotherapy and 

Oncology (ESTRO) and the American Society for 

Radiation Oncology (ASTRO) jointly issued an 

ESTRO-ASTRO consensus statement to recommend 

the use of simulation-CT in clinical practice as a 

COVID-19 screening tool during the SARS-CoV-2 

pandemic [5]. The consensus statement suggests that the 

CT imaging techniques used in radiotherapy are a 

potential screening opportunity and may be an added 

value to identify asymptomatic COVID-19 patients that 

are not identified by standard screening in hospitals 

(e.g., temperature screening and questions regarding 

COVID-19-related symptoms) [5]. The consensus was 

based on the fact that studies using CT imaging have 

identified patients with COVID-19 with negative RT-

PCR results [6, 7]. In particular, thoracic CT screening 

allows early diagnosis of COVID-19, when patients are 

still in the asymptomatic phase [5–8]. 

 

Chest radiography and CT imaging have a sensitivity of 

56–98% to identify suspected patients before the 

occurrence of positive RT-PCR detection results as well 

as use to assess disease extent and follow-up [4]. The 

principal CT manifestations include ground-glass 

opacification (GGO) with or without consolidative 

abnormalities and a bilateral, peripheral, and diffuse 

distribution with or without an involvement of the lower 

lobes [4, 9]. Especially, asymptomatic patients with 

initially negative RT-PCR results also showed early CT 

changes [9]. 

 

However, the identification of CT manifestations highly 

relies on radiologists’ clinical experience due to the 

qualitative CT features used, which might pose a 

challenge to resource-limited clinics with health care 

disparities for COVID-19 diagnosis. Meanwhile, COVID-

19 shares similar manifestations with severe acute 

respiratory syndrome (SARS), Middle East respiratory 

syndrome (MERS), and other viral pneumonias in the 

images of qualitative CT, thus significantly reducing the 

specificity of qualitative CT for COVID-19 detection 

[10]. As such, chest CT may be helpful in making the 

diagnosis, but no finding can completely confirm or 

exclude the possibility of COVID-19 without including 

other clinical characteristics due to the extremely low 

specificity of 25% of the chest CT alone for diagnostic 

purposes [4]. These aspects of qualitative CT emphasize 

limitations of the current imaging model for diagnosing 

COVID-19 before the occurrence of its clinical symptoms 

and have compelled radiologists to call for new, imaging-

based methods to answer this critical clinical question. 

 

Digital biopsy techniques have evolved to use high-

throughput processes to extract quantifiable radiomic 

features from medical images and have the potential to 

facilitate disease characterization and assessment. The 

aim of this study was to develop and validate clinically 

translatable COVID-19 risk scores encompassing chest 

CT radiomics with or without clinical characteristics 

included for distinguishing COVID-19 from other viral 

pneumonia. As a reference, we also compared the 

prediction performance of the risk scores with that of 130 

well-experienced radiologists from the epicenters of 

COVID-19 outbreak and non-epicenters in China as  

well as that of other machine learning methods in this 

study. The risk scores integrating the spatial information 

derived from chest CT radiomic features and/or clinical 

characteristics could better characterize the SARS-CoV-2 

infection landscape, which still significantly overlaps 

with other virus-induced pneumonias in visual inspection 

of CT manifestations. 

 

RESULTS 
 

Patient characteristics 

 

The clinical characteristics of patient data used are shown 

in Table 1. The COVID-19 patients had significantly 
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Table 1. Clinical characteristics of the COVID-19 and non-COVID-19 (viral-induced pneumonias) patient cohorts. 

Characteristics 
COVID-19 

patients (n = 108) 

Non-COVID-19 patients (viral-

induced pneumonias) (n = 77) 
P-value 

Age, years    

>50 41 27 0.002 

≤50 67 50 0.234 

Lesion number    

1 ≤ n < 3 14 72 <0.001 

3 ≤ n < 5 12 5 0.729 

5 ≤ n < 10 64 0 <0.001 

10 ≤ n 18 0 <0.001 

Sex    

Male 44 28 0.322 

Female 64 49 0.876 

Epidemiologic contact    

Travel history to Hubei Province, Chinaξ 12 — — 

Travel history to Wenzhou city, Zhejiang 

Province, Chinaξ 
22 — — 

Unknown exposure 74 — — 

Symptoms    

Fever 89 57 0.437 

Dyspnea 51 55 0.051 

Chest tightness 17 14 0.121 

Cough 67 75 0.532 

Sputum 23 54 0.067 

Rhinorrhea 37 65 0.213 

Asymptomatic 17* 2 — 

Laboratory results    

D-dimers, mg/L 0.51 ± 0.44 0.52 ± 0.34 0.897 

C-reactive protein, mg/L 12.32 ± 18.7 7.49 ± 14.27 0.055 

White blood cells, 109/L 3.31 ± 2.13 3.58 ± 1.94 0.112 

Creatine kinase isoenzyme, µg/L 9.12 ± 5.56 13.93 ± 5.69 <0.001 

Lactate dehydrogenase, U/L 245.91 ± 75.35 167.35 ± 42.88 <0.001 

CT manifestations    

Location    

Unilateral 1 75 <0.001 

Bilateral 107 2 <0.001 

Distribution    

Central 1 3 0.233 

Peripheral 73 72 0.191 

Central + peripheral 34 2 0.013 

Main features    

Ground-glass opacity 67 43 0.278 

Consolidation 11 9 0.055 

Linear opacity 23 12 0.231 

Mixed type 7 13 0.101 

Interstitial change    

Septal thickening 37 25 0.062 

Fine reticular opacity 11 39 0.012 

Other features    

Vascular thickening 17 39 0.054 

Crazy-paving pattern 45 39 0.123 

Pleural thickening 13 2 0.053 

Pleural effusion 0 0 — 

ξTwo epicenters of the COVID-19 outbreak in China. 
*These were tested as close contacts with confirmed COVID-19 patients. 
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higher lesion numbers, CK-MB activity, LDH activity, 

and bilateral, peripheral, or mixed central and peripheral 

pulmonary distribution than the non-COVID-19 viral-

induced pneumonia patients. Most of the symptoms, 

laboratory results, and CT manifestations had no 

significant differences between COVID-19 and non-

COVID-19 patients (Table 1). Representative images of 

COVID-19 pneumonia, adenovirus pneumonia, cyto-

megalovirus pneumonia, and influenza virus pneumonia 

are shown in Figure 1. 

 

Human diagnosis of COVID-19 

 

Supplementary Figure 5 shows the geographic 

distribution of 130 radiologists from 10 provinces in 

China, including Hubei. The performance of the  

130 radiologists based on the chest CT images only 

(without providing patients’ clinical information and 

laboratory results) was moderate due to the overlap  

of CT manifestations between COVID-19 lesions and  

non-COVID-19 viral pneumonia lesions using a 

supervised human learning format (Table 2). Notably, 

the radiologists from Hubei Province, China, the 

epicenter of the COVID-19 outbreak in China, had a 

better performance than the radiologists from outside of 

Hubei Province (P < 0.05). 

 

Patient-based risk scores 

 

The patient-based risk scores using radiomic features 

only, clinical factors only, and a combination of 

radiomic features and clinical factors are shown in 

Figure 2A–2C and Equations (2)–(4), respectively. The 

utility of the risk scores achieved area under the receiver 

operating characteristic curve (AUC) values of 0.791 

(95% confidence interval [CI]: 0651–0.932), 0.813 

(95% CI: 0.682–0.944), and 0.915 (95% CI: 0.841–

0.991), respectively, in the validation set (Table 3 and 

Figure 3), suggesting a high performance of COVID-19 

classification using the COVID-19 risk scores. 

 

 
 

Figure 1. Representative images of COVID-19 pneumonia, adenovirus pneumonia, cytomegalovirus pneumonia, and 
influenza virus pneumonia. (A) A transverse CT image from a 35-year-old man with adenovirus pneumonia showing bilateral ground-glass 

opacities in the upper lobes with a rounded morphology (arrows). (B) COVID-19: A transverse CT image from a 57-year-old man with COVID-
19 showing more limited ground-glass opacities in the bilateral upper lobes with an elliptical morphology (arrows). (C) A transverse CT image 
obtained in a 45-year-old female with cytomegalovirus pneumonia showing bilateral ground-glass and burr-like, denser, and less transparent 
distribution (arrows). (D) A transverse CT image of a 61-year-old man diagnosed with influenza virus pneumonia showing bilateral ground-
glass opacities in the upper lobes (arrows). 
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Table 2. Performance of the radiologists to diagnose COVID-19 from chest CT images. 

 Performance 

Radiologists from 

Hubei Province, 

China* (n = 40) 

Radiologists from outside 

of Hubei Province, China 

(n = 90) 

P-value 

Assistant 

attending 

radiologists  

n 13 42 — 

Average time for reviewing each CT 

image (sec) 
3.2 ± 2.3 3.3 ± 2.1 0.132 

Precision 0.49  0.3  0.153 

Recall 0.30  0.23  0.121 

Specificity 0.57  0.39  0.058 

F1 0.37  0.28  0.131 

Accuracy 0.41  0.30  0.154 

Associate 

attending 

radiologists 

n 15 34 — 

Average time for reviewing each CT 

image (sec) 
3.3 ± 2.6 3.6 ± 2.8 0.053 

Precision 0.49  0.35  0.002 

Recall 0.29  0.24  0.042 

Specificity 0.57  0.39  0.051 

F1 0.37  0.28  0.032 

Accuracy 0.41  0.30  0.021 

Attending 

radiologists 

n 12 14 — 

Average time for reviewing each CT 

image (sec) 
3.1 ± 2.4 3.2 ± 2.9 0.129 

Precision 0.47  0.34  0.215 

Recall 0.29  0.22  0.055 

Specificity 0.54  0.40  0.067 

F1 0.35  0.26  0.042 

Accuracy 0.39  0.29  0.102 

Overall 

Average time for reviewing each CT 

image (sec) 
3.2 ± 0.1 3.4 ± 0.2 0.054 

Precision 0.48  0.35  <0.001 

Recall 0.29  0.23  0.027 

Specificity 0.56  0.39  0.002 

F1 0.36  0.28  0.034 

Accuracy 0.41  0.30  0.029 

*Hubei Province was the epicenter of the COVID-19 outbreak in China. 

