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INTRODUCTION 
 

Telomeres protect the ends of linear chromosomes from 

end-to-end fusion, injurious chromosomal 

rearrangements, and genomic instability [1]. Human 

telomeric DNA is composed of a serial of hexameric 

DNA repeats (5’-TTAGGG-3’) that are synthesized by 

telomerase, an RNA-protein complex [2, 3]. In normal 

conditions, the telomeres of most human somatic cells 

are continuously shortened during each cell division due 

to the absence of telomerase and incomplete replication. 

When telomeres become extremely short, they lose 
protection abilities and are recognized as broken-ends, 

which turn on cell cycle checkpoint signaling. In human 

fibroblasts, gradually losing telomeres induce 

chromosome fusion, crisis, and apoptosis [4]. Cancer 

cells can circumvent this crisis through the reactivation 

of telomerase (85%) or the alternative lengthening of 

telomeres [5] recombination pathway (15%) to elongate 

their telomeres [6–8]. Many DNA repair and 

recombination proteins have been discovered in the 

ALT pathway, but the molecular mechanisms and 

regulations of ALT are still not fully understood [6, 9]. 

 

ALT cells possess a unique marker, ALT-associated 

promyelocytic leukemia (PML) bodies (APBs), 

containing telomeric DNA as well as many DNA repair 

and replication proteins, such as RAD52, RAD51, 

RAD50, RPA, TRF1, TRF2, and NBS1 [10]. Many 
studies speculated that APBs provide a 

‘‘recombinogenic microenvironment’’ to benefit ALT 

formation [11–19]. APBs can be detected within a 
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ABSTRACT 
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during telomere recombination. A coimmunoprecipitation assay revealed that the SUN1 N-terminal 
nucleoplasmic domain interacts with the RAP1 middle coil domain, and phosphorylation-mimetic mutations in 
RAP1 inhibit this interaction. However, abolishing the RAP1-SUN1 interaction does not hinder APB formation, 
which hints at the existence of another SUN1-dependent telomere anchorage pathway. In summary, our results 
reveal an inhibitory role of telomere-nuclear envelope association in telomere-telomere recombination and 
imply the presence of redundant pathways for the telomere-nuclear envelope association in ALT cells. 
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mitotic cell cycle [20], and seem to be dynamic in the 

nucleus [19–22]. High-resolution images revealed that 

APB-associated telomere clustering promotes telomere-

telomere recombination after replication [23]. A recent 

study showed that telomeric DNA synthesis exclusively 

occurs in APBs [18]. In addition to APBs, another 

characteristic of ALT cells is the presence of the high 

content of extrachromosomal telomeric DNA circles, 

especially single-stranded C-rich circles (C-circles) [14, 

24–30]. Nonetheless, how the C-circles are generated 

remains mysterious. 

 

The telomere-associated shelterin proteins TRF1, TRF2, 

TIN2, and RAP1 act as negative regulators of telomere 

length in telomerase-positive cells to assure the 

telomeric integrity [31]. They are also important for 

APB formation [10, 32, 33]. Knockout mice studies 

showed that loss of RAP1 increases the frequency of 

telomeric sister chromatid exchanges (T-SCEs) in 

mouse embryonic fibroblasts (MEFs), suggesting that 

RAP1 is critical for the repression of telomeric 

recombination in MEFs [34, 35]. However, the 

mechanism of how shelterin RAP1 regulates telomere-

telomere recombination in ALT cancer cells remains to 

be clarified. 

 

Linkers of nucleoskeleton and cytoskeleton (LINC) 

complexes are conserved nuclear membrane proteins 

that span in the nuclear envelope to connect cytoskeletal 

and nucleoskeletal elements [36, 37]. The LINC 

complexes play critical roles in multiple fundamental 

cellular processes, including nuclear migration, meiotic 

chromosome pairing, mechanotransduction, and nuclear 

shape maintenance [38]. The LINC complexes consist 

of the conserved inner nuclear membrane SUN proteins 

and outer nuclear membrane KASH proteins [36]. They 

are involved in the chromatin mobility, mobility, and 

clusters of DNA breaks, and double-strand break repair 

[39–43]. SUN1 and SUN2 were the first identified SUN 

proteins that are widely expressed in mammals [44–47]. 

The N-terminal domain of SUN1 locates in the 

nucleoplasm, while its C-terminal domain is inserted 

into the perinuclear space for docking the KASH 

proteins [36, 37]. Immunohistological data showed that 

SUN1 expression was reduced in breast cancer tissues 

and cell lines as compared to the normal mammary 

gland tissues, suggesting that reduction of SUN1 plays a 

pathological role in breast cancer formation [48]. SUN1 

is also important for messenger RNA export, nuclear 

pore complex distribution, and nucleolar morphogenesis 

[49–52]. 

 

Telomeres of T-lymphocytes are positioned within the 
interior 50% of the nuclear volume [53]. Other studies 

showed that telomeres seem to attach to the nuclear 

matrix during interphase in non-ALT cells [54–56]. 

Surprisingly, it was later revealed that telomeres can 

attach to the nuclear envelope during the mitotic cell 

cycle through the interaction between RAP1 and SUN1 

in HeLa and IMR90 cells [57]. On the contrary, 

telomere tethering to the nuclear envelope in ALT cells 

has not been examined. We were curious about whether 

telomere tethering affects the telomere-telomere 

recombination pathway in ALT cells. 

 

In this study, we found that depletion of the nuclear 

envelope SUN1 promotes the APB formation and C-

circle levels in ALT cells. On the other hand, the APB 

formation is impaired when the telomeres are forced to 

link with the nuclear envelope, suggesting that the 

telomere-nuclear envelope attachment may prevent 

telomere-telomere recombination. SUN1 knockdown 

recovers the deficiency of the APB formation in the 

TOP3α-depleted cells, suggesting that the reduction of 

the nuclear membrane tethering may partially relieve 

the requirement of TOP3α during telomere-telomere 

recombination. Moreover, our data imply a SUN1-

dependent but RAP1-independent telomere-tethering 

pathway that may also prevent telomere-telomere 

recombination in ALT cells. 

 

MATERIALS AND METHODS 
 

Cell culture, transfections, and methionine 

treatments 

 

HEK-293T, U2OS, VA13, HeLa, and HCT116 cells 

were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum, 

penicillin, streptomycin, and nonessential amino acids 

(HyClone). Transfection was conducted using T-Pro 

nonliposome transfection reagent II (T-Pro 

Biotechnology). To increase the APB formation ratio, 

virus-infected U2OS and VA13 cells were treated with 

methionine restriction as previously described [33]. In 

brief, cells were grown on glass coverslips in DMEM to 

50% confluency. The cells were washed once with 

methionine-deficient medium before incubation in 

methionine-deficient medium for 3 days; this 

methionine-deficient DMEM (Gibco) contained 10% 

fetal bovine serum, penicillin, streptomycin, 4 mM 

glutamine, nonessential amino acids (HyClone), and L-

cysteine (48 mg/l, Sigma). 

