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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) accounts for more 

than 90% of primary liver cancer. Compared with other 

types of tumors, the risk factors of HCC are well 

defined [1]. HCC often occurs in livers with chronic 

liver disease and significant cirrhosis [2, 3]. Factors 
related to cirrhosis include Hepatitis B virus (HBV) 

infection, Hepatitis C virus (HCV) infection, alcohol 

abuse and non-alcoholic steatohepatitis (NASH), etc. 

[4, 5]. HBV is one of the main risk factors for HCC. 

Owing to the high infection rate of HBV, Asia and 

Sub-Saharan Africa have the highest incidence of HCC 

[2]. There are a large number of patients with HBV 

infection in China, and in parallel, HBV-related HCC 

accounts for nearly 85% of all newly-diagnosed HCC 

[6]. In Africa, HCC occurrence results from a complex 
interplay between aflatoxin B1 and HBV infection [1]. 

In North America, Europe and Japan, HCV is one of 

the most common risk factors for HCC [7]. In addition 
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ABSTRACT 
 

In this study, we explored the genomic and immune cell infiltration profiles among four distinct Hepatocellular 
carcinoma (HCC) types. This study included 100 patients (all tumors and adjacent liver tissues received WES 
sequencing) with HCC from the West China Hospital (WCH) and patients were divided into WCH-HBV-HCC group 
and WCH-NonHBV-HCC group. Additionally, this study included 106 HBV-related HCC (TCGA-HBV-HCC) and 69 
alcoholic HCC (TCGA-Alcol-HCC) patients from the TCGA. We analyzed the high-frequency gene mutation, copy 
number variation (CNV), mutation spectrum, signatures and immune cell infiltration of these four groups. This 
study showed significant differences in gene mutation and CNV level among four HCC groups. Compared to 
genomic level, there is no significant difference between TCGA-HBV-HCC and TCGA-Alcol-HCC groups in 
fractions of tumor-infiltrating immune cells. According to the status of immune cell infiltration, patients were 
classified into immune-HIGH, immune-MIX and immune-LOW group, respectively. In the WCH-HBV-HCC and 
TCGA-HBV-HCC groups, more patients in the Immune-LOW group had TP53 mutation. Except for TP53, neither 
the other gene mutation nor tumor mutation burden was found to be associated with immune cell infiltration 
in the WCH-HBV-HCC, TCGA-HBV-HCC and TCGA-Alcol-HCC groups. In the CNV level, we found that samples 
with low immune infiltrate had higher number of deleted or amplified genes in the TCGA-HBV-HCC and TCGA-
Alcol-HCC groups. We found comprehensive genomic heterogeneity among four HCC groups. The total gene 
CNV level, not the mutational burden of HCC, is associated with immune cell infiltration in HCC. TP53 mutation 
may injury the immune response of the HBV-related HCC. 
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to the above causes, other risk factors for HCC include 

metabolic syndrome (characterized by diabetes and 

obesity) and adenovirus infection, etc. [7]. 

 

HCC is biologically heterogeneous [8]. HCC that 

develops on the background of cirrhosis often derives 

from malignant transformation of dysplastic nodules [3, 

9]. In patients without cirrhosis, HCC can occur directly 

in livers with only HBV infection or NASH [3]. In 

addition, HCC can derive from the malignant 

transformation of hepatic adenoma [3]. These types of 

HCC have different molecular mutation profile. 

Previous studies regarding genomics and trans-

criptomics of HCC have identified many driver 

mutations and alterations in expression profiles of HCC. 

For example, research based on The Cancer Genome 

Atlas (TCGA) suggests that TP53, CTNNB1 and TERT 

promoters are the most common mutations in HCC 

from the Western populations [10]. However, given the 

heterogeneity of HCC, studies that focus on Western 

HCC cases cannot reveal the molecular characteristics 

and individual heterogeneity of HCC in China. Chinese 

HCC patients may have an extensive heterogeneity in 

comparison to HCC in the European and American 

countries in terms of pathogenesis, epidemiological 

features, biological behavior, staging, and treatment 

strategies [10–12]. Additionally, with the changes in 

diet and environment, the pathogenic factors of HCC in 

China may also undergo certain changes. For example, 

alcoholic hepatitis and the metabolic syndrome may 

gradually become the main risk factor for HCC 

occurrence [13]. Consequently, researches exploring the 

heterogeneity of HCC need to be continued and 

updated. 

