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INTRODUCTION 
 

Pancreatic cancer (PCa) is a malignant tumor with high 

mortality [1]. The five-year survival rate of PCa patients 

who received surgical resection is only 10-25% [2]. 

About 80-85% patients with PCa patients presented 

with unresectable status or metastasis at the time of 

diagnosis [3], for whom the systemic chemotherapy is 

the main treatment at present but the survival outcome 

is often unsatisfactory [4]. 
 

Immunotherapy is an innovative treatment strategy in 

oncology, which offers the promise in the treatment of 

cancer and has achieved satisfactory outcomes in 

various malignancies as expected. Targeting immune 

checkpoint molecules with immune checkpoint 

inhibitors has opened up a new vista in cancer treatment 

[5–7]. In 2017, the US Food and Drug Administration 

(FDA) approved the PD-1 blocker pembrolizumab for 

tumor patients who are identified as deficient mismatch 

repair (dMMR) or high microsatellite instability (MSI-

H), including PCa [8]. However, this benefit of 

immunotherapy has not lived up to expectations in most 

PCa patients because of the complex, highly 

immunosuppressive microenvironment [9]. Even so, it 

does not mean a desperate plight of immune therapy in 

www.aging-us.com AGING 2021, Vol. 13, No. 7 

Research Paper 

The construction and analysis of a ferroptosis-related gene prognostic 
signature for pancreatic cancer 
 

Peicheng Jiang1, Feng Yang2, Caifeng Zou2, Tianyuan Bao1, Mengmeng Wu3, Dongqin Yang3,&, 
Shurui Bu1 
 
1Department of Gastroenterology, Fudan University Jinshan Hospital, Shanghai, China 
2Department of Pancreatic Surgery, Fudan University Huashan Hospital, Shanghai, China 
3Department of Digestive Diseases, Fudan University Huashan Hospital, Shanghai, China 
 
Correspondence to: Shurui Bu, Dongqin Yang; email: bushurui@fudan.edu.cn; kobesakura@163.com, 
https://orcid.org/0000-0003-0126-5898 
Keywords: ferroptosis, pancreatic cancer, prognostic signature, survival analysis, immune checkpoint blockade 
Received: November 10, 2020      Accepted: February 3, 2021  Published: April 4, 2021 
 
Copyright: © 2021 Jiang et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
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help improve the efficacy of personalized immunotherapy. 
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pancreatic cancer. Balachandran et al [10] observed 

long-term survival of PCa patients and identified unique 

neoantigens responding to T cells that prompted the 

specific immune microenvironment. A study on 

combination immunotherapy also brings hope to 

pancreatic cancer patients by prolonging their overall 

survival (OS) [11]. 

 

The concept of ferroptosis was first proposed by 

Stockwell's group in 2012 based on their finding of 

catastrophic accumulation of lipid reactive oxygen 

species (ROS) and abnormal iron metabolism [12]. 

Ferroptosis is a newly discovered form of programmed 

cell death which is distinct from apoptosis, necroptosis, 

and autophagy in cell morphology and function [13]. 

Some recent studies have implicated that ferroptosis is 

involved in multiple physiological and pathological 

processes of many diseases including cancer [14, 15]. 

Other studies also demonstrated that ferroptosis is an 

important mechanism by which some drugs promoted 

the death of various PCa cell lines [16, 17]. Michael A 

et al [18] recently reported their finding in the journal 

Science that cysteine depletion induced tumor-selective 

ferroptosis and inhibited cell growth in genetically 

engineered PCa mice. As one of the most impactful 

classes of anti-cancer therapies, immune checkpoint 

blockade (ICB) therapies have also drawn increasing 

attention of researchers engaged in ferroptosis. Wang et 

al [19] reported that CD8+ T activation cells could 

enhance ferroptosis-specific lipid peroxidation in tumor 

cells, thus increasing ferroptosis and contributing to the 

anti-tumor efficacy of immunotherapy. 

Based on the above findings, we speculated that 

ferroptosis-related genes (FRGs) may have a prognostic 

value for PCa patients. By integrating a series of 

systematic analyses to multiple datasets, we constructed 

and validated a robust and practical molecular signature 

of FRGs for survival of PCa patients, finding that the 

signature constructed in this study was associated with 

tumor immunity. All in all, we have built a reliable 

FRGs prognostic signature and uncovered a potential 

ICB biomarker for PCa. 