 

Viral infection 

 

HEK-293T cells were cotransfected with the packaging 

plasmid (pCMV-Δ8.91), envelope (pMD.G), and either 

hairpin pLKO-RNAi vectors or cDNA expression 

pLAS5w.Pneo vectors (National RNAi Core Facility, 

Institute of Molecular Biology/Genomic Research 

Centre, Academia Sinica, Taiwan) for virus production. 
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The specific oligo sequences of the shRNA are listed in 

Supplementary Table 1. Twenty-four hours 

posttransfection, the medium was replaced with DMEM 

containing 1% BSA. Virus-containing supernatants 

were collected at 48 h and 72 h posttransfection. The 

cells were infected with viruses and cultured in DMEM 

containing 1 μg/ml polybrene (Millipore) for 16 h. The 

transduced cells were selected with DMEM containing 

1 μg/ml puromycin (Invitrogen) or G418 (Sigma) for 

the indicated days (600 μg/ml G418 for VA13 cells and 

800 μg/ml G418 for U2OS cells). 

 

Plasmid construction 

 

The primers used in this study are listed in 

Supplementary Table 2. For pcDNA3HA-RAP1 

construction, RAP1 cDNA was amplified from U2OS 

cell cDNA by PCR using the primers RAP1-BamHI-1F 

and RAP1-XhoI-R and then cloned into the BamHI-

XhoI sites of pcDNA3HA (a gift from Dr. Tsai-Kun 

Li). For pLAS5w-RAP1 construction, RAP1 cDNA was 

amplified by PCR using the primers RAP1-NheI-For 

and RAP1-NsiI-Rev and then cloned into the NheI-NsiI 

sites of pLAS5w.Pneo (National RNAi Core Facility, 

Institute of Molecular Biology/Genomic Research 

Centre, Academia Sinica, Taiwan). The pcDNA3HA-

RAP1 and pLAS5w-RAP1 truncated mutants were 

generated using a QuickChange site-directed 

mutagenesis kit (Stratagene) with the primers listed in 

Supplementary Table 2. The pEGFP-SUN1 N205 

plasmid was generated by self-ligation of SmaI-digested 

pEGFP-SUN1 (a gift from Dr. Angelika A. Noegel), 

which removes the SUN1 C-terminus. For pLAS5w-

SUN1 construction, SUN1 cDNA was amplified from 

pEGFP-SUN1 by PCR using the primers NheI-SUN1-

For and SUN1-EcoRI-Rev and then cloned into the 

NheI-EcoRI sites of a pLAS5w.Pneo plasmid. The 

pLAS5w-RAP1-SUN1 fusion was constructed as 

follows: the RAP1-G8 sequence was amplified by PCR 

using the primers HpaI-RAP1-For and RAP1-G8-NheI-

Rev, which contain the sequence for eight glycine 

residues before the NheI site at the 3’ end of the reverse 

primer, and then cloned into HpaI-NheI in 

pLAS5w.Pneo to create pLAS5w-RAP1-G8. Next, 

SUN1 cDNA was amplified by PCR using the primers 

NheI-SUN1-For and SUN1-EcoRI-Rev and inserted 

into the NheI-EcoRI sites of pLAS5w-RAP1-G8 to 

obtain pLAS5w-RAP1-SUN1. To create RAP1 ΔC, 

which cannot interact with TRF2 [58], RAP1 amino 

acid 1-289 sequences were amplified by PCR using the 

primers HpaI-RAP1-For and RCTdel-G8-NheI-Rev. 

The 3’ end of the reverse RCTdel-G8-NheI-Rev primer 

contains the sequence for eight glycine residues before 
the NheI site. The PCR-amplified HpaI- and NheI-

digested RAP1 ΔC fragments were cloned into 

pLAS5w-SUN1 to obtain pLAS5w-RAP1ΔC-SUN1. 

The RAP1 8FA and RAP1 8DE sequences were 

synthesized by gBlocks® gene fragments (Integrated 

DNA Technologies) and then cloned into the 

pcDNA3HA and pLAS5w plasmids, respectively. All 

plasmids were sequenced before use. 

 

Cell fixation and immunofluorescence assays 

 

Cells were seeded on glass coverslips coated with 0.2% 

gelatin (Sigma). After washing with phosphate-buffered 

saline (PBS), the cells were fixed in 4% 

paraformaldehyde in PBS for 10 min at room 

temperature. The fixed cells were permeated with 

0.05% Triton X-100 in PBS for 5 min. These cells were 

washed three times with PBS and incubated with 1% 

BSA in PBS for 1 h at room temperature. For 

immunostaining, cells were incubated for 2 h with anti-

TRF2 (1:200, clone 4A794, Millipore) and anti-PML 

(1:150, N-19, sc9862, Santa Cruz Biotechnology) 

primary antibodies at room temperature. The cells were 

washed twice with PBS for 5 min each time and then 

incubated with chicken anti-goat Alexa Fluor 594 

(Invitrogen) for 1 h at room temperature. The cells were 

washed twice with PBS and incubated with goat anti-

mouse Alexa Fluor 488 (Invitrogen) and 4',6-diamidino-

2-phenylindole (DAPI) (Sigma) for 1 h at room 

temperature. The cells were washed three times with 

PBS and mounted on glass slides. Immunofluorescence 

images were acquired with a Zeiss Axioplan 

fluorescence microscope. 

 

Immunoblotting 

 

Cell lysates were prepared in sample buffer, separated 

by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE), and transferred to a 

PVDF membrane. The primary antibodies used in this 

study were anti-GAPDH (GTX100118, GeneTex), anti-

Lamin A/C (N-18, sc-6215), anti-SUN1 (EPR6554, 

ab124770, Abcam), anti-RAP1 (A300-306A, Bethyl 

Laboratories), and anti-TOP3α (14525-1-AP, 

Proteintech). Horseradish peroxidase (HRP)-conjugated 

sheep anti-mouse and donkey anti-rabbit antibodies (GE 

Healthcare) were used as secondary antibodies. 

Immunoreactivity was detected by chemiluminescence 

using X-ray film (Fujifilm Corporation). 

