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INTRODUCTION 
 

Benefiting from novel immunosuppressive agents and 

improved post-transplant management, kidney 
transplant recipients (KTRs) achieved excellent short-

term survival, with a 1-year graft survival rate 

exceeding 95% [1]. Unfortunately, long-term graft 

survival has not shown synchronous improvement and 

remains a critical challenge for both patients and 

clinicians [2]. Among a variety of factors that 

contribute to such undesirable outcomes, the lack of a 

robust prediction system for late renal allograft loss is 

an important issue that needs to be addressed first. 

Without reliable evidence of risk stratification, 

clinicians cannot carry out efficient medical inter-

vention in advance (such as modifying follow-up 
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strategies and adjusting immunosuppression regimens) 

to prevent the upcoming deterioration of allograft 

function. In addition, prospective clinical trials on 

novel preventive or therapeutic agents might be 

limited due to the absence of early surrogate endpoints 

that can precisely estimate the risk of late graft failure 

in KTRs. Therefore, accurately predicting and 

identifying the probability of allograft loss pre-

emptively is essential to guiding individualized 

clinical therapeutic decisions in KTRs. 

 

Although a relatively large number of prognostic 

models have been developed and validated to predict 

graft failure in KTRs [3, 4], few have been widely 

implemented in clinical settings due to certain 

limitations. For example, some promising models were 

developed and validated on the basis of populations 

from Occident medical centers [5–7], where patients’ 

genetic backgrounds, transplant-related management 

strategies, and health insurance are different from those 

in Eastern countries. Such a gap may affect their general 

applicability among transplant centers around the world. 

Further rigorous validation is necessary or, as an 

alternative, new prognostic models should be 

constructed on the basis of local patients to facilitate 

native clinical application. In addition, many models 

only include static predictors measured at trans-

plantation, such as recipient and donor demographics 

and transplant-related parameters [8, 9], or from later on 

during follow-up, for instance, renal function markers 

(serum creatinine and urine protein) at a single referring 

post-transplant point [10–12]. However, limited studies 

utilized omnibus longitudinal data as predictors [6] 

despite the fact that this data is the main source of 

clinical decision-making. Recently, some notable 

findings demonstrated that routine laboratory index-

derived markers that reflect the overall state of a certain 

period time could serve as valuable predictors for poor 

outcomes in KTRs. Higher tacrolimus (TAC) trough 

concentration derived markers, TAC-intrapatient 

variability (TAC-IPV or TAC-CV) [13, 14], and TAC-

time in therapeutic range (TAC-TTR) [15], were 

extensively proven to be strongly linked with 

subsequent composite poor outcomes in transplant 

patients. Furthermore, estimated glomerular filtration 

rate (eGFR) related novel markers including eGFR-

coefficient of variation (eGFR-CV)  [16, 17],  as well as 

inflammatory markers calculated from complete blood 

count (CBC) data, such as neutrophil-to-lymphocyte 

ratio (NLR), platelet-to-lymphocyte ratio (PLR), and 

monocyte-to lymphocyte  ratio (MLR) [18–20], were 

shown to be associated with adverse events in KTRs. 

Therefore, we hypothesized that adding these relatively 
new markers to prognostic models may provide 

additional information to improve the risk assessment of 

allograft loss in KTRs. 

Taking into account the excellent 1-year graft survival 

rate and the ubiquitous follow-up strategy where CBC, 

urine routine test, renal function, and TAC trough 

concentration were regularly monitored in a majority of 

KTRs, we adopted the above easily obtained laboratory 

test data from within the first 6 or 12 months post-

transplantation to generate new candidate predictors. 

The objective of our study was to develop and validate 

two prognostic nomogram models by combining 

laboratory data-derived risk factors with demographic 

and clinical variables for individually predicting the 

probability of 5-year kidney allograft survival in KTRs. 

In addition, to increase the practicability of these 

models, web servers and risk stratification systems were 

further established.  

 

RESULTS 
 

Characteristics of patients 
 

Of the initial 1971 KTRs, 1289 patients were included 

in the final study after multiple rounds of exclusion 

according to the established criteria (Figure 1A). 

Among the selected patients, 859 KTRs, with 53 KTRs 

suffering from 5-year graft loss, were randomly 

assigned to the training cohort, while the remaining 430 

KTRs, with 19 KTRs having confirmed 5-year graft 

loss, were included in the validation cohort. The 

median follow-up date for censored KTRs was 1239 

days in the training cohort and 1269 days in the 

validation cohort. The time point distribution of 

occurring graft loss in training and validation cohorts is 

displayed in Supplementary Figure 2. Additionally, 116 

KTRs in the training cohort and 52 KTRs in the 

validation cohort lacked height data, so multiple 

imputation methods incorporating gender, age, race, 

and outcomes were applied to impute appropriate 

values, and BMI was thereby generated for the 

following analysis. Table 1 presents the statistical 

comparison of patient demographics and laboratory 

variables between training and validation cohorts. In 

brief, the training cohort comprised a higher number of 

minorities and showed higher average levels of anemia-

related indicators (RBC, HGB, and HCT) within the 

first 6 or 12 months when compared to those in the 

validation cohort. No differences were observed 

regarding other variables. 
 