 

RESULTS 
 

Identification and functional enrichment analysis of 

DEGs 

 

The flow chart of the present study is shown in  

Figure 1. The data of The Cancer Genome Atlas 

(TCGA) and Genotype-Tissue Expression (GTEx) 

was downloaded from UCSC Xena Database. After 

screening and classification, RNA-seq data and 

clinical information of 178 pancreatic cancer samples 

and 169 normal samples were left for subsequent 

analyses. The clinical characteristics of the included 

patients are presented in Supplementary Table 1. 

Based on the coding FRGs from the publications, we 

detected the expression of FRGs by differential 

analysis and found that 30 FRGs were up-regulated 

and 68 FRGs were down-regulated (P<0.05, |log2FC| 

>1.0) (Supplementary Table 2). The distribution of 

these differently expressed FRGs is displayed in  

Figure 2A, 2B. These 98 differentially expressed 

 

 
 

Figure 1. Flowchart of overall study design. 
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Figure 2. Identification and functional enrichment analysis of the ferroptosis-related DEGs. (A) Volcano plot of DEGs. Red dots 
represented up-regulated genes while green dots represented down-regulated genes, and black dots represented no differences gene. (B) 
Heatmap of DEGs to visualize the expression levels of genes. (C–F) Chord plot depicting the relationship between DEGs and GO in terms of 
the biological process, cellular component, molecular function and KEGG pathways. 
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FRGs were further analyzed by GO and KEGG pathway 

to explore their functions. 

 

As the chord plots shown (Figure 2C–2E), response to 

oxidative stress, superoxide−generating NADPH 

oxidase activity, reactive oxygen species metabolic 

process and oxidoreductase complex were the most 

enriched biological processes. The involvement of these 

biological processes and complexes in ferroptosis has 

been reported [20, 21]. Besides, the DEGs were 

significantly enriched in response to nutrient levels. As 

KEGG pathway analysis revealed, the DEGs 

participated in autophagy, HIF−1 signaling pathway and 

Foxo signaling pathway (Figure 2F). 

 

Establishment of the ferroptosis-related prognostic 

signature in pancreatic cancer 

 

Univariate Cox regression analysis and the least 

absolute shrinkage and selection operator (LASSO) Cox 

regression model were applied to evaluate these 

differentially expressed FRGs in the training set for the 

sake of finding key genes most associated with the 

prognosis of pancreatic cancer (Figure 3A, 3B). As a 

result, 14 prognosis-related key FRGs were identified 

and integrated to construct a prognostic signature  

for PCa. 

For further exploring the significance of risk score, 178 

patients were classified into two groups on the basis of 

the median FRG score value. The distribution of risk 

scores is presented in Figure 3C. The result showed that 

the higher the risk score, the more densely the state of 

death was distributed, indicating that the FRG score was 

accurate reliable in predicting the prognosis and 

survival of PCa patients. 

 

Kaplan–Meier curve and time-dependent ROC were 

generated to evaluate the prognostic capability of the 

signature. We applied the same procedures to the data 

of GSE21501 and ICGC-PACA. The number of cases 

in the two sets was 102 and 90 respectively. The results 

presented a satisfactory ability of the signature for 

survival prediction. The Kaplan-Meier survival curves 

showed that OS in low-risk group was significantly 

longer than that in high-risk group (P < 0.0001) (Figure 

4A–4C). The area under the curve (AUCs) for 12, 18 

and 24 months were 0.8, 0.76 and 0.76 in the training 

set respectively, and the value for two cohorts were 0.7, 

0.73 and 0.77 vs. 0.74, 0.83 and 0.82 respectively 

(Figure 4D–4F), while these for the TNM stage and 

AJCC stage were 0.59, 0.62 and 0.68 vs. 0.49, 0.55  

and 0.65 (Supplementary Figure 1). These results 

demonstrated that our signature in predicting prognosis 

was superior to the conventional classification. 