 

The patient based risk score using radiomic features only

3.785 19.563  GLRLM_LRLGE_(25,90)

0.002 ID_Global_Max

−

= − + 

+ 

   (2) 

 

The patient based risk score using clinical factors only

  15.680 2.833 lesion number 0.104

lactate dehydrogenase 1.674

creatine kinase isoenzymes

−

=− +  +

 −



 (3) 

 

The patient based risk score combining radiomics

 and clinical features

114.053 9.911 lesion number 122.045

GLRLM_LRLGE_(25,90) 0.0196

ID_Global_Max 0.334 

lactate dehydrogenase 7.593

creatine kinase 

−

= − +  +

 +

 +

 −

 isoenzymes

 (4) 

where GLRLM_LRLGE_(25, 90) represents the 

radiomic feature, long-run, low gray-level emphasis, 

which describes the distribution of the long 

homogeneous runs with low gray-levels within the 

image. The numbers in the brackets represent the 

parameters used to calculate that particular radiomic 

feature. ID_Global_max represents the radiomic feature 

intensity direct global max, which describes that the 

binary mask was preprocessed for the features derived 

directly from the image intensity. A detailed description 

of the parameters used is shown in Figure 2. 

 
In contrast, the developed patient-based random forest 

models demonstrate comparable AUC values, precision, 

recall, specificity, F1, and accuracy as compared to the 
patient-based risk scores in the validation set (Table 3). 

The results of the decision curve analysis (DCA) to 

evaluate the clinical utility of the risk scores and the 
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Figure 2. The patient-based COVID-19 risk scores demonstrated by nomograms. (A) The risk score using radiomic features only. (B) 
The risk score using clinical factors only. (C) The risk score combining radiomic features and clinical factors. GLRLM_LRLGE_(25, 90) represents 
the radiomic feature long run low gray-level emphasis, which describes the distribution of the long homogeneous runs with low gray-levels 
within the image. The numbers in the bracket represents the parameters used to calculate that particular radiomic feature. The parameters 
of 25 and 90 in GLRLM_LRLGE represent the binary mask in 2.5D and 90 degrees, which describes that the GLRLM was computed in 2D slice 
by slice; then, the occurrence of run length from 90 degrees from all 2D image slices was summed. ID_Global_max represents the radiomic 
feature intensity direct global max, which describes that the binary mask was preprocessed for the features derived directly from the image 
intensity. The binary mask in ID_Global_max can be modified through intensity thresholding, by binary erosion, and using only the binary 
slice with the maximum area. The unit for lactate dehydrogenase is U/L. The unit for creatine kinase isoenzymes is µg/L. Supplementary 
Appendix 2 explains how to use the nomograms. 
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Table 3. The classification performance using patient-based COVID-19 risk scores and random forest models. 

Signature AUC Precision Recall Specificity F1 score Accuracy 
Delong test for 

AUC values 

Training set        

COVID-19 risk score using 

radiomic features only 

0.807 

(0.717–0.853) 

0.823 

(0.703–855) 

0.792 

(0.711–0.834) 

0.843. 

(0.781–0.867) 

0.807 

(0.723–0.897) 

0.811 

(0.703–0.966) 

Z = 7.241,  

P = 0.000 

COVID-19 risk score using 

clinical variables only 

0.882 

(0.847–0.921) 

0.877 

(0.712–0.903) 

0.897 

(0.784–0.922) 

0.901 

(0.879–0.944) 

0.887 

(0.813–0.922) 

0.892 

(0.824–0.927) 

COVID-19 risk score using 

combined radiomic and clinical 

variables 

0.935 

(0.913–0.978) 

0.902 

(0.878–0.966) 

0.942 

(0.807–0.989) 

0.921 

(0.893–0,964) 

0.899 

(0.812–0.962) 

0.923 

(0.879–0.978) 

Random forest using radiomic 

features only 

0.837 

(0.775–0.901) 

0.712 

(0.645–0,834) 

0.896 

(0.812–0.934) 

0.877 

(0.812–0.921) 

0.793  

(0.743–0.854) 

0.845 

(0.798–0.939) 

Z = 8.574,  

P = 0.000 

Random forest using clinical 

variables only 

0.925 

(0.892–0.963) 

0.867 

(0.772–0.934) 

0.914 

(0.854–0.963) 

0.937 

(0.879–0.987) 

0.890  

(0.807–0.919) 

0.955 

(0.913–0.977) 

Random forest using radiomic 

and clinical variables 

0.958 

(0.911–0.989) 

0.886 

(0.719–0.968) 

0.934 

(0.812–0.977) 

0.954 

(0.903–0.987) 

0.909  

(0.855–0.950) 

0.966 

(0.923–0.989) 

Validation set       

Z = 9.307,  

P = 0.000 

COVID-19 risk score using 

radiomic features only 

0.791 

(0.651–0.932) 

0.804 

(0.723–0.,902) 

0.733 

(0.693–0.854) 

0.822 

(0.734–0.876) 

0.767 

(0.717–0.856) 

0.797 

(0.701–0.892) 

COVID-19 risk score using 

clinical variables only 

0.813 

(0.682–0.944) 

0.821 

(0.721–0.876) 

0.934 

(0.877–0.965) 

0.917 

(0.832–0.989) 

0.874 

(0.793–0.941) 

0.882 

(0.769–0.923) 

COVID-19 risk score using 

combined radiomic and clinical 

variables 

0.915 

(0.841–0.991) 

0.855 

(0.744–0.913) 

0.945 

(0.897–0.988) 

0.934 

(0.899–0.989) 

0.898 

(0.844–0.953) 

0.919 

(0.87–0.955) 

Random forest using radiomic 

features only 

0.872 

(0.771–0.973) 

0.809 

(0.723–0.881) 

0.913 

(0.856–0.956) 

0.896 

(0.859–0.931) 

0.858  

(0.739–0.907) 

0.868 

(0.792–0.899) 

Z = 7.896,  

P = 0.000 

Random forest using clinical 

variables only 

0.949 

(0.894–0.956) 

0.902 

(0.843–0.977) 

0.965 

(0.913–0.998) 

0.967 

(0.943–0.997) 

0.932  

(0.899–0.956) 

0.956 

(0.933–0.979) 

Random forest using radiomic 

and clinical variables 

0.979 

(0.949–0.997) 

0.943 

(0.879–0.987) 

0.987 

(0.897–0.999) 

0.934 

(0.917–0.986) 

0.964  

(0.889–0.981) 

0.963 

(0.892–0.992) 

The values in the brackets represent the 95% confidence interval. 
Abbreviations: AUC, area under the ROC curve. 

 

random forest models built in this study are shown  

in Figure 3E, 3F. The risk scores show a comparable 

clinical utility as compared to the random forest  

models. 

 

Lesion-wise COVID-19 risk score with radiomic 

features only 

 

To characterize different infectious lesions within the 

same patient, a lesion-based risk score using three 

radiomic features alone was also constructed (Figure 4 

and Equation (5)). The utility of the risk score achieved 

an AUC value of 0.931 (95% CI: 0.898–0.956) (Table 4 

and Figure 5A). 

 

The lesion

based risk score using radiomics features alone

  55.389 6.769 GLCM_Correlation _(25,0,1)

0.33 ID_Local_Range_Std 0.136

GOH_Percentile _(15)

−

=− − 

+  +



       (5) 

where GLRLM_Correlation_(25,0,1) represents the 

radiomic feature gray-level co-occurrence matrix with 

statistical measurement of correlation between a pixel 

and its neighbor over the whole image. The numbers in 

the brackets represent the parameters used to calculate 

that particular radiomic feature. ID_Local_Range_Std 

represents the radiomic feature of intensity direct in the 

neighborhood region, which describes the standard 

deviation among all the voxels. GOH_Percentile_(15) 

represents the radiomic feature gradient orient histogram, 

which describes the percentiles of the occurrence 

probability values in the histogram of the image. A 

detailed description of the parameters used is shown in 

Figure 4. 

 

In contrast, the lesion-based weighted support vector 

machine (WSVM) model using the radiomic features 

only demonstrates a comparable AUC value, precision, 
recall, specificity, F1, and accuracy as compared to the 

lesion-based risk score (Table 4). The results of the 

DCA analysis to evaluate the clinical utility of the risk 
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Figure 3. The receiver operating characteristic (ROC) curves and the decision curve analysis (DCA) for the patient-based risk 
scores and random forest models. (A) ROC curve for patient-based risk scores in the training set. (B) ROC curve for patient-based risk 

scores in the validation set. (C) ROC curve for patient-based random forest models in the training set. (D) ROC curve for patient-based 
random forest models in the validation set. (E) DCA for patient-based risk scores in the validation set. (F) DCA for patient-based random 
forest models in the validation set. In (E) and (F), the x-axis of the decision curve is the threshold of the predicted probability using the risk 
score to classify COVID-19 and non-COVID-19 patients. The y-axis shows the clinical decision net benefit for patients based on the 
classification result in this threshold. The decision curves of the treat-all scheme (the monotonically decreasing dash-line curve in the figure) 
and the treat-none scheme (the line when x equals zero) are used as references in the DCA. In this study, the treat-all scheme assumes that 
all the patients had COVID-19; the treat-none scheme assumes that none of the patients had COVID-19. Abbreviations: AUC, area under the 
ROC curve; 95% CI, 95% confidence interval. 
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score and the WSVM model using radiomic features 

only are shown in Figure 5B. 

 

DISCUSSION 
 

During the incubation period of SARS-CoV-2, before 

the onset of clinical symptoms confirmed by positive 

nucleic acid detection, about 96% of patients would 

have non-specific CT imaging changes similar to other 

viral pneumonias in the lungs, i.e., GGO, patchy 

consolidation, and sub-solidification [4, 9, 11, 12]. In 

this study, the performance of the radiomics-based risk 

scores was compared to that of human diagnosis in 

differentiating COVID-19 from viral pneumonia. We 

demonstrated that both the patient-based risk score 

using radiomic features only and the lesion-based risk 

score using radiomic features only have significantly 

better classification abilities than the human diagnosis 

at the patient- and lesion-wise levels. This can partially 

be attributed because without the aid of other clinical 

information, radiologists might achieve a relatively low 

sensitivity and specificity in differentiating COVID-19 

from viral pneumonias based only on the chest CT 

manifestations. 