 

C-circle assay 

 

The C-circle assay was performed as previously 

described [26]. Briefly, each DNA sample (10 and 40 

ng) was incubated with or without 7.5 U ɸ29 DNA 

polymerase (NEB, M0269) in a 20-μl reaction mixture 
containing 9.25 μl of 2.16x master mix (8.65 mM DTT, 

2.16x ɸ29 buffer, 8.65 μg/ml BSA, 0.216% v/v Tween 

20, 2.16 mM dATP, 2.16 mM dGTP, 2.16 mM dTTP, 
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and 2.16 mM dCTP) for performing the rolling circle 

amplification reaction at 30° C for 8 h and then 

transferred to 70° C for 20 min to inactivate ɸ29 DNA 

polymerases. The reaction mixture without the addition 

of ɸ29 DNA polymerase was used as a control. The 

reaction mixtures were loaded onto an Amersham 

Hybond-N+ membrane using the Bio-Rad Bio-Dot 

system. The membrane was cross-linked with 454 nm 

UV-C at 1,200 J twice and hybridized overnight with a 
32P-labeled (Invitrogen) CCA oligonucleotide probe (5’-

CTAACCCTAACCCTAACC-3’) in hybridization 

buffer (225 mM NaCl; 15 mM NaH2PO4; 1.5 mM 

EDTA, pH 7.6; 10% polyethylene glycol 8000; and 7% 

SDS) at 37° C. The membrane was washed three times 

with washing solution (0.5 × SSC, 0.1% SDS) and 

exposed to X-ray film (Fujifilm Corporation). The 

images were quantified using NIH ImageJ software. 

 

Immunoprecipitation 

 

Cells were lysed in lysis buffer (150 mM NaCl; 1% 

Triton X-100; 50 mM Tris-HCl, pH 8.0; 1 mM PMSF; 

Roche protease inhibitor; and a phosphatase inhibitor 

cocktail) on ice for 10 min. After centrifugation at 

13,000 rpm for 10 min at 4° C, 1 mg of protein lysate 

was incubated with 50 μl of μMACS anti-GFP 

microbeads (Miltenyi Biotec) for 1 hour at 4° C. 

Labeled proteins were applied to a μMACS column 

placed in a μMACS separator (Miltenyi Biotec). Then, 

the column was washed three times with Wash Buffer 1 

(150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 

0.1% SDS, and 50 mM Tris-HCl, pH 8.0) and further 

washed once with 20 mM Tris-HCl, pH 7.5. The target 

proteins were eluted in 50 μl elution buffer preheated to 

95° C (50 mM Tris-HCl, pH 6.8; 50 mM DTT; 1% 

SDS, 1 mM EDTA; 0.005% bromophenol blue; and 

10% glycerol) for SDS-PAGE analysis. 

 

Telomere restriction fragment (TRF) analysis 

 

Genomic DNA was extracted from cells by a genomic 

DNA purification kit (Promega). Genomic DNA (2 μg) 

was digested with RsaI and HinplI (New England 

Biolabs), and run on a 0.5% UltraPureTM Agarose gel 

(Invitrogen) in 0.5 × TBE buffer using a Thermo 

Scientific TM Owl TM A1 Large Gel System (Invitrogen) 

at 120 V for 20 h. The gel was soaked in 0.25 N HCl for 

15 min to denature the DNA and then neutralized in a 

0.5 N NaOH and 1.5 M NaCl solution for 30 min. The 

digested DNA was transferred onto a Hybond N+ nylon 

membrane (GE healthcare). The membrane was cross-

linked twice with 454 nm UV-C at 1,200 J twice and 

hybridized overnight with a 32P-labeled (Invitrogen) 
800-bp TTACCC telomere-specific probe in Church 

buffer (1% BSA, 1 mM EDTA, 0.5 M phosphate buffer, 

and 7% SDS) at 65° C. The next day, the blot was 

washed three times with 4 × SSC buffer and then 

exposed to X-ray film (Fujifilm Corporation). Telomere 

length was determined by ImageQuant TL software (GE 

healthcare). 

 

Statistical analysis 

 

Each experiment was repeated at least three times. The 

results are expressed as the means ± standard deviation 

(SD). A two-tailed Student’s t-test was used for 

statistical analysis. P < 0.05 was considered statistically 

significant. 

 

RESULTS 
 

Depletion of SUN1 promotes APB and C-circle 

formation in ALT cells 

 

The role of SUN1 in telomere-nuclear envelope 

anchorage in non-ALT cells [57] prompted us to 

investigate whether SUN1 is required for telomere-

telomere recombination in ALT cells. We first 

examined the significance of SUN1 in the viability of 

U2OS and VA13 ALT cells. Depletion of SUN1 slowed 

the growth of both ALT cell lines (Supplementary 

Figure 1A, 1B). Similar to SUN1-depleted ALT cells, 

cell growth was also reduced in SUN1-depleted 

telomerase-positive cells (Supplementary Figure 1C, 

1D). The growth defect caused by SUN1 depletion was 

previously reported in SUN1-suppressed HeLa1.2.11 

cells. SUN1 knockdown can induce robust activation of 

the checkpoint response and has a dramatic effect on the 

cell cycle [57]. The dramatic growth defect induced by 

SUN1 depletion hindered us from observing long-term 

telomere length alterations in SUN1-depleted cells. 

However, the short-term depletion of SUN1 did not 

destroy the integrity of the nuclear lamina 

(Supplementary Figure 2). These results suggest that 

SUN1 plays a role in cell growth and the cell cycle. 

 

One of the signatures of ALT cells is the formation of 

APBs, but the mechanism of their formation remains 

unclear [10, 22]. To understand the function of SUN1 in 

the ALT pathway, we studied the formation of APBs by 

examining the colocalization of PML and the telomere-

binding protein TRF2. The SUN1 protein levels in the 

short-term SUN1-depleted U2OS and VA13 ALT cells 

were confirmed by immunoblotting (Figure 1A). The 

percentage of the APB-positive cells in the SUN1-

depleted ALT cells was significantly increased (Figure 

1B, 1C). Under SUN1 depletion, the percentage of the 

cells exhibiting another ALT cell biomarker, the C-

circle [25], was also significantly increased (Figure 1D, 

1E). In contrast, no APB formation was observed in the 

SUN1-depleted telomerase-positive HeLa and HCT116 

cells, implying that the loss of SUN1 does not convert 
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telomere-positive cells into telomerase-negative ALT 

cells (Supplementary Figure 3). These results suggest 

that SUN1 may play an inhibitory role in the formation 

of APBs and C-circles. 

 

The RAP1-SUN1 fusion protein decreases APB 

formation 

 

Since the interaction between the nuclear envelope 

SUN1 protein and telomere shelterin RAP1 protein 

contributes to the tethering of human telomeres to the 

nuclear envelope in non-ALT cells [57], we speculated 

that enhancing telomere-nuclear envelope interactions 

may decrease APB formation in ALT cells. To test this 

hypothesis, we generated a RAP1-SUN1 fusion protein 

(Figure 2A) that connects RAP1 and SUN1 via an 

eight-glycine linker. The RAP1-SUN1 fusion protein 

was overexpressed in U2OS and VA13 ALT cells 

through lentivirus transduction, and the expression 

levels of the fusion and endogenous proteins were 

measured with immunoblotting (Figure 2B). It was 

reported that APBs are usually found in less than 5% of 

an asynchronous ALT cell population [33]. However, 

methionine deprivation can arrest cells in the G2 phase 

and increase the number of APBs in ALT cells [15, 59]. 