 

 
 

Figure 3. Risk score distribution, survival overview and heatmap of key genes in the TCGA (A), GSE21501 (B), and ICGC (C). The heatmaps 
were applied to visualize the expression levels of key genes in every sample. 
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Applicability of the FRG signature as an 

independent prognostic indicator 

 

To explore whether the prognostic model was 

independent of conventional clinical factors, we used 

univariate cox regression to analyze the PCa patients from 

the TCGA cohort. The result showed that our risk score, T 

stage and N stage were all statistically significant in 

predicting prognosis. By incorporating the three variables, 

we further performed multivariate cox regression analysis 

and verified that our prognosis signature was a significant 

and independent factor (P=2.25e-10) (Table 1). 

Based on clinical character including age, gender and 

tumor stage, we stratified the whole cohort from TCGA 

to ensure the applicability of this signature. The result 

of stratification analysis showed that disease-free 

survival (DFS) in high-risk group patients was 

significantly shorter than that in low-risk group patients 

in all age groups (P < 0.05) (Figure 5A, 5B). 

Stratification analysis of gender and tumor stage 

presented the same tendency (P < 0.05) (Figure 5C–5H). 

Taken together, the ferroptosis-related signature was 

practicable and reliable for predicting survival in 

multiple strata of patients. 

 

 
 

Figure 4. Survival and ROC analysis in training and validation datasets. (A–C) Kaplan–Meier overall survival curves for patients in 

high- and low-risk groups of the TCGA (A), GEO (B), and ICGC (C) datasets. Hazard ratios (HRs) and 95% CIs are for risk group. P values were 
calculated with the log-rank test. (D–F) Time‐dependent ROC curves at 12, 18, 24 months for patients in the TCGA (D), GSE21501 (E), and 
ICGC (F) datasets to evaluate the prediction efficiency of the prognostic signature. 
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Table 1. Univariate and multivariate cox regression models of the FRG signature in 
predicting prognosis. 

Variables 
Univariate cox model Multivariate cox model 

HR P value  HR P value 

age 1.42236662 0.123471    

gender 0.82345753 0.350272    

grade 1.51438806 0.059922    

AJCC_stage 0.19668764 0.397011    

TumorT (3-4 vs. 1-2)* 2.32464502 0.009336  -0.03486 0.917 

TumorN (1 vs. 0)* 2.20904129 0.001905  0.30990 0.244 

score 2.71828183 1.78E-11  0.96209 2.25e-10 

*tumor node metastasis classification. T, tumor; N, node. 

Correlation of the FRG signature with tumor 

immunity associated characteristics 

 

To acquire the relative proportions of 22 immune cell 

subsets of LGG, we applied CIBERSORT algorithm 

and performed correlation analysis to uncover the 

relevance of the score and immune cells. As shown in 

Figure 6A, naive B cells, CD8+ T cells, T naïve CD4 

cells and follicular helper T cells were positively 

correlated with the score. On the contrary, Treg cells, 

Macrophages M0 were negatively correlated with  

the score. 

 

 
 

Figure 5. Survival of the FRG signature in patients stratified by gender, age and tumor stage. (A, B) The difference in OS between 
high- and low-risk group stratified by age. (C, D) The difference in OS between high- and low-risk group stratified by gender. (E, F) The 
difference in OS between high- and low-risk group stratified by T stage. (G, H) The difference in OS between high- and low-risk group 
stratified by N stage. (E, F) According to tumor node metastasis classification. T, tumor; N, node. 
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Figure 6. Correlation between immune characteristics with the FRG signature. (A) Spearman correlation analysis was conducted to 
determine the correlation of immune cells with risk score of the signature. (B) Spearman correlation analysis was conducted to determine the 
correlation of immune checkpoint inhibitors PD‐1, PD‐L1, CTLA‐4, B7H3, and VSIR with risk score of the signature. (C) CD8+ T cell infiltration in 
high- and low-risk groups. (D) The expression level of PD-L1 in high- and low-risk groups. (E–J) Representative enriched pathways in immune 
character associated with FRG signature by GSEA analysis. 
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PD-1, PD-L1 and CTLA-4 are known biomarkers for 

tumor immunity and have won general recognition in 

immunotherapy [22]. Both B7-H3 and VSIR are 

immunoregulatory proteins, which are overexpressed in 

various cancers and associated with poor prognosis [23]. 