Feature selection  
 

The associations between candidate predictors 

consisting of 13 demographic and clinical variables and 

46 laboratory data-derived variables (23 calculated with 

0–6m data and 23 with 0–12m data)] and outcomes 

were preliminarily screened in univariate Cox 

regression analysis (Table 2). Of the 59 variables, 31 
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variables showed P value < 0.15 and were stratified 

based on optimal cut-off values obtained from X-tile 

analysis (Supplementary Figure 1). The stratified 

demographic and clinical variables (n = 6) combined 

with stratified 0–6m laboratory (n = 10) and 0–12m 

laboratory variables (n = 15) were grouped into model 1 

and model 2, respectively.  After LASSO regression 

analyses, 13 variables from model 1 and 12 variables 

from model 2 were separately entered into the 

multivariate Cox regression analysis (Figure 2A). 

Finally, 6 predictors (sex, age, BMI, urine protein level 

at month 6, eGFR-CV.1 to 6m, and neutrophil percent-

Mean.0to6m) were selected in the final model 1 and 7 

predictors (sex, age, BMI, urine protein level at month 

12, TAC-CV.0 to 12m, eGFR-CV.1 to 12m, and 

lymphocyte absolute number-Mean.0 to 12m) were 

included in the final model 2 (Figure 2B).  

 

Nomogram construction, assessment and validation

  

The results of prognostic model 1 and model 2 were 

visually mapped by nomograms to predict 3- and 5-year 

graft survival of KTRs (Figure 3A and 3D). To make 

these models easier to use, laboratory predictors can be 

calculated by simply inputting original test results into a 

web calculator available via https://docs.google.com/ 

spreadsheets/d/1IJX9YZBTON1xwVrNYp5PzcNpWQ1

CItGm-N_nDOKxbpk/edit?pli=1#gid=0. Web servers of 

nomograms can be accessed through https://yameili. 

shinyapps.io/model1for5yeargraftsurvival/ for model 1 

and https://yameili.shinyapps.io/model2for5yeragraft 

survival/ for model 2. Calibration plots of two nomo-

grams for the probability of 3- and 5-year graft survival 

showed good agreement between actual observations and 

nomogram predictions (Figure 3B, 3C and 3E, 3F). 

 

As summarized in Figure 4E, model 1 and model 2 

nomograms achieved good performances in predicting 

3- and 5-year graft survival as evidenced by C-indexes 

higher than 0.75 in both training and validation 

cohorts. In addition, model 2 showed better 

discriminative power than model 1 in the training set, 

but failed to be verified in the validation set. TD-AUC 

curves were performed to dynamically present the 

predictive abilities of nomograms at serial time points. 

All AUC values of model 1 (Figure 4A) and model 2 

(Figure 4C) were higher than 0.7 during the 

observation period in both the training and validation 

sets, showing good predictive power in predicting 

graft loss. Moreover, model 2 outperformed model 1 in 

the training cohort but showed similar predictive 

capacity to model 1 in the validation cohort. 

According to DCA plots (Figure 4B and 4D), when the 

threshold probability for a patient was within 0.0 to 

0.5, model 1 and model 2 nomograms showed more 

net benefit than “treat all” or “treat none” strategies, 

indicating that they were feasible to make valuable and 

profitable clinical judgments. 

 

 

 

 
Figure 1. Flow diagram of developing predictive nomograms for 5-year graft survival in KTRs. (A) Patients enrollment flowchart. 

(B) Candidate predictor and outcome data acquisition. (C) Predictor selection process. (D) Nomogram and web server construction. 

https://docs.google.com/%20spreadsheets/d/1IJX9YZBTON1xwVrNYp5PzcNpWQ1CItGm-N_nDOKxbpk/edit?pli=1#gid=0
https://docs.google.com/%20spreadsheets/d/1IJX9YZBTON1xwVrNYp5PzcNpWQ1CItGm-N_nDOKxbpk/edit?pli=1#gid=0
https://docs.google.com/%20spreadsheets/d/1IJX9YZBTON1xwVrNYp5PzcNpWQ1CItGm-N_nDOKxbpk/edit?pli=1#gid=0
https://yameili.shinyapps.io/model2for5yeragraftsurvival/
https://yameili.shinyapps.io/model2for5yeragraftsurvival/
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Table 1. Baseline clinical characteristics and laboratory indexes of patients in training and validation cohorts. 

Variables Training set (N = 859) Validation set (N = 430) P value 

Clinical variables 

Sex (M/F) 636/223 316/114 0.840 

Age (years) 32 (26–39) 31 (26–41) 0.472 

Race (Han/Tibetan/Others) 757/54/48 389 /33/8 0.006 

BMI (kg/m2) 20.76 (18.90–23.08) 20.41 (18.73–22.49) 0.091 

Pre-transplant Urine output (<100/100–400/400–

1000/>1000 ml) 327/255/184/93 160/129/93/48 0.992 

Dialysis type (None/Hemodialysis/Peritoneal 

dialysis) 62/734/63 32/370/28 0.858 

Dialysis duration (months) 11 (6–21) 11 (6–21) 0.577 

Donor type (Living-related/Living-

unrelated/Deceased) 700/65/94 353/30/47 0.929 

HLA mismatch (A, B, DR, DQ) 

(0–2/3–5/6–8) 126/602/131 52/310/68 0.450 

Hospitalization time (days) 25 (22–30) 24 (22–31) 0.883 

DGF (Y/N) 827/32 409/21 0.372 

Acute rejection (0 to 6m) (Y/N) 11/848 10/420 0.168 

Acute rejection (0 to 12m) (Y/N) 21/838 12/418 0.711 

Hospitalization number due to infection (0 to 6m) 

(Y/N) 95/764 35/395 0.116 

Hospitalization number due to infection (0 to 12m) 