To monitor with efficiency the difference in APB 

 

 
 

Figure 1. SUN1 knockdown induces APB formation and C-circle levels. (A) U2OS and VA13 cells were infected with control (shLuc) or 

shSUN1 lentivirus and selected with 1 μg/ml puromycin for 3 days. Cell lysates were subjected to immunoblot analysis with anti-SUN1 and 
anti-GAPDH antibodies. GAPDH was used as the loading control. (B) Representative images show the colocalization of TRF2 and PML in U2OS 
cells (upper panel) and VA13 cells (bottom panel). Virus-infected and puromycin-selected cells were subjected to immunofluorescence 
staining with anti-TRF2 and anti-PML antibodies. DNA was stained with DAPI. Cells containing at least three large TRF2 and PML colocalization 

foci (yellow) in the nucleus were counted as APB-positive cells. Scale bar, 20 μm. (C) Quantification of APBs (%) in the U2OS and VA13 cells 
shown in (B). Approximately 200-300 cells were analyzed for each independent experiment. Error bars denote SD; n=3 (independent 
experiments); *P<0.05 (two-tailed Student’s t-test). (D) Depletion of SUN1 stimulates the formation of C-circles in U2OS cells. (E) 
Quantification of the level of C-circles in the cells in (D). The signals were quantified with ImageJ software. The level of C-circles is 
represented in an arbitrary unit (a.u.). Error bars denote SD; n=3 (independent experiments); *P<0.05 (two-tailed Student’s t-test). 
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formation between the cells expressing the empty vector 

and RAP1-SUN1, we depleted methionine in the virus-

transduced U2OS and VA13 ALT cells. Overexpression 

of SUN1 or RAP1 alone did not affect the APB 

formation (Figure 2C, 2D and Supplementary Figure 4). 

Coimmunostaining of RAP1 and Lamin A/C 

demonstrated that the RAP1-SUN1 fusion protein was 

localized to the nuclear periphery (Supplementary 

Figure 5A). The DNA-binding protein TRF2 binds to 

telomeric DNA directly and interacts with RAP1 to 

form the shelterin complex [58]. Interestingly, some 

TRF2 proteins localize around the periphery of the 

nucleus, implying that the function of the RAP1 in the 

RAP1-SUN1 fusion protein is competent to attract 

TRF2 to the nuclear envelope (Supplementary Figure 

5B). Overexpression of the RAP1-SUN1 fusion protein 

significantly reduces the APBs formation in both ALT 

cells (Figure 2C, 2D). Notably, the APB foci were 

primarily formed in the internal region of the nucleus 

but rarely in the periphery. Additionally, overexpression 

of the RAP1-SUN1 fusion protein slowed the cell 

growth of the ALT- and telomerase-positive cells 

(Supplementary Figure 6). RAP1 interacts with TRF2 

through its RAP1 C-terminal (RCT) protein-protein 

 

 
 

Figure 2. The enhancement of nuclear envelope anchorage inhibits APB formation. (A) Schematic diagrams of cells overexpressing 

SUN1, RAP1-RCT-domain-deleted-SUN1 (RAP1ΔC-SUN1), or RAP1-SUN1 fusion chimera protein are shown. NE, the nuclear envelope. (B) 

U2OS and VA13 cells were infected with lentivirus expressing the empty vector control (EV), SUN1, RAP1ΔC-SUN1, or RAP1-SUN1 fusion and 
then selected in medium containing G418 for 5 days. Cell lysates were analyzed by immunoblotting with anti-RAP1, anti-SUN1, and anti-
GAPDH antibodies. The arrowhead indicates the RAP1-SUN1 fusion protein. The arrow indicates endogenous SUN1. The asterisk indicates 
endogenous RAP1. The ladders under the major protein band show possible products of protein degradation. GAPDH was used as the loading 
control. (C) Representative images show the colocalization of TRF2 and PML in U2OS cells (upper panel) and VA13 cells (bottom panel), as 
shown in Figure 1. Scale bar, 20 μm. (D) Quantification of APBs (%) in the U2OS and VA13 cells shown in (C). Approximately 200-300 cells 
were analyzed for each independent experiment. Error bars denote SD; n=3 (independent experiments); *P<0.05 (two-tailed Student’s t-
test). N.S., no significance. 
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interaction domain [58]. To examine whether the 

interaction between RAP1 and TRF2 affects telomere 

anchorage, we generated the RCT domain-deleted 

RAP1-SUN1 fusion protein (RAP1ΔC-SUN1) (Figure 

2B), which loses the ability of RAP1 to bind to 

telomeres. As predicted, similar to SUN1 

overexpression, RAP1ΔC-SUN1 fusion protein 

expression did not affect APB formation (Figure 2C, 

2D). However, the C-circle levels were not changed in 

the cells overexpressing RAP1, SUN1, RAP1ΔC-

SUN1, or RAP1-SUN1 fusion protein (Supplementary 

Figure 7). These results indicate that the imposed 

telomere-nuclear envelope interaction might impede the 

progression of APB formation. 

 

SUN1 depletion and RAP1-SUN1 fusion do not 

affect telomere length during short-term culturing 

 

Because of the growth defect in SUN1-knockdown or 

RAP1-SUN1-overexpressing cells, we could not 

acquire long-term cultured ALT cells. We could merely 

obtain short-term cultured U2OS ALT cells. To 

evaluate whether telomere length was affected by 

SUN1 depletion or RAP1-SUN1 overexpression in 

these short-term-cultured ALT cells, we performed a 

telomere restriction fragment (TRF) assay. The 

telomere length in SUN1-depleted cells was not 

changed after seven days (Supplementary Figure 8A). 

We next measured the telomere length of SUN1-, 

RAP1ΔC-SUN1-, and RAP1-SUN1-overexpressing 

cells. The telomere lengths in these cells did not show 

significant variation compared to those in the control 

cells (Supplementary Figure 8B). These results reveal 

that telomere length homeostasis is not changed in 

SUN1-depleted or RAP1-SUN1-overexpressed short-

term cultures. 