 

The risk score could provide a quantitative measure to 

appropriately adjust the cut-off value based on desired 

levels of recall and specificity to reduce the adverse 

consequences of false negatives in the differentiation  

of COVID-19. In addition, with the quantitative 

measurements used, it might be useful to longitudinally 

monitor disease progress over time or recurrence in the 

recovered COVID-19 patients using delta radiomics 

methods, although this possibility is still under 

investigation. 

 

In the patient-based COVID-19 risk scores, three 

clinical variables, i.e., lesion number, LDH activity, and 

CK-MB activity, show discriminative abilities for 

COVID-19 detection. Notably, the imaging pattern 

showing a multifocal appearance with a lesion number 

larger than 3–5 could be used as a rapid cut-off in the 

case of a strong suspicion of SARS-CoV-2 infection. 

Meanwhile, LDH serves as an inflammatory predictor 

in many pulmonary diseases, such as obstructive 

disease, microbial pulmonary disease, and interstitial 

pulmonary disease [13, 14]. A recent study showed that 

refractory COVID-19 patients had increased blood LDH 

and CRP levels. Moreover, another study demonstrated 

that COVID-19 patients treated in the ICU had higher 

levels of LDH and CRP than those not treated in the 

ICU [15]. These observations suggest that LDH levels 

might reflect the acute severe systemic inflammatory 

response involved in cell-mediated immunity and 

cytokine storms caused by SARS-CoV-2 infection, 

which is a distinguishable biochemical parameter for 

inflammation in the risk score. 

 

Furthermore, a previous study suggested that the 

increases in LDH and CK-MB levels were correlated 

 

 
 

Figure 4. The lesion-based risk score using three radiomic features only. GOH_Percentile_(15) represents the radiomic feature 
gradient orient histogram, which describes the percentiles of the occurrence probability values in the histogram of the image. The numbers in 
the brackets represent the parameters used to calculate that particular radiomic feature. The parameter of 15 in GOH_Percentile represents 
the histogram percentile. GLCM_Correlation_(25,0,1) represents the radiomic feature gray-level co-occurrence matrix with statistical 
measurement of correlation between a pixel and its neighbor over the whole image, which describes that the gray-level co-occurrence matrix 
was computed from the image inside the binary mask in 2.5D with the direction of the angle of intensity pair at 0 degrees and the distance 
between the intensity pairs at 1. ID-Local_Range_Std represents the intensity direct in the neighborhood region, which describes the 
standard deviation among all the voxels. 



 

www.aging-us.com 9195 AGING 

Table 4. The diagnosis performance using the lesion-based risk score and weighted support vector machine. 

Signature AUC Precision Recall Specificity F1 score Accuracy 
Delong test 

for AUC 

COVID-19 risk 

score  

0.931 

(0.898–0.956) 

0.976 

(0.944–0.996) 

0.891 

(0.831–0.927) 

0.921 

(0.872–0.965) 

0.927 

(0.901–0.966) 

0.902 

(0.834–0.981) Z = 4.371,  

P < 0.000 Weighted support 

vector machine 

0.949 

(0.925–0.971) 

0.969 

(0.923–0.981) 

0.904 

(0.824–0.936) 

0.942 

(0.899–0.966) 

0.935 

(0.876–0.964) 

0.987 

(0.886–0.995) 

The values in the brackets represent the 95% confidence interval (95% CI). 
Abbreviations: AUC, area under the curve. 

 

with SARS-CoV-2 mRNA levels in RT-PCR positive 

patients [16]. As such, all three clinical variables in the 

risk scores might emphasize the underlying biological 

mechanism(s) related to COVID-19. The immunological 

mechanism of SARS-CoV-2 infection still requires 

further investigation. 

 

In the patient-based COVID-19 risk scores, two radiomic 

features, GLRLM_LRLGE_(25,90) and ID_Global_max, 

were selected to build the risk score with significantly 

strong discriminative abilities for COVID-19 detection 

(i.e., the features with P < 0.001 in the multivariable 

logistic regression). GLRLM_LRLGE had a higher 

weight (larger coefficient) in the risk score compared to 

other radiomics and clinical features. GLRLM_LRLGE 

analyzes the spatial information within chest CT image 

runs in the upper right quadrant of the GLRLM with long 

run lengths and low gray-levels. The longer runs with 

different gray-level intensities are closely linked with 

coarse texture and regional heterogeneity as compared to 

fine texture [17]. Therefore, GLRLM_LRLGE might be 

associated with the coarseness of COVID-19 [18]. 

Consequently, a higher GLRLM_LRLGE, i.e., a coarser 

texture on chest CT images, may be associated with a 

higher risk of occurrence of COVID-19 [19]. 

 

Interestingly, three different radiomic features, GOH_ 

Percentile_(15), GLCM_Correlation_(25,0,1), and ID_ 

Local_Range_Std, were identified in our lesion-based 

analysis. In particular, previous studies suggested that a 

GLCM_correlation value might be inversely related with 

the levels of vascular endothelial growth factor (VEGF), 

which controls critical physiological functions in the lung 

[20–22]. For example, a decrease in VEGF expression is 

believed to be associated with acute lung injury and 

alkaloid monocrotaline-pulmonary hypertension [23], 

which is one of the most common comorbidities in 

COVID-19 [24]. However, the relationship between 

 

 
 

Figure 5. The receiver operating characteristic (ROC) curves and the decision curve analysis (DCA) for the lesion-based risk 
score and weighted support vector machine model using radiomic features alone. (A) ROC curve. (B) DCA analysis. In (B), the x-

axis of the decision curve is the threshold of the predicted probability using the risk score to classify COVID-19 and non-COVID-19 patients. 
The y-axis shows the clinical decision net benefit for patients based on the classification result in this threshold. The decision curves of the 
treat-all scheme (the monotonically decreasing dash-line curve in the figure) and the treat-none scheme (the line when x equals zero) are 
used as references in the DCA. In this study, the treat-all scheme assumes that all patients had COVID-19; the treat-none scheme assumes 
that none of the patients had COVID-19. Abbreviations: AUC, area under the curve; 95% CI, 95% confidence interval. 
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radiomic features and the phenotypes linked to COVID-

19 is not well understood at present. 

 

There are different processing methods for patient-

based analysis. Some studies selected the largest lesion 

and/or the most metabolically active lesion as a 

representative lesion for that patient based on a method 

reported previously [25, 26]. However, the large 

heterogeneous lesions (often necrotic and/or with 

multiple uptake peaks) may underestimate image 

texture measurements [27]. Nevertheless, all the lesions 

could be used for radiomics analysis, which enriches the 

analysis through the use of the information derived from 

all lesions. However, the method of averaging the 

radiomic values of all lesions as the characteristic value 

for one particular radiomic feature could dilute the 

feature value of large lesions by other small lesions. As 

such, in this study, a weighted power mean method was 

used in the patient-based analysis to emphasize that the 

lesions with relatively large volume represent the main 

characteristics of the biological behavior and 

characteristics of the disease type, while still retaining 

the other small lesions representing a certain kind  

of disease progression. In contrast, the lesion-based 

analysis allowed us to examine each individual lesion 

with a consideration of different infectious lesions 

within the same patient. 

 

There could be certain bias introduced in the boundary 

and volume contoured in the manual delineating process 

by different radiologists, which could certainly affect the 

radiomics values calculated. However, this kind of inter-

observer variation mainly influences the shape-related 

radiomic features. It has relatively limited influence on 

the features of GLRLM_LRLGE_(25, 90), ID_Global_ 

Max, GOH_Percentile_(15), GLCM_Correlation_(25,0,1), 

and ID_Local_range_std selected in this study. A 

previous study conducted by eight research centers in the 

United States and one medical imaging center in Canada 

suggested that the segmentation mainly affects the global 

shape descriptors features, but has relatively little effect 

on the texture and intensity features of the entire three-

dimensional volume [28]. Also, GLRLM_LRLGE_(25, 

90), ID_Global_Max GOH_Percentile_(15), GLCM_ 

Correlation_(25,0,1), and ID_Local_range_std are  

five important features in the texture and intensity 

features category. A verification study is described in 

Supplementary Appendix 3. 

 

As a retrospective study, this study has several 

limitations. First, the patient cohort in this study is 

relatively small. The use of digital biopsy technologies 

with promising retrospective radiomics analyses  
must still be further evaluated in prospective clinical 

trials, thus facilitating a better personalized patient 

management. Second, all patients are from Zhejiang 

Province, China, and might not fully represent the 

spectrum of COVID-19 phenotypes. The relationships 

between radiomic features and their underlying immune 

interactions and biological mechanism(s) directing 

COVID-19 progression at the early stage of SARS-CoV-

2 infection also remain to be explored. Third, although 

the radiomic features and clinical variables associated 

with disease progression were not evaluated in this study, 

the findings of this research may still provide useful 

insights for future studies to identify the underlying 

mechanism(s) and relevant radiomic features for disease 

severity, prognosis, and patient outcome of SARS-CoV-2 

infection. 
 

CONCLUSIONS 
 

The point-of-care COVID-19 risk scores could be an 

easy-to-use tool to quantitatively differentiate COVID-19 

from other viral pneumonias. The risk scores using chest 

CT radiomic features and/or clinical characteristics could 

better characterize the SARS-CoV-2 infection landscape, 

which still significantly overlaps with other virus-induced 

pneumonias in visual inspection of CT manifestations. 

The risk scores developed could potentially afford a 

clinically translatable means to improve the diagnostic 

confidence using chest CT for COVID-19 detection in 

the future. 