The role of B7-H3 in oncogenesis and progress indicates 

its potential as a biomarker and immunotherapy target 

[24]. VISTA, which has high similarities with PD-1 

[25], interferes with the antigen presentation to suppress 

T cell responses [26]. To explore the link of our formula 

and ICB immunotherapy-related signatures, we 

conducted Spearman correlation to analyze the RNA-seq 

data from TCGA. The result demonstrated that PD-L1, 

PD1, CTLA4, B7-H3 and VSIR all played a role in 

regulating tumor immunity and were inversely correlated 

with the score (Figure 6B). 

 

In addition, we conducted further analysis to test its 

significance for immunity character. The Wilcoxon 

rank-sum test revealed that CD8+ T cell and PD-L1, as 

the immune cell and ICB related molecules that aroused 

the clinical concern most were significantly higher than 

those in low-risk group (Figure 6C, 6D). 

 

We further used gene set enrichment analysis (GSEA) 

to analyze the difference of enriched gene sets. Setting 

P <0.05 as the cutoff value, we found that multiple 

immunity-associated pathways were involved (Figure 

6E–6J), indicating that lower risk scores were 

associated with better antitumor immunity, including 

positive regulation of B cell receptor signaling pathway 

and higher B cell proliferation as well as T cell receptor 

complex. Yet, a higher risk score was associated with 

the impaired production of type I interferon in antitumor 

immunity, as well as interferon α and γ response. 

 

Expression levels of key genes in the clinical samples 

 

The levels of the 14 genes in the PCa and paired 

adjacent normal tissues were compared to explore the 

clinical significance of the signature. The clinico-

pathological parameters of patients were presented in 

Supplementary Table 4. The result of q-rtPCR showed 

that the mRNA expression levels of PTGS2, RRM2, 

AURKA, CAV1, MAP3K5, STEAPS are higher in 

tumor samples and lower in normal tissue samples and 

the others had the reverse tendency (Figure 7). To 

investigate the protein expression of key FRGs, we 

studied the immunohistochemistry results using the 

Human Protein Atlas database in normal pancreas tissue 

and tumor tissue. Except for MT1G, the other proteins 

available were nearly consistent with the results of 

TCGA database as well as qRT-PCR (Figure 8). 
 

Considering the coefficient of the formula, we reasoned 

that upregulation of PTGS2 and downregulation of 

MT1G, TUBE1 and ATG4D might have comprehensive 

effect on increasing the risk of tumorigenesis and poor 

prognosis. 

 

DISCUSSION 
 

Pancreatic cancer is a malignant tumor with high 

morbidity and mortality, imposing a high 

socioeconomic burden. Although tremendous advances 

have been made in cancer treatment and translational 

medicine, surgical resection remains the main treatment 

for PCa. As most PCa patients have lost the chance of 

surgery and the outcome of chemotherapy remains 

unsatisfactory, the prognosis of PCa is relatively poor. 

the emergence of immunotherapy in recent years has 

brought renaissance in oncology therapeutics. Little 

infiltration of effector T cells and few immunogenic 

antigens contribute to low response to immunotherapy 

in PCa [27, 28]. Nevertheless, part of PCa patients with 

relatively good immune conditions can still achieve a 

relatively long OS [29, 30], suggesting that 

immunotherapy has a promising prospect in the 

treatment of PCa. Ferroptosis is a recently discovered 

type of cell death and plays an important regulatory role 

in various cancer types including PCa [31–33]. 

Gemcitabine is the standard therapy for PCa. ARF6 can 

mitigate gemcitabine resistance by conferring PCa cells 

the sensitivity to RSL3-induced ferroptosis [34]. Studies 

have demonstrated that multiple chemical extracts can 

promote the death of pancreatic cancer cells mainly 

through the induction of ferroptosis [17, 35, 36]. 