(Y/N) 115/744 44/386 0.107 

Laboratory indexes within 6 months 

Urine protein at month 6   0.226 

– 390 217  

–/+ 286 144  

+ 153 57  

++ 22 9  

+++ 8 3  

TAC-Mean (0 to 6m) (ng/mL) 6.27 (5.32–6.93) 6.19 (5.25–6.87) 0.551 

TAC-CV (0 to 6m) (%) 31.99 (26.54–39.75) 33.73 (27.53–41.30) 0.060 

TAC-loLL (0 to 6m) (%) 23.08 (11.76–39.45) 23.31 (12.50–41.18) 0.328 

TAC-TTR (0 to 6m) (%) 66.67 (53.33–78.57) 64.71 (50.00–76.92) 0.162 

TAC-hiUL (0 to 6m) (%) 6.25 (0.00–13.33) 5.88 (0.00–13.33) 0.923 

eGFR-Mean (1 to 6m) (mL/min/1.73m2) 75.57 (64.26–86.56) 73.91 (63.65–86.44) 0.429 

eGFR-CV (1 to 6m) (%) 10.30 (8.17–13.53) 10.50 (8.30–13.68) 0.346 

Uric acid-Mean (0 to 6m) (umol/L) 327.67 (288.66–364.45) 326.77 (286.14–375.83) 0.647 

RBC-Mean (0 to 6m) (10^12/L) 4.48 (4.09–4.89) 4.38 (4.06–4.80) 0.030 

HGB-Mean (0 to 6m) (g/L) 131.35 (120.00–142.75) 128.50 (119.50–140.40) 0.037 

HCT-Mean (0 to 6m) (L/L) 0.41 (0.38–0.44) 0.40 (0.38–0.44) 0.036 

PLT-Mean (0 to 6m) (10^9/L) 179.18 (137.00–225.22) 178.82 (143.38–216.00) 0.868 

WBC-Mean (0 to 6m) (10^9/L) 6.99 (5.98–8.14) 6.98 (5.85–8.33) 0.932 

Neutrophil-Mean (0 to 6m) (%) 64.52 (59.41–69.08) 64.48 (59.83–69.00) 0.976 
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Lymphocyte-Mean (0 to 6m) (%) 25.36 (21.37–30.68) 25.53 (21.35–30.75) 0.788 

Monocyte-Mean (0 to 6m) (%) 7.33 (6.33–8.46) 7.21 (6.37–8.33) 0.461 

Neutrophil-Mean (0 to 6m) (10^9/L) 4.52 (3.65–5.37) 4.39 (3.67–5.43) 0.545 

Lymphocyte-Mean (0 to 6m) (10^9/L) 1.77 (1.37–2.19) 1.81 (1.38–2.19) 0.795 

Monocyte-Mean (0 to 6m) (10^9/L) 0.50 (0.41–0.59) 0.50 (0.41–0.59) 0.625 

NLR-Mean (0 to 6m) 2.75 (2.09–3.64) 2.75 (2.05–3.71) 0.967 

PLR-Mean (0 to 6m) 107.77 (79.12–148.30) 109.11 (79.56–147.51) 0.962 

MLR-Mean (0 to 6m) (%) 30.17 (23.64–38.77) 30.08 (22.98–40.20) 0.940 

Laboratory indexes within 12 months 

Urine protein at month 12   0.647 

– 355 185  

–/+ 279 149  

+ 157 68  

++ 51 22  

+++ 17 6  

TAC-Mean (0 to 12m) (ng/mL) 6.10 (5.34–6.67) 6.07 (5.24–6.70) 0.569 

TAC-CV (0 to 12m) (%) 32.89 (27.98–39.70) 33.68 (27.92–40.23) 0.431 

TAC-loLL (0 to 12m) (%) 20.69 (12.06–35.00) 21.98 (11.54–36.84) 0.513 

TAC-TTR (0 to 12m) (%) 68.75 (57.14–78.26) 67.76 (54.84–77.42) 0.227 

TAC-hiUL (0 to 12m) (%) 6.67 (0.00–13.04) 6.90 (2.50–13.33) 0.908 

eGFR-Mean (1 to 12m) (mL/min/1.73m2) 75.57 (64.88–86.85) 74.07 (63.74–86.29) 0.337 

eGFR-CV (1 to 12m) (%) 11.09 (9.03–14.05) 11.26 (9.18–14.21) 0.564 

Uric acid-Mean (0 to 12m) (umol/L) 340.96 (300.35–380.86) 340.96 (296.21–387.85) 0.834 