 

MATERIALS AND METHODS 
 

Patients 
 

This study was approved by the Hangzhou Xixi 

Hospital Institutional Review Board. As this is a 

retrospective study, the need for written informed 

consent from patients was waived. A total of 193 

patients confirmed with COVID-19 or other types of 

viral pneumonia were enrolled in this study. Eight 

patients with negative chest CT imaging result were 

excluded. A total of 108 patients with COVID-19 

confirmed by RT-PCR between December 2019 and 

March 2020 in the Hangzhou Xixi Hospital were 

retrospectively included into this study. Another group 

of 77 patients with influenza virus-induced, adenovirus-

induced, syncytial virus-induced, and cytomegalovirus-

induced pneumonias from Hangzhou First People’s 

Hospital (19 cases) and Hangzhou Xixi Hospital (58 

cases) were used as controls. 
 

The patients’ electronic medical data were retrieved 

from the Hospital Information System (HIS). The  

high-resolution CT images were retrieved from the 

picture archiving and communication system of  
the hospitals. The patients’ RT-PCR results were 

retrieved from the electronic medical records in the 

HIS. The patients with negative chest CT results or 
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lacking both chest CT and RT-PCR examinations were 

excluded from this study. Figure 6 summarizes the 

study workflow and methods. 

 

Baseline clinical data, including patient’s age, gender, 

lesion number, and five biochemical indicators 

recommended in the “Handbook of COVID-19 

Prevention and Treatment,’’ [29] including white blood 

cell count (WBC), C-reactive protein (CRP) levels, 

creatine kinase isoenzyme (CK-MB) activity, lactate 

dehydrogenase (LDH) activities, and plasma D-dimer 

(DD) levels, were collected by reviewing the medical 

records and data of serial CT imaging, including 

baseline, mid-treatment, and post-treatment CT scans, 

were also recorded to monitor the disease progression. 

The patients’ daily basic status, daily examination 

results, and complications were also analyzed to check 

how the disease progressed. Based on the RT-PCR 

results for COVID-19 confirmation, the enrolled 

patients were divided into two groups, i.e., the COVID-

19 group and the non-COVID-19 viral pneumonia 

group. 

 

CT image acquisition 

 

All patients included underwent chest CT imaging using 

a two multi-detector row CT system (GE Revolution 

Evo CT, Chicago, USA; Siemens SOMATOM Emotion 

16, Erlangen, Germany). The acquisition parameters 

were as follows: 120/130 kV, 100/10–240 mA, 0.35- or 

0.8-second rotation time, a layer spacing of 5 mm, an 

acquisition layer thickness of 5 mm, high-resolution 

reconstruction with a lung window layer thickness of 

1.25/1.50 mm, a detector collimation of 16×0.5 mm or 

64×0.625 mm, a field of view of 350×350 mm, and an 

image matrix of 512×512. The CT scans before onset of 

symptoms or CT scans done ≤1 week after symptom 

onset were used as baseline. The baseline CTs of highly 

suspected patients were used in this study. GGO and/or 

consolidation are the main manifestations in the CT 

images at this early stage. The other CT imaging 

patterns included linear opacity, mixed type and 

interstitial change patterns including septal thickening 

and fine reticular opacity, and other features including 

vascular thickening, crazy paving pattern, pleural 

thickening, and pleural effusion. 

 

Human diagnosis of COVID-19 using a human 

supervised learning fashion 

 

To compare the classification performance between the 

COVID-19 risk scores developed and radiologists, 147 

radiologists were invited to differentiate COVID-19 

from the virus-induced pneumonias based on the CT 

manifestations only. The diagnosis was performed using 

a human supervised learning fashion. 

A total of five COVID-19 CT images and five influenza 

virus-induced, adenovirus-induced, syncytial virus-

induced, and cytomegalovirus-induced pneumonia 

images were randomly drawn from the total patient 

cohort to form a learning sample set. These learning 

sample images along with the CT manifestations 

described in the China Clinical Consensus on 

Radiological Diagnosis on COVID-19 [29] were used to 

train 130 radiologists in China with thoracic CT 

diagnosis experiences ranging from assistant attending 

radiologists or associate attending radiologists to 

attending radiologists using a human supervised learning 

fashion. The radiologists were then given the remaining 

176 CT images without the clinical and follow-up 

information provided. Based on the CT manifestations 

they learned from the 10 image samples provided, the 

radiologists diagnosed whether these 176 CT images 

were COVID-19 or influenza virus-/adenovirus-/ 

syncytial virus-/cytomegalovirus-induced pneumonias. 

The accuracy and the average time for diagnosis per CT 

image were used for statistical analysis. To rule out the 

random diagnosis, two equal CT images were mixed 

within the 176 CT images, and if the radiologist’s 

answers were not consistent for these two images, his or 

her answers were excluded from the statistical analysis. 

A total of 130 radiologists’ diagnoses were eligible for 

statistical analysis (40 radiologists from Hubei Province, 

the epicenter of the COVIA-19 outbreak in China, and 90 

radiologists from outside of Hubei Province). 

 

Radiomic feature extraction 

 

Before extracting all chest CT radiomic features, 3D 

adaptive histogram equalization enhancement (AHEE-

3D) and edge preserve smooth 3D (EPS-3D) methods 

were used to remove random noise in the images. The 

lesions of pneumonias on CT images were reviewed and 

manually delineated by two experienced attending 

radiologists who were blind to the clinical and follow-

up information. The final contour for each lesion was 

agreed upon by both radiologists. The patient-based and 

lesion-based analyses were performed. The lesion 

region of interest (ROI) was segmented on the CT 

image as the only input for radiomics analysis of 

pneumonia. 

 

A total of 1766 radiomic features were extracted from 

each ROI delineated using the image biomarker explorer 

(IBEX) public platform developed by the University of 

Texas MD Anderson Cancer Center for feature extraction 

and classification of radiomic features [30, 31]. The 

radiomic features extracted include seven categories: 

shape, intensity direct, intensity histogram, gray-level co-
occurrence matrix (2.5D and 3D), neighbor intensity 

difference (2.5D and 3D), gray-level run length matrix 

(2.5D), and intensity histogram Gauss fit. 
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Figure 6. The workflow for the development and validation of COVID-19 risk scores. 



 

www.aging-us.com 9199 AGING 

It is believed that some of the radiomic features are 

sensitive to each step of the data processing procedure, 

including image acquisition settings, image 

reconstruction algorithm, and the digital image 

preprocessing procedure, so that the repeatability and 

reproducibility of the extraction of these radiomic 

features are easily compromised [32]. To account for 

the potential impact of the accuracy of radiomic feature 

extraction, the radiomic feature extraction procedure 

was repeated twice and Lin’s concordance correlation 

coefficient (CCC) tests were performed to assess the 

feature reproducibility in repeated feature extraction 

[33, 34]. Only the 1237 radiomic features showing high 

CCC values (CCC > 0.99) were used. With 1237 

radiomic features selected, 510 features with null value 

were eliminated and the remaining 727 radiomic 

features plus 9 clinical variables (lesion number, age, 

gender, WBC, LC, CRP level, LDH activity, CK-MB 

activity, and plasma DD level) were used for further 

analysis. 

 

Patient-based risk scores 

 

Of the patient data, 25% was randomly selected as an 

independent validation set (n = 46) and the remaining 

75% of the patient data were used for the training set  

(n = 139). The ratio of COVID-19 to non-COVID-19 

patients was about 1.41:1 in the training and validation 

sets (in the training set, COVID-19:non-COVID-19 = 

81:58 patients; in the validation set, COVID-19:non-

COVID-19 = 27:19 patients). 

 

For our patient-based analysis, the same features 

extracted from multiple lesions within one single patient 

were combined using a weighted power mean method 

[35]. Briefly, all lesions of the patient were delineated 

and the radiomic features were extracted. A weighting 

calculation was performed to combine the same feature 

from different lesions within the same patient as 

described in the following equations (Equation 6): 
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where F(j) represents the value of the j-th radiomic 

feature of the patient, i represents the i-th lesion of the 

patient, V(i) represents the volume of the i-th lesion, n 
represents the number of lung lesions in the patient, VT 

represents the total volume of all lesions in the patient, 

and fj(i) represents the value of feature j in the i-th 

lesion. The weight assigned was based on the volume of 

the lesion. The larger the lesion volume, the greater the 

weight value of the features extracted from that lesion. 

Thus the contribution of the features extracted from this 

lesion to the patient’s radiomic feature was also greater. 

 

Owing to the imbalanced sample distribution between 

COVID-19 and non-COVID-19 patients (the number of 

non-COVID-19 patient is lower than the number of 

COVID-19 patients), synthetic minority over-sampling 

technology [36–40] was used to generate synthetic non-

COVID-19 patient samples in the training set so that a 

synthetically class-balanced training set could be 

achieved prior to training the models in this study. 

Briefly, for each minority sample “a” in the non-

COVID-19 patient group, the synthesis strategy was 

applied to randomly select a minority sample “b” from 

its nearest neighbors. And then one point was randomly 

selected as the newly synthesized non-COVID-19 

patient sample on the line between “a” and “b,” so that 

the ratio of COVID-19 and non-COVID-19 patients in 

the training set was close to 1:1. 

 

Three signatures, including a risk score using radiomic 

features only, a risk score using clinical factors only, and 

a risk score combining radiomic features and clinical 

variables, were built in this study (Figure 7). For the 

construction of the risk score using radiomic features 

only and the risk score combining radiomic features and 

clinical variables, principal component analysis (PCA), 

the Mann–Whitney U test, and least absolute shrinkage 

and selection operator (LASSO) regression with a four 

fold cross-validation method and a 100 times iterative 

selection process were successively applied to eliminate 

redundant features and irrelevant variables to establish 

the COVID-19 risk scores. A multivariate logistic 

regression method was used to build these two risk 

scores. For the construction of the risk score using 

clinical factors only, because the number of clinical 

factors is much lower than the number of radiomic 

features, a multivariate logistic regression method  

was directly applied to build the clinical signature. The 

model performance of the three risk scores was 

evaluated in the training and independent validation sets. 