 

It is significant to illustrate the tumor heterogeneity for 

HCC treatment. After Sorafenib, a series of targeted 

therapeutic drugs for HCC were launched in clinical 

trials [14, 15]. However, for patients with advanced 

HCC, there are no targeted drugs that can achieve 

obvious efficacy and can be widely used clinically 

[16]. The main challenges faced by targeted drugs 

such as Sorafenib are low response rate and primary or 

secondary drug resistance [17]. In addition to 

molecular targeted therapy, immunotherapy, especially 

immune checkpoint inhibitors (such as anti-PD-1, PD-

L1, LAG3, TIM3, Tregs and immunosuppressive 

factors released by Tregs such as TGF-β, etc.), are 

utilized for HCC treatment [18]. However, the 

response rate of immunotherapy in HCC is also low, 

and there is no biomarker that can accurately predict 

the effect of immunotherapy [19]. In summary, it is a 

necessity for individualized treatment to explore the 
heterogeneity of HCC at the molecular level and 

screen out patients sensitive to targeted therapy and 

immunotherapy. 

This study includes HBV-related HCC and alcohol-

related HCC patients in the Western populations (HBV 

and alcoholic HCC are two most common types of HCC 

in the TCGA database). In addition, this study also 

includes cases with HBV-related HCC and non-

HBV/non-HCV related HCC patients in China. Based 

on genome sequencing, the present study will compare 

the genomic heterogeneity of the above four patient 

populations and find new potential therapeutic targets. 

In this study, we will analyze the infiltration of immune 

cells in HCC tumors and systematically compare the 

heterogeneity of the immune microenvironment of the 

above-mentioned different HCC populations. The 

interaction between mutational profiles and the host 

immune status in HCC has been less well investigated. 

In this study, we classified the HCC immune 

microenvironment according to the number of tumor-

infiltrating immune cells, and analyzed whether the 

immune cell infiltration of HCC is related to specific 

gene mutations, tumor mutation burden (TMB) or CNV 

status. 

 

MATERIALS AND METHODS 
 

Sample collection 
 

This study includes 100 HCC patients diagnosed from 

June 2009 to December 2014 in the West China 

Hospital, Sichuan University. The tissue samples in this 

study include tumor tissue and matched liver tissue 

adjacent to the tumor. The application and use of 

samples were reviewed and approved by the 

Institutional Ethics Committee of the West China 

Hospital. In addition, this study includes 175 patients 

from the TCGA (http://cancergenome.nih.gov/) 

database. HBV-related HCC from the West China 

Hospital was abbreviated as WCH-HBV-HCC; HBV-

related HCC in the Western population of TCGA 

database was abbreviated as TCGA-HBV-HCC; 

NonHBV-related HCC in the West China Hospital was 

abbreviated as WCH-NonHBV-HCC; NonHBV-related 

HCC in the Western population from the TCGA 

database was only included alcoholic HCC, abbreviated 

as TCGA-Alcol-HCC. All HBV-related HCC patients 

were positive for hepatitis B surface antigen (HBsAg). 

The main causes of 19 nonHBV-related HCC patients in 

the West China Hospital are as follows: 3 metabolic 

syndrome related diseases (diabetes and obesity), 2 

alcoholic, and the remaining 14 patients have no 

obvious cirrhosis and no clear cause. Tumor staging is 

based on the eighth edition of the American Cancer 

Society (AJCC)-TNM staging. The degree of tumor 

differentiation according to Edmondson-Steiner 
standard is divided into I-IV grade. I-II grade is defined 

as high differentiation and III-IV grade is defined as 

low differentiation. 

http://cancergenome.nih.gov/
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Immunohistochemical staining 

 

The tissue microarray is constructed by the Xinchao 

Biotechnology (Shanghai, China). The steps of the 

immunohistochemical (IHC) staining were described 

previously [20]. Details of the primary antibodies used 

in IHC staining is shown in the Supplementary Table 1. 

 

In the WCH-HBV-HCC and WCH-NonHBV-HCC 

groups, the number of three types of immune cells were 

evaluated by IHC staining including pan-T cells (CD3), 

B cells (CD20) and cytotoxic T cells (CD8). Before 

counting immune cells, five representative areas were 

selected (each area is 1mm2) at 100 × magnification, 

and then the number of positive immune cells was 

counted at 200 × magnification. The average of the five 

areas is the number of positive immune cells. The 

values of other immune markers were recorded as 

cells/mm2. Methods for analysis of tumor-infiltrating 

immune cells for samples from the TCGA-HBV-HCC 

and TCGA-Alcol-HCC groups was shown in the 

Supplementary Materials and Methods. 