RBC-Mean (0 to 12m) (10^12/L) 4.62 (4.22–5.07) 4.50 (4.17–4.96) 0.021 

HGB-Mean (0 to 12m) (g/L) 135.06 (124.60–147.13) 132.26 (122.59–144.75) 0.022 

HCT-Mean (0 to 12m) (L/L) 0.42 (0.39–0.46) 0.42 (0.39–0.45) 0.015 

PLT-Mean (0 to 12m) (10^9/L) 175.95 (136.58–221.60) 179.14 (141.91–215.00) 0.921 

WBC-Mean (0 to 12m) (10^9/L) 7.07 (6.01–8.16) 7.03 (6.03–8.17) 0.958 

Neutrophil-Mean (0 to 12m) (%) 65.02 (60.07–69.17) 64.63 (60.17–69.14) 0.740 

Lymphocyte-Mean (0 to 12m) (%) 25.31 (21.28–30.38) 25.57 (21.35–30.29) 0.538 

Monocyte-Mean (0 to 12m) (%) 7.37 (6.43–8.40) 7.26 (6.38–8.30) 0.468 

Neutrophil-Mean (0 to 12m) (10^9/L) 4.59 (3.72–5.39) 4.46 (3.76–5.36) 0.547 

Lymphocyte-Mean (0 to 12m) (10^9/L) 1.76 (1.39–2.18) 1.80 (1.39–2.15) 0.762 

Monocyte-Mean (0 to 12m) (10^9/L) 0.50 (0.42–0.60) 0.50 (0.43–0.59) 0.551 

NLR-Mean (0 to 12m) 2.79 (2.17–3.71) 2.79 (2.16–3.70) 0.950 

PLR-Mean (0 to 12m) 106.71 (80.86–147.48) 107.53 (80.20–144.02) 0.906 

MLR-Mean (0 to 12m) (%) 30.42 (24.48–39.08) 30.68 (23.51–40.12) 0.897 

Abbreviations: BMI: body mass index; DGF: delayed graft function; HLA: human leukocyte antigen; TAC: tacrolimus; CV: 
coefficient of variation; loLL: lower than lower limit; TTR: time in therapeutic range; hiUL: higher than upper limit; RBC: red 
blood cell; HGB: hemoglobin; HCT: hematocrit; PLT: platelet; WBC: white blood cell; NLR; neutrophil to lymphocyte ratio; PLR: 
platelet to lymphocyte ratio; MLR: monocyte to lymphocyte ratio. 
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Figure 2. Predictive variable selection results in model 1 (clinical variables + months 0-6 lab-derived variables) and model 2 
(clinical variables + months 0-12 lab-derived variables) by LASSO regression and multivariate Cox regression analyses. (A) 

Preliminary selected variables in model 1 and model 2 by 5-fold cross-validation LASSO analysis. (B) Hazard ratio forest plots of final 
predictors in model 1 and model 2. 

 

 
 

Figure 3. Nomograms and calibration curves of model 1 (clinical variables + months 0-6 lab-derived variables) and model 2 
(clinical variables + months 0-12 lab-derived variables) for predicting 3- and 5-year graft survival in the training cohort. (A) 

Nomogram for model 1. (B–C). Calibration curves of the model 1 nomogram for 3- and 5-year graft survival. (D) Nomogram for model 2. (E–F) 
Calibration curves of the model 2 nomogram for 3- and 5-year graft survival. 
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Table 2. Univariate Cox hazards analysis of the training cohort. 

Variables HR (95%CI) P value 

Clinical variables 

Female 0.336 (0.144–0.786) 0.012 

Age (years) 0.964 (0.932–0.998) 0.037 

Race   

Han 1.000  

Tibetan 0.961 (0.299–3.09) 0.947 

Others 1.159 (0.360–3.729) 0.804 

BMI (kg/m2) 1.115 (1.031–1.206) 0.006 

Pre-transplant Urine output   

<100 ml 1.000  

100–400 ml 1.205 (0.652–2.225) 0.552 

400–1000 ml 0.450 (0.181–1.123) 0.087 

>1000 ml 0.733 (0.293–1.833) 0.506 

Dialysis type   

None 1.000  

Hemodialysis 1.781 (0.552–5.743) 0.334 

Peritoneal dialysis 1.952 (0.436–8.742) 0.382 

Dialysis duration (months) 0.993 (0.975–1.011) 0.431 

Donor type   

Living-related 1.000  

Living-unrelated (spouse) 1.105 (0.438–2.784) 0.833 

Deceased 1.116 (0.337–3.698) 0.857 

HLA mismatch (A, B, DR, DQ)   

0–2 1.000  

3–5 1.519 (0.647–3.569) 0.337 

6–8 0.789 (0.222–2.798) 0.713 

Hospitalization time (days) 1.026 (0.992–1.060) 0.134 

DGF 1.243 (0.302–5.114) 0.763 

Acute rejection (0 to 6m)  9.012 (2.763–29.396) <0.001 

Acute rejection (0 to 12m)  9.012 (2.763–29.396) <0.001 

Hospitalization number due to 

infection (0 to 6m) 
1.149 (0.491–2.689) 0.748 

Hospitalization number due to 

infection (0 to 12m) 
1.652 (0.830–3.289) 0.153 

Variables 
Laboratory indexes within 6 months Laboratory indexes within 12 months 

HR (95%CI) P value HR (95%CI) P value 

Urine protein at month 6/12     

– 1.000  1.000  

–/+ 1.080 (0.537–2.172) 0.829 0.953 (0.402–2.263) 0.914 

+ 1.947 (0.954–3.974) 0.067 2.703 (1.250–5.844) 0.012 
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++ 7.287 (2.888–18.390) <0.001 8.577 (3.912–18.805) <0.001 