 

For the construction of the risk score using radiomic 

features only and the risk score combining radiomic 

features and clinical factors, PCA was used to reduce 

the feature dimensionality and select the radiomic 

features and radiomic features plus clinical variables 

that accounted for 90% of the significant feature subset 

variability to increase the discriminative ability. After 

PCA analysis, the feature dimensionality was reduced 
from 727 radiomic features to 32 features for the risk 

score using radiomic features only (Supplementary 

Table 1), and from 727 radiomic features plus 9 clinical 
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Figure 7. The workflow of the construction of the patient-based risk scores using radiomic features only, the risk score using 
clinical factors only, and the risk score combining radiomic features and clinical variables using a multivariate logistic 
regression method and a random forest model. 
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variables to 26 features for the risk score combining 

radiomic features and clinical factors (20 radiomic 

features plus 6 clinical variables including lesion 

number, gender, WBC, CRP level, LDH activity, CK-

MB activity, and plasma DD level) (Supplementary 

Table 2). 

 

The Mann–Whitney U test was used to further explore 

the potential association of the features/variables 

selected from PCA with COVID-19 and further reduce 

the feature dimensions. For the risk score using radiomic 

features only (Supplementary Table 3), the feature 

dimensions were reduced from 32 to 20 radiomic 

features. For the risk score combining radiomic features 

and clinical factors, the feature dimensions were reduced 

from 26 to 17 features (11 radiomic features plus 6 

clinical variables including lesion number, gender, 

WBC, CRP level, LDH activity, and CK-MB activity) 

(Supplementary Table 4). 

 

To select the most suitable features for classification of 

COVID-19, LASSO regression with a four fold cross-

validation method and a 100 times iterative selection 

process was used to continually choose non-redundant 

and the most robust radiomic features and radiomic 

features and clinical variables, respectively [41, 42]. The 

coefficient of each variable was controlled by the 

parameter λ in the LASSO method and only the features 

with non-zero coefficients were selected. The 

misclassification error was calculated to minimize the 

binary classification error and maintain a balance of 

optimal classification performance and the optimal 

number of radiomic features needed for binary 

classification (COVID-19 vs. non-COVID-19). 

 

As such, for the risk score using radiomic features only, 

only those 16 features with non-zero coefficients were 

selected via the LASSO process (Supplementary Table 

5 and Supplementary Figure 1). For the risk score 

combining radiomic features and clinical variables, only 

those five features with non-zero coefficients were 

selected via the LASSO process (two radiomic features, 

GLRLM_LRLGE_(25,90) and ID_Global_Max, plus 

three clinical variables, lesion number, LDH activity, 

and CK-MB activity) (Supplementary Table 6 and 

Supplementary Figure 2). 

 

After the feature dimensionality was reduced, a 

multivariable logistic regression analysis was employed 

and only the features with P < 0.001 in this process were 

selected to build the COVID-19 risk scores. For the risk 

score using radiomic features only, two radiomic 

features, GLRLM_LRLGE_(25,90) and ID_Global_ 
Max, were finally preserved (Supplementary Table 7). 

For the risk score combining radiomic features and 

clinical variables, seven features were further reduced to 

five features (two radiomic features, GLRLM_LRLGE_ 

(25,90) and ID_Global_Max, plus three clinical 

variables, lesion number, LDH activity, and CK-MB 

activity) (Supplementary Table 8). The COVID-19 risk 

scores using radiomic features only and using radiomics 

and clinical variables were built as the final classifiers by 

summing these features multiplied with their respective 

coefficients. 

 

The COVID-19 risk scores developed were also 

represented by nomograms. The threshold of using the 

risk score using radiomic features only to classify 

COVID-19 is 0.2. The threshold of using the risk score 

with combined radiomic and clinical variables to 

classify COVID-19 is 0.5. DCA was applied to evaluate 

the clinical decision utility of the COVID-19 risk scores 

developed [34, 35]. The definition of net benefit in the 

DCA is described in Supplementary Appendix 1. 

 

For the risk score using clinical factors only, the 

multivariable logistic regression analysis was directly 

employed and only the variables with P < 0.001 in this 

process were selected to build the COVID-19 risk score, 

including lesion number, LDH activity, and CK-MB 

activity (Supplementary Table 9). The COVID-19 risk 

score using clinical factors only was also represented by 

a nomogram. The threshold using a nomogram to 

classify COVID-19 is 0.5. 

 

Patient-based random forest models 

 

As a comparison to the patient-based COVID-19 risk 

scores developed, three random forest classifiers using 

radiomic features only, clinical factors only, and a 

combination of radiomic features and clinical factors 

were also constructed using grid search with fourfold 

cross-validation with the following parameters: the 

number of trees in the forest (ntree) = 500 and the 

maximum depth of the tree (mtry) = 3. 

 

Lesion-wise COVID-19 risk score with radiomic 

features only 

 

A lesion-based COVID-19 risk score using radiomic 

features alone was also built so that potentially different 

infectious lesions could be characterized individually. 

In total, 772 COVID-19 lesions were extracted from 

COVID-19 patients and 83 non-COVID-19 lesions were 

extracted from related viral pneumonia patients in this 

study. 

 

The feature dimensionality reduction was conducted to 

select the optimal radiomic features. Briefly, a total of 
1766 radiomic features were extracted from each lesion 

individually. After eliminating the radiomic features 

with null values and employing PCA, 32 radiomic 
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features were used for the Mann–Whitney U test 

(Supplementary Table 10). The Mann–Whitney U test 

further reduced the feature dimensions from 32 to 20 

features (Supplementary Table 11). The LASSO 

regression further selected the 10 non-redundant and 

most robust radiomic features (Supplementary Table 12 

and Supplementary Figure 3). 

 

After the feature dimensionality was reduced, the 

multivariable logistic regression analysis was employed 

to choose the radiomic features with P < 0.001 to build 

the lesion-based COVID-19 risk score with radiomic 

features alone so that 10 features were further reduced  

to 3 features: GLCM_Correlation_(25,0,1), ID_Local_ 

Range_Std, and GOH_Percentile_(15) (Supplementary 

Table 13). The lesion-based COVID-19 risk score based 

on three features only was also represented by a 

nomogram. The threshold of using the risk score to 

classify COVID-19 is 0.5. DCA was also employed to 

evaluate the clinical decision utility of the nomogram 

developed [43, 44]. 

 

Lesion-based weighted support vector machine 

analysis 

 

As a comparison to the lesion-based COVID-19 risk 

score using radiomic features alone, a lesion-based 

WSVM analysis was also conducted using the 10 

radiomic features (Supplementary Table 12) selected by 

the LASSO. The data distribution between the COVID-

19 and non-COVID-19 lesions (approximately 9.3:1) 

was extremely imbalanced. To ensure the models with 

predictive power were equally balanced between 

COVID-19 and non-COVID-19, a previously described 

strategy was used to adjust the distribution imbalance 

between COVID-19 and non-COVID-19 lesions and 

construct the WSVM [45]. 

 

Briefly, the strategy is to separate the major class (i.e., 

the COVID-19 lesion group in this study) into small 

subset groups size-comparable to the minor class (i.e., 

the non-COVID viral pneumonia lesion group in this 

study) to achieve a balanced distribution between the 

major class and the minor class; the COVID-19 lesion 

groups was randomly decomposed into nine partitions, 

and all the non-COVID-19 lesions were combined with 

each partition of COVID-19 lesions to form an 

individual subset so that the ratio of the COVID-19 and 

non-COVID-19 lesions was nearly 1:1 in each 

individual subset. In each individual subset, the total 

lesions were randomly separated into the training set 

(70%) and the validation set (30%). 

 
The support vector machine (SVM) was trained 

independently with 10 radiomic features selected by the 

LASSO process within the training set of each subset. 

The weight for the SVM was determined via the recall 

value of the prediction using the validation set to reduce 

the false negative rate. In each individual subset, the 

SVM generated was validated with the validation set of 

each subset (i.e., the balanced data of each subset) as 

well as the validation set of the entire data to evaluate 

the classification performances (Supplementary Table 14 

and Supplementary Figure 4). 

 

Finally, all constituent SVMs were combined by 

summing constituent SVMs multiplied by weights 

determined, divided by the sum of the weights. The 

classical (metric) multidimensional scaling matrix 

(CMDScale) was used to demonstrate the correlation of 

features and COVID-19 for each constituent SVM. 

 

Performance evaluation and statistical analysis 

 

The AUC between the risk scores and the random forest 

models and the WSVM model was compared using the 

Delong test. Six metrics, including precision, recall 

(sensitivity), specificity, F1, accuracy, and AUC, were 

calculated from the receiver operating characteristic 

(ROC) curve with the model output. 

 

The classification performances of COVID-19 by the 

developed risk scores were assessed by ROC analysis. 

For numeric variables, mean and standard deviation 

were calculated and the differences between COVID-19 

and non-COVID-19 patient groups were compared 

using rank-sum tests. A two-tailed P value less than 

0.05 was regarded as statistically significant. 
 

Data sharing 
 

The datasets analyzed in this study will be available 

from the corresponding author (Xiadong Li, email: 

lixiadong2019@outlook.com) at the time of publication. 

Per institutional policy, the datasets are designated 

limited access. Upon receiving access, the investigator 

may only use them for the purposes outlined in the 

request to the data provider, and redistribution of the 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Appendix 1 
 

Definition of net benefit in the decision curve 

analysis 

 

The net benefit [1, 2] was defined by the following 

equation: 

 

Net Benefit TPR ω (1 ω)
1

t

t

P
FPR

P
=  −   −

−
 (1) 

 

Pt is the “threshold possibility” to stratify the patients 

into high-risk COVID-19 or low-risk non-COIVD-19 

groups. Patients with a probability of having COVID-19 

higher than Pt are high-risk patients. TPR is the true 

positive rate, defined as the proportion of high-risk 

patients in the patients having COVID-19. FPR is the 

false positive rate, defined as the proportion of high-risk 

patients in the patients having non-COVID-19. ω is the 

prevalence of having COVID-19, calculated by dividing 

the total patients number by the number of patients with 

COVID-19. In this study, the treat-all scheme assumes 

that all the patients were COVID-19; the treat-none 

scheme assumes that all the patients were non-COVID-

19. In the condition of “treat none”, no patient is 

classified as high risk, both the TPR and FPR are zero, 

so the Net Benefit is zero. In the condition of “treat all”, 

all patients are classified as high risk COVID-19 

(TPR=FPR=1), so the Net Benefit is calculated as 

 

Net Benefit ω (1 ω)
1

1 ω
1

1

t
Treat Everyone

t

t

P

P

P

= −  −
−

−
= +

−

 (2) 

 

, which is a monotonically decreasing dash-line curve in 

the figure. 
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Supplementary Appendix 2 
 

The procedure of using the nomogram of the risk 

score combining radiomic features and clinical 

factors 

 

This is the patient-based risk score integrating 2 

radiomic features and 3 clinical variables. For 

example, a suspicious patient was found having 

 the following radiomic features and clinical  

factors detected/calculated: lesions numbers = 5, 

GLRM_LRLGE_(25,90) = 0.3, ID_Global_Max = 

2000, lactate dehydrogenase =  750 u/mg, creatine 

kinase isoenzymes = 10 ug/L. The values in the Points 

line in the 1st row corresponding to these radiomic 

features and clinical factors are 28, 58, 17, 32, 48. As 

such, the total point adding all the values in the Points 

line is 183 in the Total points line in the 7th row. So, 

the patient's risk of COVID-19 can be calculated from 

this nomogram with a risk score close to 0.95. 