 

Depletion of SUN1 alleviates the requirement of 

TOP3α in ALT cell 

 

Previous studies demonstrated that telomere-telomere 

recombination specifically requires TOP3α to resolve 

highly negative topological stress generated during fork 

movement along telomeres undergoing recombination 

[60, 61]. If the supercoiling stress is at least partly 

derived from the anchorage of telomeres to the nuclear 

envelope, detaching the telomeres from the nuclear 

envelope may allow free rotation of the telomeres 

during recombination and thereby relieve the 

supercoiling tension. To examine this possibility, we 

depleted TOP3α in ALT cells to evaluate the APB 

formation ability (Figure 3A). The cell proliferation 

rates were also analyzed (Supplementary Figure 9). As 
predicted, depletion of TOP3α abolished APB 

formation, while depletion of SUN1 in the TOP3α-

depleted cells led to recovered APB formation (Figure 

3B, 3C). These results may imply that the detachment 

of telomeres from the nuclear envelope alleviates the 

requirement of TOP3α to resolve topological stress. 

 

Coil domain phosphorylation-mimetic mutations of 

RAP1 block the RAP1-SUN1 interaction 

 

Since the detailed mechanism of the RAP1-SUN1 

interaction is not fully understood, to determine which 

RAP1 domain interacts with SUN1, we generated 

various truncated forms of RAP1 for domain mapping 

(Figure 4A). The N-terminal domain of SUN1 is 

located in the nucleoplasm and interacts with RAP1, 

while the SUN1 C-terminus is located in the 

perinuclear space that anchors the protein to the 

nuclear envelope [47, 57]. Due to the difficulty of 

precipitating insoluble membrane proteins, we 

constructed a truncated form of SUN1 that contains 

205 N-terminal soluble amino acids (SUN1 N205), 

which preserves the ability of SUN1 to interact with 

RAP1. U2OS cells were cotransfected with an HA-

tagged RAP1 plasmid together with the EGFP-tagged 

SUN1 N205 plasmid to perform immunoprecipitation. 

Full-length HA-tagged RAP1 was efficiently 

coimmunoprecipitated with EGFP-tagged SUN1 N205 

but not EGFP alone (Figure 4B). However, coil-

deleted (ΔCoil) RAP1 was not coprecipitated with 

SUN1 (Figure 4B), suggesting that the coil region of 

RAP1 is critical for SUN1 binding. 

 

Many protein-protein interactions are modulated 

through posttranslational modifications, such as 

phosphorylation. We were curious to know whether the 

interaction between human RAP1 and SUN1 may be 

regulated by RAP1 phosphorylation. We analyzed the 

potential phosphorylation of RAP1 using the proteomic 

PhosphoSitePlus® database (https://www.phosphosite. 

org/homeAction.action). There are 22 phosphorylation 

sites on RAP1, and eight phosphorylation sites are 

located within the coil region (Figure 4C). To 

characterize the kinases of these eight phosphorylation 

sites, the KinasePhos 2.0 website was used to predict 

the potential kinases (Table 1) [62]. Based on the 

analysis, S203, S205, S206, and S222 might be 

regulated by ATM kinase, Y195 and Y238 might be 

regulated by FGFR1, and T286 might be regulated by 

CK2. Next, we replaced these eight tyrosine, serine, or 

threonine residues with nonphosphorylatable 

phenylalanine and alanine (8FA) and phospho-mimetic 

aspartic acid and glutamic acid (8DE). Interestingly, the 

nonphosphorylatable RAP1-8FA mutations showed 

enhanced interactions with SUN1, but phospho-mimetic 

RAP1-8DE mutations lost the ability to interact with 
SUN1 (Figure 4D). These results suggest that this 

potential phosphorylation in the coil region of RAP1 

might inhibit the interaction between RAP1 and SUN1. 

https://www.phosphosite.org/homeAction.action
https://www.phosphosite.org/homeAction.action
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RAP1-SUN1 interaction-independent nuclear 

envelope tethering pathways participate in APB 

formation 

 

Finally, we investigated whether APB formation may be 

affected by the observed RAP1-SUN1 interaction. We 

simultaneously introduced RAP1-knockdown 

lentiviruses, which targeted the 3’ UTR of RAP1, and 

knockdown-resistant RAP1-expressing lentiviruses into 

U2OS cells. We also deprived methionine in the 

medium to enrich the APB-positive subpopulations. The 

protein expression levels were determined by 

immunoblotting (Figure 5A). It has been reported that 

the depletion of RAP1 hampers APB formation [33]. 

Consistent with this previous report, RAP1 knockdown 

in the U2OS cells led to decreased APB formation 

(Figure 5B). However, enforced expression of wild-type 

RAP1 to the endogenous level restored APB formation 

in the RAP1-depleted cells (Figure 5A, 5B). In addition, 

the cells expressing the RAP1 coil deletion and the 

nonphosphorylatable RAP1-8FA and phospho-mimetic 

RAP1-8DE mutants all displayed the same level of 

APBs, which was similar to that in the cells expressing 

wild-type RAP1 (Figure 5B). Our data imply that a 

SUN1-dependent but RAP1-independent pathway might 

contribute to APB formation in ALT cells. 

 

 
 

Figure 3. SUN1 depletion increases APB formation in TOP3α-knockdown cells. (A) U2OS and VA13 cells were infected with control 

(shLuc), shSUN1, shTOP3α, or shSUN1 combined with shTOP3α lentiviruses and selected for 3 days. Cell lysates were analyzed by 
immunoblotting with anti-SUN1, anti-TOP3α, and anti-GAPDH antibodies. The arrowhead indicates the location of the TOP3α protein. GAPDH 
was used as the loading control. (B) Representative images show the colocalization of TRF2 and PML in U2OS cells (upper panel) and VA13 
cells (bottom panel), as shown in Figure 1. Scale bar, 20 μm. (C) Quantification of APBs (%) in the U2OS and VA13 cells shown in (B). 
Approximately 200-300 cells were analyzed for each independent experiment. Error bars denote SD; n=3 (independent experiments); 
*P<0.05 (two-tailed Student’s t-test). N.S., no significance. 
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DISCUSSION 
 

The first cytological evidence for telomere anchoring to 

the nuclear membrane was discovered by the Gasser 

laboratory [63]. In budding yeast, telomeres are 

clustered and placed at the nuclear periphery, where 

they create a nuclear subcompartment for telomere 

silencing [64]. It was reported that yeast subtelomeric 

Y’ recombination is suppressed by telomere anchorage 

to the nuclear envelope [65]. Moreover, the yeast 

telomere-binding protein Rif1 is required for telomere 

anchorage [66]. In human telomerase-positive cells, 

telomere-nuclear envelope anchorage occurs during the 

cell cycle and is at least partly mediated through the 

interaction between the shelterin subunit RAP1 and the 

nuclear envelope protein SUN1 [57]. Previous studies 

have also shown that in certain non-ALT cells, most 

telomeres are located within the nuclear interior during 

interphase [40, 67]. However, the telomere-nuclear 

envelope association in ALT cells had not been 

explored. Here, we show that SUN1 might play a role in 

preventing telomere-telomere recombination. We also 

reveal that potential phosphorylation at the RAP1 coil 

domain might decrease the interaction between RAP1 

and SUN1. We hypothesize that with unknown 

environmental or internal stimuli, some unidentified 

kinases may phosphorylate the RAP1 coil domain to 

induce the dissolution of the RAP1 and SUN1 

 