Ferroptosis induced by SLC7A11 deletion has be 

verified to slow down the growth of the xenograft 

derived from PCa [37]. The research conducted by 

DeNicola’s team may partly explain the basis of the link 

between ferroptosis and PCa. ROS is a product of 

mutant-KRAS signaling, which is involved in various 

metabolic processes and may thereby be a pro-tumor 

factor. Of note, over 90% pancreatic adenocarcinoma 

patients burden mutations in KRAS. PCa cells take 

advantage of cysteine-derived metabolites such as 

glutathione (GSH) to counteract the increased ROS, the 

accumulation of which is known to trigger ferroptosis 

[38]. The existing research results tempted us to 

consider the connection between ferroptosis and 

prognosis of PCa. Based on TCGA, we established a 

robust FRG and verified it in GSE21501 and ICGC-

PACA datasets. The result showed that it had a high 

AUC value. 

 

The role of ferroptosis in immunotherapy has aroused 

much attention and interest in recent years. In one study 

of immunotherapy-associated cytokines, the researchers 

observed that the inducers of ferroptosis had impact on 

the differentiation of melanoma cells and affected the 

anti-tumor efficacy of immunotherapy [39]. Some 
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physiological processes induced by ferroptosis could to 

some extent activate innate immunity [40]. The 

engulfment of ferroptotic cancer cells by macrophages 

indicated that ferroptotic cells may attract antigen-

presenting cells (APCs), thereby increasing the 

anticancer immunity [41, 42]. Another study 

demonstrated that the release of RAGE triggered by 

ferroptotic cells was necessary for HMGB1-mediated 

tumor necrosis factor (TNF) production in macro-phages, 

suggesting that ferroptotic cancer cells could be immuno- 

genic in nature [43]. Accumulation of lethal lipid 

peroxides is one of the fundamental biological processes 

of ferroptosis, knowing that tumor immunity is 

modulated by the interaction between ferroptosis and 

lipid metabolism [44]. At the same time, immune cells 

also have impact on ferroptosis. It is reported that 

oxidized phospholipids formed in immune cells can 

promote ferroptosis [45, 46]. High expression of PTGS in 

ferroptotic tumor cells can impair the anti-tumor effect of 

immune cells [47, 48]. To explore whether the FRG 

 

 
 

Figure 7. The mRNA expression level of the key genes in the clinical samples. 
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signature had a value in personalized immunotherapy 

for PCa, we performed GSEA for further functional 

analysis and found that the score was negatively 

correlated with the response of antitumor immunity. 

 

Given the above situation, we intended to unearth more 

information about the immunological characteristics of 

the FRG signature. Cibersort and Spearman correlation 

analyses were performed to define the character of 

immune cell infiltration and the expression of 

immunotherapy-related molecules. It was found that 

immune cells including antitumor cells such as T cell 

CD4+ naïve and CD8+ T cells were inversely correlated 

with the score, while immunosuppressive cells such as 

Treg cells were positively associated with the score, 

which may explain the poor prognosis of the patients in 

high risk group. The high infiltration of CD4+ T cells 

may mean longer OS for PCa patients [49]. Multiple 

 

 
 

Figure 8. Differences in protein expression of the key genes in pancreatic cancer tumor tissue and normal tissue from Human 
Protein Atlas immunohistochemistry. 
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pre-clinical cancer models and the responses of patients 

have proved that the efficacy of checkpoint blockade 

immunotherapy is strongly associated with the number 

and status of CD8+ T cells [50–52]. The results of some 

studies have demonstrated that the immunosuppressive 

effect of Treg plays a role in the pathogenesis of PCa 

[53, 54]. The analysis of immunotherapy-related genes 

showed that immunosuppressive molecules such as PD-

L1, CTLA4 were positively correlated with the score, 

indicating the potential of the high risk group in ICB 

therapies. 

 

It is well established that CD8 cell infiltration to the 

tumor microenvironment is linked with a favorable 

prognostic outcome. PD-1 and its ligand constitute an 

essential inhibitory mechanism causing T cell 

exhaustion, which is inclined to the immunotolerant 

environment in tumors. That's the main reason why PD-

L1 has drawn increasing attention of researchers 

concerned [55]. PCa patients with high PD-L1 

expression were found to have an immunosuppressive 

tumor microenvironment, in whom the cytotoxic effect 

of activated T-cells was inhibited [56]. These findings 

are consistent with the results of CD8+ T distribution 

and PD-L1 level in our two groups, which to some 

extent demonstrates the reliability of our model in the 

immunological character. 