Alternatively, all radiomic features and clinical 

factors detected/calculated can be plugged into the 

risk score equation to get the score value: 

 

The patient based risk scorecombining radiomics

and clinical features

114.053 9.529 lesion number 122.045

GLRLM_LRLGE_(25,90) 0.0196

ID_Global_Max 0.334

lactate dehydrogenase 7.593

creatine kinaseisoenzymes

1

−

= − +  +

 +

 +

 −



= − 14.053 9.529 5 122.045

0.3 0.0196 2000 0.334 750

7.593 10 183.9755

+  +

 +  + 

−  =

(3) 

 

The score of 183.9755 is corresponding to 0.95 on the 

COVID-19 Risk line in the 8th row of the nomogram. 
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Supplementary Appendix 3  
 

The influence of bias induced in the boundary and 

volume contoured in the manual delineating process 

on the radiomics values calculated 

 

To further verify the repeatability of two features 

GLRLM_LRLGE_ (25, 90) and ID_Global_Max 

selected in the construction of patient-based risk scores 

in this study, a verification study was conducted. A  

CT data set from one COVID-19 patient was used  

for delineation by five different radiologists and the 

differences of volumes and surface areas caused by 

different delineations were calculated (Supplementary 

Figure 6). The 5 volumes-of-interest (VOIs) delineated 

were also used for the GLRLM_LRLGE_ (25, 90) and 

ID_Global_Max feature extraction and calculation. 

Three different tools (2 open sources ((image biomarker 

explorer (IBEX) [3] and Pyradiomics [4]) and 1 in-

house Matlab codes) were used to extract and calculate 

the radiomic feature values of the GLRLM_LRLGE_ 

(25, 90) and ID_Global_Max. The patient-based 

COVID-19 risk score using radiomic features only was 

calculated using the radiomic features extracted from 5 

VOIs contoured according to the formula developed in 

this study (Equation 5). The results are shown in 

Supplementary Table 15 as follows. 

 
The patient-based risk scoreusing radiomic features only

3.785 19.563 GLRLM_LRLGE_(25,90) 0.002

ID_Global_Max

= − +  +



 

 

As shown in Supplementary Table 15, the VOI 

delineation biases induced by different radiologists had 

a relatively small impact on the radiomic feature values 

of GLRLM_LRLGE_ (25, 90) and ID_Global_Max as 

well as the COVID-19 risk score values calculated. In 

addition, the feature extractions on the VOIs contoured 

using different tools had not significantly affected the 

calculation of COVID-19 risk score, which could be 

considered to be a good repeatability. 

 

Furthermore, the same verification study was also 

repeated on three radiomic features identified in the 

lesion based analysis and the results were shown in 

Supplementary Table 16. Similarly, the VOI delineation 

biases induced by different radiologists had a relatively 

small impact on the radiomic feature values of 

GOH_Percentile_(15), GLCM_Correlation_(25,0,1) and 

ID_Local_range_std as well as the COVID-19 risk score 

values calculated. In addition, the feature extractions on 

the VOIs contoured using different tools had not 

significantly affected the calculation of COVID-19  

risk score. 
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Supplementary Figures 
 

 

 
 

Supplementary Figure 1. The LASSO process to select the radiomic features for the construction of the patient-based risk 
score using radiomic features only. (A) The radiomic features selection procedure using LASSO regression method. To determine the 

best features combination for building the risk score, the control parameter λ value in the LASSO model was selected via 4-fold cross-
validation with minimum criteria. The x-axis is the value of log (λ) and the y-axis is the binominal deviance in the 4-fold cross validation 
method 100 times. The upper x-axis is the number of non-zero-coefficient features with a given λ. The red curve indicated the average 
binominal deviance value with the vertical bars showing the upper and lower boundaries. The left vertical dotted line defined the λ with the 
least binomial deviance. The right vertical dotted line indicates the largest value of λ such that the binominal deviance is within one standard 
error of the minimum binominal deviance. (B) The LASSO coefficient profiles of the radiomic features. The figure shows the feature 
coefficient change with the tuning of λ value. The dotted line was plotted at the λ value determined in (A) resulting 16 non-zero-coefficient 
radiomic features. 
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Supplementary Figure 2. The LASSO process to select the radiomics features and clinical variables for the construction of the 
patient-based risk score combining radiomic features and clinical variables. (A) The radiomic features and clinical variables 
selection procedure using LASSO regression method. To determine the best features combination for building the risk score, the control 
parameter λ value in the LASSO model was selected via 4-fold cross-validation with minimum criteria. The x-axis is the value of log (λ) and the 
y-axis is the binominal deviance in the 4-fold cross validation method 100 times. The upper x-axis is the number of non-zero-coefficient 
features with a given λ. The red curve indicated the average binominal deviance value with the vertical bars showing the upper and lower 
boundaries. The left vertical dotted line defined the λ with the least binomial deviance. The right vertical dotted line indicates the largest 
value of λ such that the binominal deviance is within one standard error of the minimum binominal deviance. (B) The LASSO coefficient 
profiles of the 17 radiomic features and clinical variables. The figure shows the feature coefficient change with the tuning of λ value. The 
dotted line was plotted at the λ value determined in (A) resulting 5 non-zero-coefficient radiomic features and clinical variables. 
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Supplementary Figure 3. The LASSO process to select the radiomic features for the construction of lesion-based risk score 
using radiomic features alone. (A) The radiomic features selection procedure using LASSO regression method. To determine the best 

features combination for building the risk score, the control parameter λ value in the LASSO model was selected via 4-fold cross-validation 
with minimum criteria. The x-axis is the value of log (λ) and the y-axis is the binominal deviance in the 4-fold cross validation method 100 
times. The upper x-axis is the number of non-zero-coefficient features with a given λ. The red curve indicated the average binominal deviance 
value with the vertical bars showing the upper and lower boundaries. The left vertical dotted line defined the λ with the least binomial 
deviance. The right vertical dotted line indicates the largest value of λ such that the binominal deviance is within one standard error of the 
minimum binominal deviance. (B) The LASSO coefficient profiles of the radiomic features. The figure shows the feature coefficient change 
with the tuning of λ value. The dotted line was plotted at the λ value determined in (A) resulting the 10 non-zero-coefficient radiomic 
features. 
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Supplementary Figure 4. The correlation of radiomics features and COVID-19 for each constituent SVM. (A, C, E, G, I, K, M, O, 

Q): The heat maps of correlation of radiomics features and COVID-19 for 9 individual constituent SVM. (B, D, F, H, J, L, N, P, R): The classical 
(metric) multidimensional scaling matrix to demonstrate the discriminative abilities of the individual constituent SVM to classify COVID-19 
and non-COVID-19 using 9 constituent SVM individually. Abbreviations: SVM, support vector machine. 
 

 
 

Supplementary Figure 5. The geographic distribution of 130 radiologists from 10 provinces in China including Hubei 
province, the epicenter of COVID-19 outbreak in China. 
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Supplementary Figure 6. Segmentations from 5 radiologists to delineate the volumes of interest in the same COVID-19 
patient. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 15, 16. 

 

Supplementary Table 1. The 32 radiomic features selected by principal component analysis (PCA) for dimensionality 
reduction to construct the patient-based risk score using radiomic features only. 

Radiomic features Coefficients Cumulative% Explainable variance ratio% 

Shape_Convex 0.913  37.116 37.116 

Shape_Convex_Hull_Volume 0.926  54.347 17.231 

GOH_Percentile_(15) 0.933  66.221 11.874 

GOH_Percentile_(50) 0.979  75.455 9.234 

GLCM_Cluster_Prominence_(25,333,4) 0.901  80.369 4.914 

GLCM_Cluster_Prominence_(25,315,4) 0.972  84.221 3.852 

GLCM_Cluster_Shade_(25,333,4) 0.754  86.194 1.973 

GLCM_Cluster_Shade_(25,315,4) 0.829  87.825 1.631 

GLCM_Cluster_Shade_(25,315,7) 0.936  89.214 1.389 

GLCM_Contrast_(25,0,10) 0.689  90.605 1.391 

GLCM_Contrast_(25,90,7) 0.757  91.711 1.106 

GLCM_Contrast_(25,270,4) 0.837  92.582 0.871 

GLCM_Correlation_(25,0,1) 0.306  93.401 0.819 

GLCM_Correlation_(25,0,4) 0.954  94.124 0.723 

GLCM_Correlation_(25,90,4) 0.661  94.813 0.689 

GLCM_Difference_Entropy_(25,333,1) 0.396 95.446 0.633 

GLCM_Dissimilarity_(25,333,7) 0.925  95.967 0.521 

GLCM_Energy_(25,45,4) 0.931  96.548 0.581 

GLCM_Energy_(25,45,7) 0.486  96.985 0.437 

GLCM_Energy_(25,135,4) 0.654  97.386 0.401 

GLCM_Information_Measure_Corr1_(25,0,1) 0.671  97.782 0.396 

GLCM_Information_Measure_Corr2_(25,315,1) 0.432  98.097 0.315 

GLCM_Inverse_Diff_Moment_Norm_(25,135,4) 0.779  98.395 0.298 

GLCM_Inverse_Diff_Moment_Norm_(25,225,4) 0.828  98.672 0.277 

GLCM_Inverse_Diff_Moment_Norm_(25,270,7) 0.669  98.884 0.212 

GLCM_Inverse_Variance_(25,225,4) 0.534 99.093 0.209 

GLCM_Inverse_Variance_(25,315,4) 0.289  99.287 0.194 

GLCM_Max_Probability_(25,180,1) 0.275  99.454 0.167 

GLCM_Sum_Entropy_(25,180,7) 0.439  99.602 0.148 

ID_Kurtosis 0.354  99.74 0.138 

ID_Local_Range_Std 0.119  99.879 0.139 

IH_Percentile_Area_(30) 0.387  100 0.121 

The values in the brackets represent the parameters used to calculate that particular radiomic feature. 
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Supplementary Table 2. The 20 radiomic features plus 6 clinical variables selected by principal component analysis 
(PCA) for dimensionality reduction to construct the patient-based risk score combining radiomic features and clinical 
variables. 