+++ 8.967 (2.072–38.812) 0.003 9.496 (3.337–27.019) <0.001 

TAC-Mean (ng/mL) 0.975 (0.777–1.224) 0.831 0.893 (0.687–1.160) 0.395 

TAC-CV (%) 1.011 (0.992–1.030) 0.244 1.023 (1.005–1.040) 0.012 

TAC-loLL (%) 1.006 (0.994–1.019) 0.335 1.014 (0.999–1.028) 0.064 

TAC-TTR (%) 0.988 (0.975–1.002) 0.089 0.982 (0.967–0.998) 0.025 

TAC-hiUL (%) 1.017 (0.991–1.044) 0.208 1.006 (0.977–1.036) 0.701 

eGFR-Mean* (mL/min/1.73m2) 0.978 (0.961–0.995) 0.013 0.957 (0.939–0.975) <0.001 

eGFR-CV* (%) 1.043 (1.013–1.073) 0.004 1.078 (1.057–1.100) <0.001 

Uric acid-Mean (umol/L) 1.004 (1.000–1.008) 0.073 1.006 (1.002–1.011) 0.007 

RBC-Mean (10^12/L) 1.059 (0.674–1.662) 0.804 0.697 (0.447–1.084) 0.109 

HGB-Mean (g/L) 1.005 (0.989–1.022) 0.508 0.990 (0.975–1.005) 0.197 

HCT-Mean (L/L) 1.490 (0.006–361.852) 0.887 0.007 (0.000–1.238) 0.060 

PLT-Mean (10^9/L) 1.002 (0.998–1.006) 0.309 1.002 (0.998–1.007) 0.252 

WBC-Mean (10^9/L) 1.128 (0.974–1.306) 0.107 1.171 (1.008–1.361) 0.038 

Neutrophil-Mean (%) 1.034 (0.998–1.071) 0.067 1.000 (0.999–1.001) 0.677 

Lymphocyte-Mean (%)  0.965 (0.930–1.001) 0.059 1.000 (0.999–1.001) 0.685 

Monocyte-Mean (%) 0.867 (0.713–1.054) 0.152 1.000 (0.999–1.001) 0.755 

Neutrophil-Mean (10^9/L) 1.216 (1.018–1.451) 0.031 1.338 (1.127–1.588) 0.001 

Lymphocyte-Mean (10^9/L) 0.904 (0.632–1.292) 0.579 0.732 (0.479–1.118) 0.149 

Monocyte-Mean (10^9/L) 1.791 (0.255–12.583) 0.558 1.883 (0.259–13.693) 0.532 

NLR-Mean  1.083 (0.978–1.198) 0.126 1.192 (1.103–1.289) <0.001 

PLR-Mean 1.002 (0.999–1.005) 0.295 1.004 (1.001–1.008) 0.017 

MLR-Mean (%) 1.007 (0.998–1.027) 0.448 1.020 (1.001–1.039) 0.035 

Note: *eGFR-Mean and –CV values were calculated based on month 1 to 6 eGFR data, other variables were based on month 0 
to 6 data. 

 

Performance of the nomogram in stratifying risk of 

KTRs 

 

In the training cohort, patients were classified into three 

risk groups based on total risk scores calculated by 

model 1 (low-risk, ≤137.4; moderate-risk, 137.4~175.8; 

high-risk, >175.8) and model 2 (low-risk, ≤159.9; 

moderate-risk, 159.9~241.6; high-risk, >241.6) 

nomograms following the determination of cutoff 

values by X-tile analyses (Figure 5A, 5B; 5D, 5E). 

Compared to low-risk populations stratified by the 

model 1 system, HRs (95% CI) for moderate- and high-

risk KTRs were 5.90 (3.25–10.70) and 16.94 (7.00–

41.01) in the training cohort (Figure 5C), and 6.18 

(2.15–17.77) and 17.36 (5.07–59.41) in the validation 

cohort (Figure 5G). When stratified by the model 2 

system, HRs (95%CI) for moderate- and high-risk 
KTRs were 8.10 (4.14–15.87) and 27.25 (10.23–72.63) 

in the training cohort (Figure 5F), and 5.16 (1.80–14.80) 

and 13.68 (1.75–106.72) in the validation cohort (Figure 

5H). The Kaplan-Meier curves indicated that both 

nomograms achieved successful risk stratification in 

KTRs with statistical significance (P < 0.0001). 

 

DISCUSSION 
 

In this study, we successfully developed and validated 

two novel nomogram-based prognostic models that were 

capable of individually predicting 5-year allograft loss in 

KTRs. These nomograms combined early, routinely 

accessible, yet significant laboratory test-derived 

indicators (calculated based on 0–6m and 0–12m 

laboratory results) and demographic variables to generate 

accurate prognostic predictions of individual patients. 

Such predictions presented a good ability to discriminate 

KTRs with low-, moderate-, and high-risk of developing 

forthcoming graft loss within 1 to 5 years post-transplant. 
 

In the last decade, a growing body of prognostic 

scoring systems have been reported for the early 
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prediction of long-term renal allograft survival on the 

basis of various predictors, the majority of which were 

“static” demographical and clinical variables at certain 

time points before or after transplantation. Such static 

Cox or Logistic models incorporating variables 

measured at time 0 to predict the events occurred 

throughout the full evaluation period, which might be 

less effective than using longitudinal data in predicting 

future risk [21]. More recently, an internationally 

derived and robustly validated (in Europe and North 

America centers) prediction system for estimating the 

risk of graft loss in KTRs was constructed by 

combining 8 functional, histological and immuno-

logical prognostic factors. Strong predictive ability has 

been shown with C-indexes exceeding 0.8 in different 

clinical scenarios and subpopulations [7]. However, 

considering distinct patients’ characteristics, clinical 

management practices, and the unavailability of 

histological data for the majority of KTRs in most 

Chinese transplant centers, it may not be feasible for 

the implementation in our routine clinical settings. 