 

In summary, we identified 14 ferroptosis-related 

prognostic genes in PCa by comprehensive mining of 

the transcriptional profiles. The signature described 

herein performed well in risk stratification in the 

training cohort and the two independent cohorts. In 

addition, further analysis revealed that its link to the 

immunological character facilitated evaluating the 

personalized response to ICB immunotherapy. It may 

serve as a classifier for clinical decision-making 

regarding individualized prognosis and the response to 

anti-tumor immunotherapy. 

 

MATERIALS AND METHODS 
 

Ethical statement 

 

All patients signed the informed consent forms before 

initiation of the study. Collection of the clinical 

specimens was in accordance with the national and 

international guidelines involving Declaration of 

Helsinki. 

 

Collection of the clinical samples 

 

Altogether 10 pairs of PCa and adjacent non-tumor 

tissues were collected from the patients who received 

surgical resection in Huashan Hospital affiliated to 

Fudan University (Shanghai, China) from May to 

October 2019. All these tissue samples were frozen in 

liquid nitrogen as soon as they were isolated and then 

stored at –80° C for analysis. 

 

Patient recruitment and data preparation 

 

For the transcriptional profiles in the training cohort, 

Cancer Genome Atlas (TCGA) data and Genotype-

Tissue Expression (GTEx) data of pancreatic cancer 

were obtained from UCSC Xena Database (http://xena. 

ucsc.edu/), and the transcriptome data provided by the 

database were normalized with the log2(x+1) 

transformation. The data acquired from GTEx are all 

from healthy donators. In order to further validate the 

results from Gene Expression Omnibus (GEO), we 

acquired the data of GSE21501 dataset from GEO 

(http://www.ncbi.nlm.nih.gov/geo) after systematical 

screening. The criteria were as follows: the information 

of samples was relatively complete and substantial. The 

RNA-seq data and clinical information of ICGC- 

PACA-AU from the ICGC portal were downloaded 

from the official website (https://dcc.icgc.org). The 

normalized read count values were used. Cases with 

vague or absent clinical outcome information were 

excluded. 

 

Identification of key prognostic genes and 

establishment of the model 

 

FerrDb database (http://www.zhounan.org/ferrdb/index. 

html) is the world’s first database for ferroptosis, 

providing an updated database for regulators and 

markers as well ferroptosis-disease associations. 

Altogether 256 coding FRGs were acquired from the 

website. Subsequently, we performed a differential 

expression analysis on the data from TCGA and GTEx 

[57] and identified 98 DEGs between the tumor and non-

tumor tissues. To determine the survival significance of 

FRGs, we carried out univariate Cox proportional hazard 

regression analysis. The values of p < 0.05 were 

considered statistically significant. As a result, 37 DEGs 

were compliant with the criterion for further analysis. 

Using LASSO COX regression method [58], we selected 

the optimal FRGs from the high-dimensional data to 

build the signature. Finally, a prognostic formula for 

PCa was developed with 14 identified ferroptosis-related 

genes and their corresponding coefficients, which is as 

follows: risk score = ∑(coefficienti × expression of 

signature genei). Specific information is shown in 

Supplementary Figure 2. 

 

Based on the median risk score, the patients were 

classified as a high-risk group and a low-risk group. The 
performance of the FRG signature was evaluated by 

Kaplan-Meier analysis and the AUC value of the ROC 

curve. 

http://xena.ucsc.edu/
http://xena.ucsc.edu/
http://www.ncbi.nlm.nih.gov/geo
https://dcc.icgc.org/
http://www.zhounan.org/ferrdb/index.html
http://www.zhounan.org/ferrdb/index.html
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Function enrichment analysis for DEGs 

 

To clarify the functions of differentially expressed 

FRGs, pathway enrichment analysis of the genes was 

conducted based on the kyoto encyclopedia of genes 

and genomes (KEGG) [59] and gene ontology (GO) 

databases, including the biological process (BP), 

molecular function (MF) and cellular component (CC) 

categories [60]. p<0.001 was considered statistically 

significant. The top 5 pathways were picked when the 

number of pathways was more than 5 for visual 

presentation by ggplot2 package. 