Radiomic features and clinical variables Coefficients Cumulative% Explainable variance ratio% 

Lesion number 0.866 33.623 33.623 

Lactate dehydrogenase 0.829 44.588 10.965 

C-reactive protein 0.756 53.795 9.207 

Gender 0.932 61.926 8.131 

White blood cell 0.689 69.029 7.103 

D-dimers 0.832 75.902 6.873 

Shape_Compactness_(2) 0.911 81.423 5.521 

Shape_Convex_Hull_Volume 0.874 85.786 4.363 

Shape_Orientation 0.829 88.938 3.152 

Shape_Roundness 0.543 91.042 2.104 

GOH_Percentile_Area_(15) 0.886 92.476 1.434 

GOH_Percentile_Area_(70) 0.851 93.494 1.018 

GOH_Range 0.944 94.497 1.003 

GLCM_Cluster_Prominence_(25,333,4) 0.756 95.499 1.002 

GLCM_Cluster_Shade_(25,333,4) 0.813 96.400 0.901 

GLCM_Correlation_(25,333,1) 0.925 97.143 0.743 

GLCM_Correlation_(25180,7) 0.866 97.620 0.477 

GLCM_Difference_Entropy_(25,333,1) 0.862 98.081 0.461 

GLCM_Information_Measure_Corr_(2,25,333,7) 0.642 98.533 0.452 

GLCM_Max_Probability_(25,333,1) 0.473 98.845 0.312 

GLCM_Max_Probability_(250,7) 0.455 99.078 0.233 

GLRLM_Long_Run_Low_Gray_Level_Empha_(2590) 0.856 99.289 0.211 

ID_Global_Max 0.865 99.498 0.209 

ID_Local_Entropy_Std 0.674 99.699 0.201 

ID_Percentile_(30) 0.498 99.863 0.164 

IH_Percentile_(30) 0.563 100.000 0.137 

The values in the brackets represent the parameters used to calculate that particular radiomic feature. 
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Supplementary Table 3. The 20 radiomic features selected by the Mann-Whitney U test for dimensionality reduction 
to construct the patient-based risk score using radiomic features only. 

Radiomic feature AUC 95% CI P 

Shape_Convex_Hull_Volume 0.704 0.664-0.808 0.000 

GOH_Percentile_(15) 0.890 0.828-0.921 0.000 

GOH_Percentile_(50) 0.688 0.618-0.778 0.321 

GLCM_Cluster_Prominence_(25,333,4) 0.544 0.464-0.632 0.467 

GLCM_Cluster_Prominence_(25,315,4) 0.509 0.458-0.613 0.218 

GLCM_Cluster_Shade_(25,315,7) 0.438 0.367-0.557 0.000 

GLCM_Correlation_(25,0,1) 0.853 0.803-0.903 0.000 

GLCM_Contrast_(25,0,1) 0.972 0.912-0.998 0.000 

GLCM_Contrast_(25,270,4) 0.781 0.713-0.872 0.000 

GLCM_Difference_Entropy_(25,333,1) 0.940 0.876-0.984 0.000 

GLCM_Dissimilarity_(25,333,7) 0.532 0.429-0.613 0.311 

GLCM_Energy_(25,135,4) 0.557 0.465-0.604 0.231 

GLCM_Energy_(25,225,4) 0.532 0.487-0.612 0.367 

GLCM_Information_Measure_Corr1_(25,0,1) 0.623 0.539-0.719 0.000 

GLCM_ Information_Measure_Corr2_(25,315,1) 0.567 0.509-0.633 0.000 

GLCM_Inverse_Diff_Moment_Norm_(25,90,7) 0.540 0.512-0.634 0.000 

GLCM_Inverse_Diff_Moment_Norm_(25,270,7) 0.677 0.621-0.759 0.000 

GLCM_Sum_Entropy_(25,180,7) 0.684 0.589-0.704 0.000 

ID_Kurtosis 0.734 0.633-0.811 0.000 

ID_Local_Range_Std 0.976 0.909-0.994 0.216 

The values in the brackets represent the parameters used to calculate that particular radiomic feature. 
 

Supplementary Table 4. The 11 radiomic features and 6 clinical variables selected by the Mann-Whitney U test for 
dimensionality reduction to construct COVID-19 risk score using radiomic features and clinical variables. 

Radiomic features and clinical variables AUC 95% CI P Value 

Lesion number 0.956 0.909-0.994 0.000 

Gender 0.463 0.274-0.554 0.673 

White blood cell 0.394 0.369-0.551 0.421 

C-reactive protein 0.674 0.593-0.751 0.000 

Lactate dehydrogenase 0.887 0.804-0.915 0.000 

Creatine kinase isoenzyme 0.069 0.036-0.081 0.000 

Shape_Compactness_(2) 0.365 0.278-0.434 0.003 

GOH_Range 0.678 0.576-0.717 0.000 

GLCM_Cluster_Prominence_(25,333,4) 0.604 0.512-0.723 0.004 

GLCM_Correlation_(25,333,1) 0.287 0.209-0.353 0.000 

GLCM_Difference_Entropy_(25,333,1) 0.724 0.667-0.771 0.000 

GLCM_MaxProbability_(250,7) 0.365 0.312-0.423 0.009 

GLRLM_LRLGE_(25,90) 0.767 0.676-0.812 0.000 

ID_GlobalMax 0.791 0.695-0.853 0.000 

ID_Percentile_(30) 0.368 0.311-0.467 0.001 

IH_Percentile_(30) 0.303 0.286-0.431 0.003 

IH_Percentile_Area 0.387 0.271-0.463 0.000 

The values in the brackets represent the parameters used to calculate that particular radiomic feature. 
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Supplementary Table 5. The 16 radiomic feature selected by the LASSO for 
dimensionality reduction to construct the patient-based risk score using 
radiomic features only. 

Radiomic feature Lambda 

Intercept 1.04E-02 

Shape_Convex_Hull_Volume 2.07E-01 

GOH_Percentile_(15) -8.58E-02 

GOH_Percentile_(50) -4.07E-05 

GLCM_AutoCorrelation(250,1) -3.58E-06 

GLCM_ClusterProminence(25,315,4) -2.02E-05 

GLCM_ClusterShade(25,315,4) 4.63E-02 

GLCM_Correlation_(25,0,1) 4.04E-01 

GLCM_Difference_Entropy_(25,333,1) -4.26E-01 

GLCM_Dissimilarity_(25,333,7) 6.11E+02 

GLCM_Information_Measure_Corr1_(25,0,1) 1.49E+01 

GLCM_Inverse_Diff_Moment_Norm_(25,90,7) 7.88E+01 

GLCM_Inverse_Diff_Moment_Norm_(25,270,7) 7.91E-13 

GLCM_InverseDiffMomentNorm(25,270,4) 3.54E+00 

GLCM25180_7SumEntropy -1.83E-01 

ID_Kurtosis 3.45E-02 

ID_Local_Range_Std 1.04E-02 

The values in the brackets represent the parameters used to calculate that particular 
radiomic feature. 

 

Supplementary Table 6. The 2 radiomic features and 3 clinical 
variables selected by the LASSO for dimensionality reduction to 
construct COVID-19 risk score using radiomic features and clinical 
variables. 

Radiomic features and clinical variables Lambda 

Intercept -1.088064e+00 

Lesion number 3.450725e-01 

Lactate dehydrogenase 4.697555e-01 

Creatine kinase isoenzyme 3.636614e-05 

GLRLM_LRLGE_(25,90) 5.842366e-03 

ID_GlobalMax -1.605967e-01 

The values in the brackets represent the parameters used to calculate that 
particular radiomic feature. 

 

Supplementary Table 7. The 2 radiomic features selected by the multivariable logistic regression to construct the 
patient-based risk score using radiomic features only in the training set. 

 Coef S.E. Wald Z Pr(>|Z|) AUC 95% CI  

Intercept -3.785  27.834 -4.25 0.898 .. .. 

GLRLM_LRLGE_(25, 90) 19.563  175.031 7.27 <0.0001 0.813 0.698-0.876 

ID_Global_Max 0.002  0.017 0.14 0.002 0.853 0.668-0.814 

The values in the brackets represent the parameters used to calculate that particular radiomic feature. 
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Supplementary Table 8. The 2 radiomic features and 3 clinical variables used by the multivariable logistic regression 
to construct the COVID-19 risk score using radiomic features and clinical variables in training set. 

 Coef S.E. Wald Z Pr(>|Z|) AUC 95% CI 

Intercept -114.053 559.175 -0.11 0.765 .. .. 

Lesion number 9.311 31.132 9.59 <0.0001 0.823 0.793-0.906 

GLRLM_LRLGE_(25, 90) 122.045 687.176 2.14 <0.0001 0.718 0.624-0.845 

ID_Global_Max 0.0196 0.045 3.08 0.001 0.786 0.667-0.822 

Lactate dehydrogenase 0.334 2.063 7.21 <0.0001 0.861 0.779-0.916 

creatine kinase isoenzymes -7.593 38.179 -6.23 <0.0001 0.856 0.793-0.991 

The values in the brackets represent the parameters used to calculate that particular radiomic feature. 

 

Supplementary Table 9. The 3 clinical variables used by the multivariable logistic regression to construct the patient-
based risk score using clinical variables only in the training set. 