 
 

Figure 4. The coil region of RAP1 and the potential phosphorylation of residues in that domain are likely critical for the SUN1 
interaction. (A) Schematic representations of the N-terminal HA-tagged RAP1 constructs and the N-terminal EGFP-tagged SUN1 constructs. 
TM, transmembrane. (B) U2OS cells were transfected with HA-tagged RAP1 together with either EGFP or EGFP-tagged SUN1 N205. Forty-
eight hours posttransfection, the cells were harvested for use in immunoprecipitation assays. EGFP-SUN1 N205 was immunoprecipitated with 
anti-GFP beads. Input and immunoprecipitated proteins (IPs) were analyzed by immunoblotting with anti-GFP and anti-HA antibodies. 
Asterisk (*), nonspecific band. (C) A schematic representation of the eight potential phosphorylation sites in the coil domain of RAP1. (D) 
U2OS cells were transfected with HA-tagged RAP1 WT, nonphosphorylatable (8FA), or phospho-mimetic (8DE) mutant together with EGFP-
tagged SUN1 N205. Forty-eight hours posttransfection, the cells were harvested for use in immunoprecipitation assays. Input and 
immunoprecipitated proteins (IPs) were analyzed by immunoblotting with anti-GFP and anti-HA antibodies. Asterisk (*), nonspecific band. 
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Table 1. Putative phosphorylation sites of RAP1 coil domain. 

Phosphorylation site Sequence (N’→C’) Predicted kinasea Scorea References 

Y195 192 EHKYLLG FGFR1 0.53  

S203 220 APVSPSS ATM 0.93 [87] 

S205 202 VSPSSQK ATM 0.97 [85] 

S206 203 SPSSQKL ATM 0.93  

S222 219 AADSGEP ATM 0.99  

T230 227 NKRTPDL GRK 0.54  

Y238 235 EEEYVKE FGFR1 0.53  

T286 283 DPPTPEE CK2 0.59  

aKinases were predicted and scored by KinasePhos2.0 (http://kinasephos2.mbc.nctu.edu.tw/index.html) [62]. 

 

interaction. The detailed mechanism of how telomeres 

leave the nuclear envelope and then generate APBs 

remains unclear (Figure 6A). 

 

We observed that the APB formation is increased in 

SUN1-depleted ALT cells but is decreased in RAP1-

SUN1 fusion ALT cells (Figure 6B). In budding and 

fission yeasts, SUN1 homologs sequester double-strand 

breaks (DSBs) at the nuclear envelope to protect them 

from deleterious recombination [42, 43]. Based on these 

findings, one possible mechanism of SUN1-suppressed 

APB formation might be based on SUN1 sequestering 

telomeres to prevent their homologous recombination. 

Another plausible mechanism is that the SUN1-RAP1 

 

 
 

Figure 5. Disruption of the interaction between RAP1 and SUN1 does not interfere with APB formation in ALT cells. (A) U2OS 
cells were infected with the knockdown control (shLuc) or shRAP1 lentivirus and simultaneously complemented with control (EV), wild-type 

RAP1 (WT), RAP1 coil deletion (ΔCoil), nonphosphorylatable (8FA), or phospho-mimetic (8DE) RAP1 mutant lentiviruses. Virus-infected cells 
were selected for 5 days and subjected to further methionine restriction for 3 days. Cell lysates were analyzed by immunoblotting with anti-
RAP1 and anti-GAPDH antibodies. The arrowhead indicates the location of endogenous RAP1, and the multiple lower-molecular-weight 
bands are degraded RAP1. Asterisk (*), RAP1 coil deletion mutant. GAPDH was used as the loading control. (B) Quantification of APBs (%) in 
the U2OS cells shown in (A). Approximately 200-300 cells were analyzed for each independent experiment. Error bars denote SD; n=3 
(independent experiments); *P<0.05 (two-tailed Student’s t-test). N.S., no significance. 

http://kinasephos2.mbc.nctu.edu.tw/index.html
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interaction may generate supercoiling tension that 

impedes subsequent telomere-telomere recombination. 

Crabbe and her colleagues revealed that not all 

telomeres are located in the nuclear interior during the 

cell cycle in telomerase-positive cells. In S phase, 25% 

of telomeres are located around the nuclear envelope. 

Furthermore, when entering the subsequent G1 stage, 

these cells retain approximately 40% of telomeres at the 

nuclear envelope [57]. We proposed that in SUN1-

depleted ALT cells, the tethering force of telomeres on 

the nuclear envelope may partially loosen, which might 

provide more telomere flexibility and favor APB 

formation. In contrast, in RAP1-SUN1-expressing ALT 

cells, telomeres are forced “locked” with the nuclear 

envelope, which might enhance the difficulty of 

executing telomere-telomere recombination. 

Furthermore. ALT cells require TOP3α to resolve 

topological stress caused by telomere-telomere 

recombination [60, 61]. We also found that knocking 

down SUN1 in TOP3α-depleted ALT cells restored 

APB formation, which is consistent with the hypothesis 

that the topoisomerase activity of TOP3α is dispensable 

in ALT cells when some telomeres are not tethered to 

the nucleus. 

Telomere extension in ALT cells is mainly generated by 

the break-induced DNA replication (BIR) pathway [68–

72]. Recently, it was discovered that ALT cells harbor 

bifurcated RAD52-dependent and RAD52-independent 

BIR pathways that lead to elongated telomeres. Both 

BIR pathways are involved in APB formations during 

ALT cell DNA synthesis, but only the RAD52-

independent BIR pathway is critical for C-circle 

formation [18]. Telomeric DNA break-induced 

replication fork collapse and telomere damage-induced 

internal loops are both involved in C-circle formation 

[73, 74]. In SUN1-depleted cells, both the APB 

formation and C-circle levels were increased. 

Nevertheless, overexpression of the RAP1-SUN1 fusion 

protein constrains only APB formation but not C-circle 

levels. We speculate that ALT telomeric DNA might be 

more fragile to DNA replication fork-induced 

topological stress when the telomere ends are locked to 

the nuclear envelope. Subsequently, DNA replication 

fork collapse or DNA breakage might occur more 

frequently to induce C-circle formation. 