Taking these issues into account, we turned our 

attention to “dynamic” risk factors which were derived 

from serial routinely monitored laboratory examination 

results. We applied multiple calculation forms 

including average, CV, and proportions of time within 

or out of therapeutic range to process original 

laboratory data during early periods post-

transplantation. By combining demographic and 

clinical risk factors with 0-6m and 0-12m processed 

laboratory predictors, we built up model 1 and model 2 

prognostic nomograms, respectively. Both models 

showed moderate to strong predictive efficacy for early 

identification of 5-year graft loss, and model 2 was 

superior to model 1 (C-index for model 1 was 0.78 

(0.72–0.85) and for model 2 was 0.85 (0.79–0.90)). We 

did not conduct direct comparisons between the present 

study and previously described risk scoring systems

 

 
 

Figure 4. Dynamic time-dependent AUC (TD-AUC) curves, decision curve analysis (DCA) and summary of C-indexes of two 
models in training and validation sets. (A). TD-AUC curves in the training set. (B) DCA curves in the training set. (C). TD-AUC curves in the 
validation set. (D) DCA curves in the validation set. (E) C-indexes summary of model 1 and model 2 for predicting 3- and 5-year graft survival 
in training and validation sets. 
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due to the lack of some predictor information, such as 

blood pressure data in DuBay DA’s study [6]. 

However, when only considering data from a C-index 

and TD-AUC perspective, our models showed higher 

values. Taken together, these results indicated that 

comprehensively integrating laboratory variables was a 

novel strategy to find risk predictors. 

 

In our two prognostic nomograms, recipient charac-

teristics including female gender, older age, and lower 

BMI levels were independent protective factors of 

long-term graft survival. However, there were some 

controversies regarding the associations between those 

individual predictors and renal allograft outcomes. The 

findings on being female were consistent with some of 

previous studies [6, 22, 23], but differed from Yohann 

Foucher [5] and H.Y.Tiong’s studies [24], in which 

being female was closely associated with poor 

allograft outcomes in KTRs. Such inconsistency also 

exists in recipient age and BMI variables among this 

and other different KTR cohorts [5, 22]. These 

discordant results suggest that constructing 

personalized nomograms that host “one size fits all” 

properties is not an easy task, which may be hampered 

by the heterogeneity of patient backgrounds and post-

transplant management strategies. 

 

 

 
 

Figure 5. X-tile analysis of total risk score and survival curves stratified by the score calculated from nomogram scoring 
systems in training and validation sets. In training set: (A–B) X-tile plot and total points histogram showing the optimal cut-points of 
model 1. (C) Kaplan-Meier (KM) survival curve of different risk groups based on cut-points obtained from model 1 X-tile analysis. (D–E) X-tile 
plot and total points histogram showing the optimal cut-points of model 2. (F) KM survival curve of different risk groups based on cut-points 
obtained from model 2 X-tile analysis. In validation set: (G–H). KM survival curves of KTRs stratified by optimal cut-points from model 1 (G) 
and model 2 (H). 
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In addition to those fixed baseline variables, some 

potentially amendable post-transplant risk factors were 

identified in this study. eGFR variability, no matter 

calculated from 1–6 months eGFR values or 1–12 

months eGFR values, was a significant risk factor for 

graft loss and independent of average eGFR levels. In 

accordance with Nicole A. Pilch’s [16] and Hoon 

Young Choi et al’s. [17] studies, our results suggested 

that converting serial longitudinal eGFR data into 

eGFR-CV provided more prognostic information than 

just simply averaging them. Several possible factors 

may explain its superior ability in early presentations of 

signs of graft loss. eGFR variability is a rational marker 

of renal allograft homeostasis. Intrinsic renal factors 

(such as acute allograft rejection, subclinical rejection, 

and other damages that directly target the kidney) and 

extrinsic factors (such as infection, extra-renal organ 

system injury, and comorbid complications that 

indirectly affect renal function) may disturb the steady 

state of the kidney [25, 26]. Even though some 

deteriorative renal function may revert to its prior 

“normal” level after appropriate intervention, eGFR 

variability can still provide comprehensive information 

on both unmeasured and measurable detrimental events 

that may have side effects on subsequent graft survival. 

TAC intra-patient variability (TAC-IPV or TAC-CV) 

was another important risk factor for graft loss in our 

study. Accumulating studies have demonstrated that 

high TAC-CV was associated with poor allograft 

outcomes such as graft failure and chronic antibody-

mediated rejection in various solid organ 

transplantations [13, 27–29]. Unlike previously 

published studies, and since we wanted to use TAC-CV 

to reflect the overall combined impact of medication 

non-adherence, food and drug interaction, genetic 

factors, and dose modification due to concurrent 

diseases or TAC-related toxicity throughout the entire 

interested post-transplant period [14], TAC-CV was 

calculated by adopting all TAC trough concentration 

data from within 0–6 or 0–12 months, rather than 

eliminating early-phase data that was thought to be 

unstable because of the frequent dose adjustment to 

achieve target levels during hospitalization. Final 

inclusion of TAC-CV in model 2, not in model 1, 

indicated that replenishing early TAC-CV with 

relatively late TAC concentration data would be 

conducive to improve its predictive ability for 5-year 

graft loss. Interestingly, we found a high average 

percentage of 0–6 months neutrophil and low 0–12 

months lymphocyte mean count emerged as 

independent risk indicators for subsequent graft loss in 

different prediction models. Such abnormality of average 

peripheral leukocyte count may reflect the sustained 
excessive immunosuppression during certain time 

periods, which increases the risk of various infections and 

then threatens the long-term survival [30–32]. 

Several strengths could be found in the current study.  

First, our study took full advantage of easily accessible 

laboratory data during 6 or 12 months post-

transplantation to generate novel and cost-effective 

potential predictors, some of which have been revealed 

to significantly correlate with poor long-term allograft 

survival in distinct population-based studies. 