 

Gene set enrichment analysis 

 

Knowing that GSEA is a computational algorithm for 

analyzing the molecular profiles of the data set [61], we 

compared the high- and low- risk group patients from 

TCGA dataset to identify enriched KEGG pathways, 

biological processes, cellular components, molecular 

functions, and dysregulated oncogenic characters 

related to the signature with reference to the C2 (curated 

gene sets), H(hallmark gene sets), C5 (GO gene sets), 

and C6 (Oncogenic signature) of Molecular Signatures 

Database (MSigDB) [62]. 

 

Tumor immunity analysis 

 

Knowing that CIBERSORT can estimate the 

enrichment degree of 22 different tumor-infiltrating 

immune cells (TIIC) using a deconvolution method 

[63], we utilized CIBERSORT and Spearman 

correlation to assess different distributions of immune 

cells with variation of the risk score. The Wilcoxon 

rank-sum test was carried out to examine the 

association between the signature and CD8+ T cell as 

well PD-L1. 

 

Detection of the mRNA and protein levels of key 

genes in clinical samples 

 

Ten pairs of PCa and adjacent non-tumor tissues were 

obtained from Fudan University Huashan Hospital. Total 

RNA was extracted from the tissue samples, using 

RNAiso Plus reagent (Takara). Complementary DNA 

was synthesized from the extracted RNA using a cDNA 

reverse transcription kit (PrimeScript™ RT Master Mix, 

Takara). The mRNA expression level was quantitated by 

qRT-PCR using SYBR qPCR Master Mix (Vazyme). 

The relative expression of the target gene was calculated 

using the 2−ΔΔCt method (ΔCt = Cttarget gene-in vitro 

control). The primer sequences are shown in 

Supplementary Table 3. The Human Protein Atlas (HPA, 
version: 18.1) database (https://www.proteinatlas.org/) 

was applied to compare the protein expression of these 

genes in tumor and normal tissue [64]. 

Statistical analysis 

 

All statistical analyses were performed using RStudio 

and its appropriate packages. Differential expression 

analysis was executed with limma package. The 

“glmnet” package was used to conduct the Lasso Cox 

regression modeling. “survminer” package was 

employed for survival analysis. FDR method was 

utilized to adjust multiple testing. Multivariate Cox 

regression analysis was performed to adjust covariates 

for verifying independent risk factors of survival. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Time‐dependent ROC curves at 12, 18, 24 months for AJCC (A) and TNM (B). 

 

 
 

Supplementary Figure 2. Forest plot of GRGs associated with the survival of patients. 
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Supplementary Tables 
 

Supplementary Table 1. Patient characteristics in the TCGA-
PAAD cohorts. 

Variables Number of cases Percentage (%) 

Age(year)   

  ≥60/<60 119/59 66.9/33.1 

Gender   

  Female/ Male 80/98 44.9/55.1 

Tumor stage   

  I-II/ III-IV 145/33 81.5/18.5 

Grade   

  G1-2/ G3-4 128/50 71.9/28.1 

Chemotherapy   

  YES/NO/NA 34/27/135 17.3/13.8/68.9 

Radiotherapy   

  YES/NO/NA 2/59/135 1.02/30.1/68.9 

Drinking   

  YES/NO/NA 105/68/23 53.6/34.7/11.7 

Chronic pancreatitis   

  YES/NO/NA 13/135/48 6.63/68.9/24.5 

Diabetes   

  YES/NO/NA 39/116/41 19.9/59.2/20.9 

Family history of cancer   

  YES/NO/NA 71/47/78 36.2/24/39.8 

NA, not available. 

Supplementary Table 2. Result of differential analysis to ARGs between tumor samples and non-tumor samples. 