 

Budding yeast contains two telomere-nuclear envelope 

anchoring pathways at different cell cycle stages. The 

 

 
 

Figure 6. Model depicting the role of RAP1-SUN1-mediated telomere-nuclear envelope attachment during telomere-
telomere recombination in ALT cells. (A) The interaction between RAP1 and SUN1 contributes to telomere anchorage to the nuclear 
envelope. Unknown kinases might phosphorylate the coil domain of RAP1, inducing RAP1 release from SUN1. Additionally, SUN1 might 
connect with an unknown telomere-binding protein, and this interaction may provide another telomere-nuclear envelope tethering 
mechanism to constrain the telomere from freely roaming. The molecular mechanism of how the telomeres depart from the nuclear 
envelope to the APB remains a mystery. (B) The depletion of SUN1 leads to the release telomeres from the nuclear envelope anchorage and 
increases the APB formation. However, the RAP1-SUN1 chimera enforces anchorage and decreases the APB formation in ALT cells. 
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telomere-associated proteins Sir4 and yKu contact the 

nuclear inner membrane proteins Mps3 and Esc1, 

respectively, at different cell cycle stages [75]. In 

mammals, while telomeres can be tethered to the nuclear 

envelope via the RAP1-SUN1 interaction, cells with 

RAP1 depletion still retain approximately 40% of 

telomeres at the nuclear periphery after mitosis [57]. 

Here, we found that RAP1 interacts with SUN1 in the 

nucleoplasm via its coil region, and the phospho-mimetic 

mutant impedes the RAP1-SUN1 interaction. However, 

complementing RAP1-depleted cells with the RAP1 coil 

deletion or phosphoryl-mimetic mutant did not increase 

the APB formation. Considering this discrepancy, we 

hypothesize that another nuclear tethering force might 

influence APB formation. SUN1 might simultaneously 

bind another telomeric protein (Figure 6A). Another 

possibility is that another tethering mechanism bridges 

telomeres to the nuclear envelope. These possibilities 

might explain why we could not specifically detect the 

contribution of the RAP1-SUN1 interaction to APB 

formation. Cho and his colleagues found that homology 

searching and directional telomere movement in ALT 

cells is based on a meiosis-specific complex to perform 

nonsister homologous chromatid repair [76]. Moreover, 

in the mammalian meiotic cell cycle, a RAP1-

independent telomere-nuclear envelope tethering 

pathway indeed exists [77]. The nuclear envelope protein 

complex TERB1/2-MAJIN provides alternative 

telomere-nuclear membrane attachment during meiosis, 

suggesting that the telomere-TERB1-TERB2-MAJIN-

nuclear envelope associating with the telomere-LINC 

complex may cooperatively recruit telomeres to the 

nuclear envelope during meiosis [78, 79]. Recent studies 

have shown that SUN1 interacts with MAJIN and 

TERB1 [80, 81]. Therefore, a possible explanation is that 

ALT cells might borrow meiotic proteins, such as the 

TERB1/2-MAJIN complex, to orchestrate telomere 

attachment during the mitotic cell cycle. 

 

In the fission yeast Schizosaccharomyces pombe, 

telomeres are tethered to the nuclear envelope in 

interphase via the interaction between Rap1 (a homolog 

of human RAP1) and the inner nuclear membrane 

protein Bqt4, which connects telomeres to the nuclear 

envelope during both vegetative growth and meiosis 

[82]. The dissociation of Rap1 from Btq4 is promoted 

by CDK-mediated Rap1 hyperphosphorylation at the 

early M phase, which is required for faithful 

chromosomal segregation [83]. In fact, in contrast to the 

“closed mitosis” of S. pombe, higher eukaryotes usually 

undergo nuclear envelope breakdown to release their 

chromosomes from the nuclear envelope [5]. Although 

human RAP1 phosphorylation may repress the RAP1-
SUN1 interaction, the molecular details of this process 

in ALT cells remain to be elucidated in further 

investigations. 

This study revealed that telomere-nuclear envelope 

anchorage interferes with the telomere-telomere 

recombination pathway in ALT cells. Incomplete 

telomere detachment from the nuclear envelope may 

cause the dysregulation of chromatin dynamics. As cell 

cycle checkpoint pathways, the maintenance of the 

homeostasis between the nuclear envelope and 

telomeres may be tightly regulated and important for 

cell cycle progression. Interestingly, a recent study 

showed that the mislocalization of LINC complex 

proteins is a significant characteristic of cellular 

senescence [84]. Notably, RAP1 S205 phosphorylation, 

which is activated by p90RS activation, induces the 

nuclear export of the RAP1-TRF2 complex and further 

contributes to senescence and telomere dysfunction in 

epithelial cells [85, 86]. When telomeres are shortened, 

the ALT pathway is induced by complicated DNA 

damage signaling and (epi)genetic modification 

aberrations [22]. Therefore, the correlation between the 

LINC complex and RAP1 phosphorylation in the 

progression of senescence and how homeostasis 

between telomeres and the nuclear envelope is 

maintained will be important issues for further 

determination. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Depletion of SUN1 reduces cell growth. The growth curves of the control (shLuc) and knockdown of SUN1 

(shSUN1) in two telomerase-negative ALT cell lines, (A) U2OS cells and (B) VA13 cells, and two telomerase-positive cell lines, (C) HeLa cells 
and (D) HCT116 cells, are shown. After lentivirus infection, the cells were selected with puromycin. Cell numbers were counted during drug 
selection. Error bars denote SD; n=3 (independent experiments); *P<0.05 (two-tailed Student’s t-test). 
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Supplementary Figure 2. Cells with SUN1 depleted maintain the intact structure of the nuclear lamina. U2OS cells were infected 

with control (shLuc) or shSUN1 lentiviruses and selected with puromycin for 3 days. The cells were used to perform immunofluorescence 
assays with anti-SUN1 (EPR6554, ab124770, Abcam) and anti-Lamin A/C (N-18, sc-6215) antibodies. DNA was stained with DAPI. Scale bar, 20 
μm. 
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Supplementary Figure 3. Depletion of SUN1 does not induce APB formation in telomerase-positive cells. Telomerase-positive 

HeLa and HCT116 cells were infected with control (shLuc) or SUN1 knockdown (shSUN1) lentiviruses and selected with puromycin for 3 days. 
Representative images show that no APB foci were formed in the SUN1-depleted (A) HeLa cells or (C) HCT116 cells. Quantifications of APBs 
(%) in the (B) HeLa cells and (D) HCT116 cells were shown, respectively. Approximately 200-300 cells were analyzed for each independent 
experiment. Error bars denote SD; n=3 (independent experiments). Scale bar, 20 μm. 
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Supplementary Figure 4. Overexpression of the RAP1 protein alone does not significantly reduce the APB formation. (A) 

Representative images show the APBs formed in empty vector control (EV)-expressing or RAP1-expressing U2OS cells. Immunostaining was 
performed as described in Figure 1. Scale bar, 20 μm. (B) Quantification of APBs (%) in the U2OS cells shown in (A). Approximately 200-300 
cells were analyzed for each independent experiment. Error bars denote SD; n=3 (independent experiments); N.S., no significance (two-tailed 

Student’s t-test). (C) Cell lysates were immunoblotted with anti-RAP1 and anti-GAPDH antibodies. GAPDH was used as the loading control. 
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Supplementary Figure 5. RAP1-SUN1 fusion proteins are located around the periphery of the nucleus and competent to 
recruit TRF2. U2OS cells were infected with lentivirus expressing the empty vector control (EV) or RAP1-SUN1 fusion protein and then 
selected in medium containing G418- for 5 days. (A) Representative images show the colocalization of RAP1-SUN1 and Lamin A/C in U2OS 
cells. The arrowhead indicates the colocalization site. (B) Representative images show that TRF2 appears around the nuclear periphery in the 
RAP1-SUN1-overexpressing U2OS cells (arrowhead). Scale bar, 20 μm. 
 