Nomograms incorporating an early shorter or relatively 

longer period of laboratory indicators with demographic 

variables both demonstrated good discrimination and 

calibration power, which enabled the early 

identification of individual graft-loss risks without 

additional cost. Second, we set up the risk thresholds 

that can classify KTRs into low-, moderate-, and high- 

risk groups as early as 6 or 12 months after 

transplantation. This would be helpful to promote 

personalized health evaluations and carry out precise 

prevention by adjusting follow-up frequencies, adding 

protocol biopsies, or modifying immunosuppression 

regimens. In addition, it would also be favorable in 

conducting prospective clinical trials by allowing 

targeted recruitment of moderate- to high-risk patients. 

Third, considering the clinical practice, nomograms 

were further converted into web-based apps and 

predictor calculators were designed to facilitate clinical 

application. 

 

However, several limitations should be addressed in this 

study. First, due to the nature of retrospective design, 

the small number of events, and the single center 

analysis, the results may be somewhat heterogeneous. 

Although we have validated these results in a random 

split-sample cohort, external validation studies from 

other institutions, or at least from other Chinese 

institutions, are definitely warranted to confirm these 

findings. Second, some features would potentially 

improve the predictive performance of models, such as 

warm and cold ischemia time and donor specific 

antibody levels, which were not included in this study 

due to the incomplete records in our database. Third, 

these models were only applicable for adult KTRs who 

maintained their graft function within the first year. 

However, for those who lost the grafts during the first 

year, pre- and peri-transplant, as well as early post-

transplant parameters, would be feasible to achieve 

good predictive performance for this patient population. 

 

In summary, we constructed and validated two novel 

nomograms by incorporating clinical variables and 

relatively new risk factors that derived from a serial of 

easily-available laboratory examination data from 

within the first half- or one-year post-transplant to 

identify the risk of 5-year graft loss in KTRs early. In 
addition, the nomogram-based classifiers could provide 

supportive information on stratifying individual patients 

into different risk groups, which may assist clinicians 
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and patients in clinical decision-making and adjustment 

of post-transplant management strategies. Further 

external validation and prospective application of these 

models will be performed in our future studies. 

 

MATERIALS AND METHODS 
 

Participants 

 

Patients who underwent kidney transplant surgery in 

West China Hospital between June 2009 and December 

2016 were retrospectively included in this study. We 

chose this period because we could extract accurate 

electronic health record (EHR) data. KTRs who met any 

of the following criteria were excluded: (1)  age at 

transplantation was less than 18 years old, (2) received 

kidneys from deceased donors before January 2015 

since organ donation from voluntary civilian organ 

donors has become the only lawful source of organ 

transplantations, (3) had less than one-year follow-up or 

were without complete one-year laboratory test results, 

(4) cyclosporine A or sirolimus were used within the 

first 12 months after transplantation, (5) graft loss or 

patient death occurred in the first 12 months after 

transplantation. Eligible patients were then randomly 

split into training and validation datasets at a ratio of 

2:1. All KTRs were treated with standard triple 

regimens (TAC + mycophenolate mofetil + steroid) as 

maintenance immunosuppression. Preventive anti-

infective drugs were preoperatively and postoperatively 

administered, as previously described [33]. This study 

was approved by the institutional review board of West 

China Hospital [no.2017(397)]. Because of the 

retrospective nature of this study, informed consent 

from patients was waived.  

 

Endpoints and definitions 
 

The primary outcome of this study was that allograft 

loss occurred between 1 year and 5 years post-

transplantation. Outcome data was retrospectively 

retrieved from the hospital information system (HIS) 

on February 28, 2019. Graft loss events were defined as 

a return to maintenance dialysis, re-transplantation, 

uremia (eGFR<15 mL/min/1.73 m2 without recovery), 

or all-cause death. Time to event was recorded at the 

date of censoring (date of whichever graft loss event 

happened first or of the last follow-up date) or 1825 

days (5 years) after transplantation. A clinical 

transplant nephrologist was invited to assess 

ambiguous outcomes. 
 

Candidate predictor acquisition and preprocessing  
 

Patients’ demographic and clinical characteristics were 

collected: gender, age, race, body mass index (BMI), 

pre-transplant urine output, dialysis type, time on 

dialysis, donor type, human leukocyte antigen (HLA) 

mismatch, hospitalization duration after KT surgery, 

delayed graft function (DGF), acute rejection episode, 

and number of hospitalizations due to infection within 

the first 6 or 12 months post-transplantation. 

 

One-year post-transplant original laboratory data 

including CBC test, renal function indicators, routine 

urine test, and immunosuppressant trough levels were 

extracted from the laboratory information system 

(LIS). This data was then processed to generate new 

candidate predictors based on data collected in the first 

6 or 12 months post-transplantation, separately. 

Specifically, eGFR was calculated using the CKD-EPI 

equation, which is based on serum creatinine (Scr, 

μmol/L), gender, and age [34]. NLR, PLR, and MLR 

were generated via the divisions of neutrophil count, 

platelet count, and monocyte count by lymphocyte 

count, respectively. Average values of red blood cell 

count (RBC), hemoglobin (HGB), hematocrit (HCT), 

platelet count (PLT), white blood cell count (WBC), 

neutrophil percentage and absolute number, 

lymphocyte percentage and absolute number, 

monocyte percentage and absolute number, NLR, 

PLR, MLR, uric acid level and TAC concentration 

were calculated using all data measured within 0–6 or 

0–12 months post-transplant. The coefficient of 

variations (CV) of TAC and eGFR were generated to 

reflect the relative variability of TAC and eGFR levels 

within a certain period of time [CV (%) = (Standard 

Deviation/Mean) * 100]. In addition, we calculated the 

number of times the TAC trough concentration fell 

within, below, or beyond the target range of 5–10 

ng/ml in the first 3 months and 4–8 ng/ml during 

months 4–12. The percentage of each condition 

relative to total TAC test times were recorded as TAC-

TTR, TAC-loLL and TAC-hiUL. Considering the 

rapid recovery of renal function after KT surgery and 

the large fluctuation that inherently exists in all KTRs 

during the first month, we calculated eGFR-Mean and 

eGFR-CV by using data from 1 to 6 or 12 months 

post-transplantation to maximally reflect their actual 

predictive potential. For routine urine tests, we 

retrieved semi-quantitative results of urine protein at 

months 6 and 12 post-transplant. 