 

 

Up-regulated genes 

DUOX2 TMBIM4 NQO1 PTGS2 GPX2 SLC2A1 

NOX4 MYB NOX1 CAPG TP63 CDKN2A 

SCD NNMT AURKA NCF2 SLC2A12 HMOX1 

RRM2 CA9 STMN1 RGS4 SLC2A3 SLC7A5 

CYBB ALOX15B DPP4 PRDX1 CAV1 
TLR4 

 

 

 

 

 

 

Down-regulated genes 

 

ALB 

 

GLS2 

 

BNIP3 

 

PLIN4 

 

PSAT1 

 

GPT2 

MT1G SLC2S14 XBP1 HBA1 HAMP FLT3 

VLDLR CXCL2 TUBE1 CBS ULK1 NGB 

SLC1A4 TF MAPK8 EGFR HERPUD1 ATM 

ASNS GABARAPL1 ARNTL FBXW7 TAZ 

VDAC2 ATF4 ACO1 MIOX DRD4 GDF15 

MAP3K5 JUN SETD1B CDO1 PRKAA2 MAPK9 

DDIT4 MT3 ATG4D ALOX12 BRD4 NOX5 

ULK2 HSF1 CHAC1 LPCAT3 VEGFA GABPB1 

PIK3CA HNF4A STEAP3 PCK2 FTH1 CS 

ACVR1B BAP1 GCLC WIPI1 ZNF419 CD44 

PEBP1 MTOR NFS1  

 



 

www.aging-us.com 10414 AGING 

Supplementary Table 3. The primers sequence of key ferroptosis related genes. 

Gene Forward primer Reverse primer 

ZNF419 TCCCCTCCAGCTCTACTCAC CACATAGCCCTGCTGAGCG 

TUBE1 CAGTGCGGAAACCAGATCG AGAAGCTGCTTATTGCCTCATC 

STEAP3 CTCCCCGGAGGTCATCTTTG TCTTGCTCTGTAGGGTTGCTC 

SLC1A4 TGTTTGCTCTGGTGTTAGGAGT CGCCTCGTTGAGGGAATTGAA 

RRM2 CACGGAGCCGAAAACTAAAGC CGCCTCGTTGAGGGAATTGAA 

PTGS2 CTGGCGCTCAGCCATACAG CGCACTTATACTGGTCAAATCCC 

MT1G AAAGGGGCATCGGAGAAGTG GCAAAGGGGTCAAGATTGTAGC 

MAP3K5 CTGCATTTTGGGAAACTCGACT AAGGTGGTAAAACAAGGACGG 

DDIT4 TGAGGATGAACACTTGTGTGC CCAACTGGCTAGGCATCAGC 

CAPG GGGGACTCCTACCTAGTGCTG CACCACCTTCCTGGTACTTGA 

CAV1 GCGACCCTAAACACCTCAAC ATGCCGTCAAAACTGTGTGTC 

BAP1 GCTCGTGGAAGATTTCGGTGT TCATCAATCACGGACGTATCATC 

AURKA GAGGTCCAAAACGTGTTCTCG ACAGGATGAGGTACACTGGTTG 

ATG4D GGAACAACGTCAAGTACGGTT CTCGCCCTCGAAACGGTAG 

 

Supplementary Table 4. Clinicopathological parameters of patients. 

Case id Age Gender Tumor size (cm) Pathologic_T* Pathologic_N* Pathologic_M* Overall survival (month) 

1 61 female 2*1*1 T1 N0 M0 18.5 

2 49 female 5*3*2.5 T3 N1 M0 12.5 

3 63 male 3.5*3*3 T2 N1 M0 16 

4 59 female 6*4.5*3 T3 N0 M0 17 

5 52 female 4.5*3*2 T3 N0 M0 16 

6 64 female 3.5*3*2 T2 N0 M0 7 

7 69 male 2.5*2*2 T4 N0 M0 8.5 

8 49 male 5*3*2 T4 N1 M0 0 

9 77 female 3*2*1.5 T2 N1 M0 3 

10 56 male 3.5*3*2 T2 N0 M0 17.5 

 

Supplementary Table 4. Clinicopathological parameters of patients (Continued). 

Case id Chemotherapy Radiotherapy Drinking Chronic pancreatitis Diabetes Family history of cancer 

1 1 0 0 0 0 0 

2 1 0 0 0 0 0 

3 1 0 0 0 1 0 

4 1 0 0 0 0 0 

5 1 1 0 0 1 0 

6 1 0 0 0 0 0 

7 1 0 0 0 0 0 

8 0 0 0 0 0 0 

9 1 0 0 0 0 0 

10 1 0 0 0 0 0 

* tumor node metastasis. 