 Coef S.E. Wald Z Pr(>|Z|) AUC 95% CI  

Intercept -15.680  134.812 -8.13 0.898 .. .. 

Lesion number 2.833  17.532 2.31 <0.0001 0.812 0.749-0.917 

Lactate dehydrogenase 0.104  1.337 1.19 <0.0001 0.857 0.813-0.906 

creatine kinase isoenzymes -1.674  11.294 -1.76 <0.0001 0.844 0.794-0.974 
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Supplementary Table 10. The 32 radiomics features selected by principal component analysis (PCA) for 
dimensionality reduction to construct lesion-based risk score using radiomic features only. 

Radiomic Features Coefficients Cumulative% Explainable variance ratio% 

Shape_Convex 0.919  36.680  36.680  

Shape_Convex_Hull_Volume 0.977  19.417  56.098  

GOH_Percentile_(15) 0.867  10.496  66.593  

GOH_Percentile_(50) 0.867  9.244  75.837  

GLCM_Cluster_Prominence_(25,333,4) 0.912  4.470  80.307  

GLCM_Cluster_Prominence_(25,315,4) 0.858  2.653  82.961  

GLCM_Cluster_Shade_(25,333,4) 0.673  1.839  84.800  

GLCM_Cluster_Shade_(25,315,4) 0.895  1.568  86.368  

GLCM_Cluster_Shade_(25,315,7) 0.920  1.319  87.687  

GLCM_Contrast_(25,0,10) 0.494  1.255  88.942  

GLCM_Contrast_(25,90,7) 0.695  1.161  90.103  

GLCM_Contrast_(25,270,4) 0.817  1.012  91.116  

GLCM_Correlation_(25,0,1) 0.208  0.922  92.038  

GLCM_Correlation_(25,0,4) 0.850  0.844  92.882  

GLCM_Correlation_(25,90,4) 0.659  0.785  93.667  

GLCM_Difference_Entropy_(25,333,1) 0.569  0.734  94.401  

GLCM_Dissimilarity_(25,333,7) 0.819  0.686  95.087  

GLCM_Energy_(25,45,4) 0.878  0.658  95.745  

GLCM_Energy_(25,45,7) 0.401  0.647  96.392  

GLCM_Energy_(25,135,4) 0.418  0.634  97.026  

GLCM_Information_Measure_Corr1_(25,0,1) 0.618  0.595  97.621  

GLCM_Information_Measure_Corr2_(25,315,1) 0.412  0.536  98.157  

GLCM_Inverse_Diff_Moment_Norm_(25,135,4) 0.468  0.515  98.673  

GLCM_Inverse_Diff_Moment_Norm_(25,225,4) 0.781  0.383  99.056  

GLCM_Inverse_Diff_Moment_Norm_(25,270,7) 0.676  0.132  99.189  

GLCM_Inverse_Variance_(25,225,4) 0.476  0.107  99.295  

GLCM_Inverse_Variance_(25,315,4) 0.178  0.093  99.388  

GLCM_Max_Probability_(25,180,1) 0.211  0.086  99.474  

GLCM_Sum_Entropy_(25,180,7) 0.365  0.081  99.555  

ID_Kurtosis 0.313  0.064  99.620  

ID_Local_Range_Std 0.121  0.045  99.665  

IH_Percentile_Area_(30) 0.371  0.043  99.708  

The values in the brackets represent the parameters used to calculate that particular radiomic feature. 
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Supplementary Table 11. The 20 radiomics features selected by the Mann-Whitney U test for dimensionality 
reduction to construct the lesion-based risk score using radiomic features only. 

Radiomic feature AUC 95% CI P 

Shape_Convex_Hull_Volume 0.715 0.618-0.757 0.000 

GOH_Percentile_(15) 0.837 0.768-0.954 0.000 

GOH_Percentile_(50) 0.669 0.607-0.779 0.172 

GLCM_Cluster_Prominence_(25,333,4) 0.499 0.401-0.681 0.305 

GLCM_Cluster_Prominence_(25,315,4) 0.480 0.396-0.557 0.172 

GLCM_Cluster_Shade_(25,315,7) 0.441 0.348-0.567 0.000 

GLCM_Correlation_(25,0,1) 0.809 0.731-0.898 0.001 

GLCM_Contrast_(25,0,1) 0.884 0.715-0.918 0.000 

GLCM_Contrast_(25,270,4) 0.713 0.647-0.862 0.003 

GLCM_Difference_Entropy_(25,333,1) 0.837 0.778-0.925 0.000 

GLCM_Dissimilarity_(25,333,7) 0.493 0.418-0.553 0.551 

GLCM_Energy_(25,135,4) 0.511 0.449-0.654 0.106 

GLCM_Energy_(25,225,4) 0.474 0.388-0.591 0.493 

GLCM_Information_Measure_Corr1_(25,0,1) 0.570 0.469-0.670 0.001 

GLCM_ Information_Measure_Corr2_(25,315,1) 0.529 0.844-0.635 0.000 

GLCM_Inverse_Diff_Moment_Norm_(25,90,7) 0.542 0.684-0.627 0.000 

GLCM_Inverse_Diff_Moment_Norm_(25,270,7) 0.712 0.667-0.749 0.001 

GLCM_Sum_Entropy_(25,180,7) 0.732 0.675-0.138 0.000 

ID_Kurtosis 0.714 0.677-0.845 0.000 

ID_Local_Range_Std 0.932 0.889-0.989 0.305 

The values in the brackets represent the parameters used to calculate that particular radiomic feature. 
 

Supplementary Table 12. The 10 radiomic features selected by the LASSO for 
dimensionality reduction to construct the lesion-based risk score using radiomic 
features only. 

Radiomic feature Lambda 

Intercept -5.023 

Shape_Convex_Hull_Volume 0.006 

GOH_Percentile_(15) 0.011 

GLCM_Correlation_(25,0,1) -3.858 

GLCM_Difference_Entropy_(25,333,1) 1.916 

GLCM_Dissimilarity_(25,333,7) -0.080 

GLCM_Information_Measure_Corr1_(25,0,1) 0.595 

GLCM_Inverse_Diff_Moment_Norm_(25,90,7) 0.498 

GLCM_Inverse_Diff_Moment_Norm_(25,270,7) 0.001 

ID_Kurtosis 0.035 

ID_Local_Range_Std 0.004 

The values in the brackets represent the parameters used to calculate that particular 
radiomic feature. 
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Supplementary Table 13. The 3 radiomic features used by the multivariable logistic regression to construct the 
lesion-based risk score using radiomic features only. 

  Coefficient Standard error Wald Z Pr(>|Z|) AUC 95% CI 

Intercept -55.389  62.895  -0.976  0.413  - - 

GLCM_Correlation_(25, 0, 1) -6.769  5.811  -5.023  <0.0001 0.718  0.665-0.874 

ID_Local_Range_Std 0.033  0.002  3112  <0.0001 0.753  0.633-0.819 

GOH_Percentile_(15) 0.136  0.052  4.153  0.002  0.798  0.771-0.804 

 

Supplementary Table 14. The diagnostic performance of individual 9 constituent SVMs. 

9 Individual constituent SVM Validation dataset Precision Recall F1 AUC 95% CI    P value 

SUB-SVM1 G1 1.000  0.846  0.917  0.909 0.895-0.923 

SUB-SVM2 G2 0.952  1.000  0.976  0.963 0.934-0.978 

SUB-SVM3 G3 1.000  0.833  0.909  0.9 0.892-0.912 

SUB-SVM4 G4 1.000  0.871  0.931  0.889 0.878-0.892 

SUB-SVM5 G5 1.000  0.839  0.912  0.96 0.943-0.965 

SUB-SVM6 G6 1.000  0.867  0.929  0.937 0.923-0.945 

SUB-SVM7 G7 1.000  0.893  0.943  0.944 0.954-0.962 

SUB-SVM8 G8 1.000  0.906  0.951  0.933 0.925-0.943 

SUB-SVM9 G9 1.000  0.879  0.935  0.929 0.904-0.937 

SUB-SVM-average AVERAGE 0.995  0.882  0.934  0.929  0.912-0.934   0.231 

SVM TOTAL 0.962  0.979  0.970  0.882 0.823-0.915 

Model-G1 TOTAL 1.000  0.862  0.926  0.920  0.907-0.933 

Model-G2 TOTAL 1.000  0.877  0.935  0.930  0.918-0.943 

Model-G3 TOTAL 1.000  0.867  0.929  0.924  0.913-0.938 

Model-G4 TOTAL 1.000  0.868  0.930  0.924  0.912-0.937 

Model-G5 TOTAL 1.000  0.872  0.932  0.927  0.914-0.939 

Model-G6 TOTAL 1.000  0.873  0.932  0.928  0.915-0.940 

Model-G7 TOTAL 1.000  0.873  0.932  0.928  0.915-0.940 

Model-G8 TOTAL 1.000  0.869  0.930  0.925  0.912-0.938 

Model-G9 TOTAL 1.000  0.875  0.933  0.923  0.906-0.940 

Model-G-average AVERAGE 1.000  0.871  0.931  0.925  0.912-0.939   0.226 

WSVM TOTAL 0.999  0.884  0.968  0.958  0.943-0.967   0.000 

The COVID-19 lesion groups was randomly decomposed into 9 partitions, and all the non-COVID-19 lesions were combined 
with each partition of COVID-19 lesions to form an individual subset (i.e., group1 (G1) –group9 (G9)). 
P values: P = 0.231 represents that there are no significant differences between SUB-SVMi (i=1-9); P = 0.226 represents that 
there are no significant differences between Model-Gi (i=1-9); P = 0.000 represents that there are significant differences 
between SUB-SVM-average, Model-G-average and WSVM. 
Abbreviations: WSVM, weighted support vector machine. 
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Supplementary Table 15. The comparison of the variation of contours by different radiologists and its impact on the 
calculation of COVID-19 risk score using radiomic feature only (patient based analysis). 

 

Supplementary Table 16. The comparison of the variation of contours by different radiologists and its impact on the 
calculation of COVID-19 risk score using radiomic feature only (lesion based analysis). 

 