 

The CBC tests were completed with Sysmex XN9100 

automated hematology system (Sysmex Corporation, 

Japan). Urine proteins were semi-quantified with fully 

automated urine chemistry analyzer UF5000 plus 

UC3500 (Sysmex Corporation, Japan). Scr and uric acid 

levels were determined with cobas 8000 modular 
analyzer (Roche Company, Switzerland). TAC trough 

concentration was assessed with V-TWIN analyzer 

system (Siemens, Germany). 
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Patients with missing one-year follow-up laboratory data 

were excluded at the enrollment stage. A multiple 

imputation method was utilized to impute suitable values 

for missing data in demographic and clinical variables. 

 

Predictor selection, model development, and validation 

 

In the training cohort, predictors were selected into final 

models through three steps (Figure 1). First, we 

conducted univariate Cox proportional hazards regression 

analysis to determine associations between candidate 

predictors and 5-year graft loss. Then we picked out 

factors with P < 0.15 and stratified them as binary 

variables based on optimal cut-off values obtained from 

X-tile analysis [35] (Supplementary Figure 1). Two 

model feature selections were implemented in parallel 

(model 1: demographics and 0–6m laboratory variables; 

model 2: demographics and 0–12m laboratory variables). 

Least absolute shrinkage and selection operator (LASSO) 

regression analysis was further performed to select 

valuable predictors among the above-stratified variables. 

LASSO performs L1 regulation, which adds a penalty to 

the absolute value of the magnitude of coefficients. As a 

tuning parameter, λ controls the strength of the L1 

penalty. We kept variables with non-zero coefficients for 

the following analysis by setting λ equal to the minimum 

value, for which the cross-validation error was the 

smallest. Finally, multiple Cox hazards regression 

analysis (forward LR) was added to determine final 

predictors in individual models and forest plots were 

drawn to demonstrate the estimated hazard ratio (HR) of 

each variable. 

 

Models that incorporated the selected independent 

predictors were visually presented as nomograms. 

Harrell’s concordance index (C-index) and the dynamic 

time-dependent area under the receiver operating 

characteristic curves (TD-AUC) were used to evaluate 

the discrimination power of nomograms in training and 

validation cohorts. The higher the C-index and TD-AUC 

values, the better the predictive accuracy. Calibration 

ability was assessed by graphically plotting the actual 

probabilities and nomogram-predicted probabilities via a 

bootstrapping method with 1000-iteration resampling. In 

addition, decision curve analysis (DCA) was utilized to 

evaluate the clinical utility of nomograms by calculating 

the net benefit of a range of threshold probabilities in 

training and validation cohorts [36]. 

 

Risk classification of KTRs 

 

In the training cohort, total risk points of individual 

patients were calculated based on linear predictor values 
and the point per unit of linear predictor, which were 

directly available in the nomogram scoring system. We 

applied X-tile software (version 3.6.1, Yale University, 

New Haven, CT, USA) to determine optimal cut-off 

values of the risk point, with which patients were 

categorized into low-, moderate-, and high-risk groups. 

The Kaplan-Meier curves were performed to present the 

5-year graft survival of different risk groups. 

Differences between groups were statistically compared 

with the aid of the log-rank test. 
 

Statistical analysis 
 

Data was demonstrated as absolute number, mean ± 

standard deviation, or median (interquartile range) 

according to type. Chi-square or Fisher’s exact tests were 

utilized to compare categorical variables between groups. 

The student's t-test and Mann-Whitney U test were 

applied to compare continuous variables with normal 

distribution and skewed distribution, respectively. All 

statistical analyses were completed with SPSS software 

(version 23.0, SPSS Inc., Chicago, IL, USA) and R 

software (version 3.6.3, https://cran.r-project.org). R 

packages “glmnet”, “rms”, “survivalROC”, “ggplot2”, 

“stdca.R”, “survminer”, “DynNom” and “shiny” were 

used in this study. A two-tailed P < 0.05 was considered 

statistically significant. All analyses were reported 

according to the Transparent Reporting of a multivariate 

prediction model for Individual Prognosis Or Diagnosis 

(TRIPOD) statement [37]. 
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Supplementary Figure 1. Determination of optimal cut-off values for clinical and laboratory variables whose P values less than 0.15 in 
univariate Cox analysis. 
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Supplementary Figure 2. Time point distribution of occurring graft loss in training (A) and validation (B) cohorts.
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Supplementary Figure 3. Interface example of laboratory indexes calculator for the calculation of predictors for predicting 5-year graft survival 
in KTRs. Please visit website https://docs.google.com/spreadsheets/d/1IJX9YZBTON1xwVrNYp5PzcNpWQ1CItGm-N_nDOKxbpk/edit?pli=1#gid=0. 

https://docs.google.com/spreadsheets/d/1IJX9YZBTON1xwVrNYp5PzcNpWQ1CItGm-N_nDOKxbpk/edit?pli=1#gid=0