 

www.aging-us.com 10513 AGING 

 
 

Supplementary Figure 6. Expression of the RAP1-SUN1 fusion protein reduces cell growth. The growth curves of cells expressing 
the empty vector (EV) or RAP1-SUN1 fusion protein (RAP1-SUN1) in two telomerase-negative ALT cell lines, (A) U2OS cells and (B) VA13 cells, 
and two telomerase-positive cell lines, (C) HeLa cells and (D) HCT116 cells, are shown. After lentivirus infection, cells were the selected for 
G418. Cell numbers were counted during drug selection. Error bars denote SD; n=3 (independent experiments); * P<0.05 (two-tailed 
Student’s t-test). 
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Supplementary Figure 7. Overexpression of the RAP1-SUN1 fusion protein did not significantly change the C-circle level in 
U2OS cells. (A) The C-circle level in U2OS cells expressing the empty vector (EV), RAP1, SUN1, RAP1ΔC-SUN1, or RAP1-SUN1 fusion protein. 

(B) Quantification of the level of C-circles shown in (A). The C-circle signals were quantified with ImageJ software. The level of C-circles is 
represented in an arbitrary unit (a.u.). Error bars denote SD; n=3 (independent experiments); N.S., no significance (two-tailed Student’s t-
test). 

 

 
 

Supplementary Figure 8. Knockdown or overexpression of SUN1 does not disturb the homeostasis of telomere length in cells 
in short-term culture. (A) U2OS cells were infected with control (shLuc) or SUN1-knockdown (shSUN1) lentiviruses. The cells were selected 

with 1 μg/ml puromycin for 3 days and 7 days, respectively. Telomere length was measured by TRF assay. The peak intensity of telomere 
length is indicated by a white line. (B) U2OS cells were infected with lentiviruses overexpressing the control (EV), SUN1, RAP1ΔC-SUN1 fusion, 
or RAP1-SUN1 fusion protein. The cells were selected, and telomere length was measured as described in (A). 
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Supplementary Figure 9. Growth curves of the shLuc, shSUN1, shTOP3α, and shSUN1+shTOP3α ALT cells. The growth curves of 
U2OS cells within 5 days postselection are shown. Error bars denote SD; n=3 (independent experiments); * P<0.05 (two-tailed Student’s t-
test). 
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Supplementary Tables 
 

Supplementary Table 1. Oligo sequences for shRNA-mediated gene knockdown. 

Clone ID Gene symbol Target sequence Region 

TRCN0000279614  SUN1 GAACTAGAACAGACCAAGCAA CDS 

TRCN0000133655  SUN1 GCTGTTCTGAAACTTACGAAA CDS 

TRCN0000049297  TOP3A GCTTCTCGAAAGTTGAGAATA CDS 

TRCN0000295900  TERF2IP (RAP1) GAGAGTTCTTGCATTGGAACT 3’UTR 

 

Supplementary Table 2. Primers used in this study. 

Primer Sequence 

 pLAS5w-RAP1 

RAP1-NheI-For CCACGTGGCGATCGCTAGCGCCACCATGGCGGAGGCGATGGATTTGGGCAAAGACCCCAA 

RAP1-NsiI-Rev CTGTACATGCATTTATTTCTTTCTAAATTCAATCCTCCGAGCTACATTCTGAGCACC 

 pLAS5w-SUN1 

NheI-SUN1-For GCTAGCATGGATTTTTCTCGGCTTCA 

SUN1-EcoRI-Rev GAATTCTCACTTGACAGGTTCGCCAT 

 pLAS5w-RAP1-SUN1 

HpaI-RAP1-For GTTAACATGGCGGAGGCGATGGATTT 

RAP1-G8-NheI-Rev GCTAGCACCACCACCACCACCACCACCACCTTTCTTTCGAAATTCAATCC 

NheI-SUN1-For GCTAGCATGGATTTTTCTCGGCTTCA 

SUN1-EcoRI-Rev GAATTCTCACTTGACAGGTTCGCCAT 

 pLAS5w-RAP1 ΔC-SUN1 

HpaI-RAP1-For GTTAACATGGCGGAGGCGATGGATTT 

RCTdel-G8-NheI-

Rev 

GCTAGCACCACCACCACCACCACCACCACC 

TGAGTCTTCCTCAGGTGTGGGTGGATCATC 

 pcDNA3HA-RAP1 

RAP1-BamHI-1F GGATCCAATGGCGGAGGCGATGGATTTG 

RAP1-XhoI-R CTCGAGTTATTTCTTTCGAAATTC 

 pcDNA3HA-RAP1 ΔN 

hRAP1-BamH1-

129F 
GGATCCACGGCACGCCGGGCGGATC 

RAP1-XhoI-R CTCGAGTTATTTCTTTCGAAATTC 

 pcDNA3HA-RAP1 ΔMyb 

Mybdel-F AGCCGCAGCGGCACGCCGGGGAGCATAAGTACCTGCTGGGGGACG 

Mybdel-R CCCAGCAGGTACTTATGCTCCCCGGCGTGCCGCTGCGGCTCCGGC 

 pcDNA3HA-RAP1 ΔCoil and pLAS5w-RAP1 ΔCoil 

Coildel-F1 GACCGCTACCTCAAGCACCTGCGGGGCCAGGACTCAGAAACACAGCCTGATGAGGAGGAA 

Coildel-R1 TTCCTCCTCATCAGGCTGTGTTTCTGAGTCCTGGCCCCGCAGGTGCTTGAGGTAGCGGTC 

 pcDNA3HA-RAP1 ΔC 

RAP1-BamHI-1F GGATCCAATGGCGGAGGCGATGGATTTG 

hRAP1-XhoI-289R CTCGAGTTATTCCTCAGGTGTGGGTGG 

 