 

Whole exome sequencing 

 

After DNA extraction (UPure Tissue DNA Kit, 

BioBase, Sichuan, CN), we performed DNA quality 

control in three aspects: (1) Evaluation of DNA 

degradation by agarose gel electrophoresis; (2) Agilent 

Bioanalyzer 2100 (Agilent, USA) detects the size of 

DNA sample fragments; (3) Thermo Scientific™ 

NanoDrop™ (Thermo Fisher Scientific, USA) tests the 

purity of DNA samples (OD260/280 and OD230/260). 

 

The DNA was fragmented using the ultrasonic 

interrupter Bioruptor® (Diagenode, Belgium). After 

connecting the sequencing adaptor, the Illumina 

sequencing library was constructed utilizing Nextera 

DNA Library Prep Kit (Illumina, USA). For exon 

capture, Agilent Sureselect™ Human All Exon V6 kit 

(Agilent, USA) was used for liquid phase hybrid 

capture of the exon portion of DNA. After building the 

high-throughput sequencing library, the sequencing was 

performed on the platform Illumina Novaseq™ 6000 

(Illumina, USA) with the sequencing mode of PE150. 

After removing the interference from PCR duplicates, 

the average sequencing depth of cancer tissues was 200 

×, and the average sequencing depth of adjacent tissues 

was 100 ×. 

 

Genomic analysis 

 

We firstly used the FASTQ software to remove the joint 
sequences and low-quality sequences in the original 

data to obtain the "clean data" in the format of FASTQ. 

The BWA software was used to perform reference 

genome alignment (hg19 version) with the reads 

contained in paired FASTQ files, and the Picard 

software was utilized to identify and mark duplicate 

reads from BAM file. Next, GATK4.0 software was 

used to identify the mutations of SNP and Indel. In this 

study, when copy number variation (CNV) was 

detected, the sequencing depth was firstly corrected 

based on the GC content of the sequence, and finally the 

presence of CNV was determined after normalization of 

the data by clustering analysis. Tools used for CNV 

analysis includes GISTIC 2.0 [21] and CNVkit [22]. 

The significance of gene mutation was identified by 

MutsigCV [23] and visualized by maftools and ggplot2. 

The non-negative matrix factorization (NMF) method 

was based on the previous study [24]. The identified 

signatures were compared with the COSMIC signatures. 

 

Analysis of data from TCGA 

 

The TCGA genomic and transcriptome sequencing data 

was obtained from the Genomic Data Commons (GDC) 

Data Portal (https://portal.gdc.cancer.gov/). We utilized 

the same analytic methods of genomic analysis for 

patients in the WCH and TCGA cohorts. The analytic 

methods of tumor-infiltrating immune cells in the TCGA-

HBV-HCC and TCGA-Alcol-HCC cohorts were shown 

in the Supplementary Materials and Methods in detail. 

 

Statistical analysis 

 

Categorical variables were expressed as number (%), 

and the statistical test method was Chi-square test or 

Fisher, exact test. Continuous variables were expressed 

as mean ± standard deviation, and the statistical method 

was T-test or Kruskal-Wallis test. The FDR-corrected q 

values were used to compare the differences in 

frequency of the common gene mutation or CNV 

number between two groups, and the calculation 

method was the Benjamini-Hochberg method. Data 

analysis was carried out by R software 3.4.3. 

 

RESULTS 
 

Sample and clinical information 
 

The clinicopathologic information of HCC patients 

from the West China Hospital is shown in 

Supplementary Table 2. Compared to patients in the 

WCH-HBV-HCC group, patients in the WCH-

NonHBV-HCC group were older (P = 0.002), while the 

other clinicopathologic features were not significantly 

different between the two groups (all P values > 0.05). 

For patients in the TCGA group, patients with alcoholic 

HCC (TCGA-Alcol-HCC group) were older than those 

with HBV-related HCC (TCGA-HBV-HCC group) (P 

<0.001). In addition, compared to patients from the 

https://portal.gdc.cancer.gov/
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TCGA-HBV-HCC group, cases in the TCGA-Alcol-

HCC group had higher proportion of white people (P 

<0.001), later TNM stage (P <0.001), better tumor 

differentiation (P <0.001), and lower proportion of 

microvascular and macrovascular invasion (P = 0.032). 

The remaining characteristics had no significant 

difference between the two groups (all P values > 0.05) 

(Supplementary Table 3). 

 

Somatic copy number variation 

 

In this study, GISTIC 2.0 was used to identify copy 

number changes for patients in the HBV and non-HBV 

groups, including copy number amplification and 

deletion. We found that, there was a significant 

difference in total CNV levels for patients in the 

WCH-HBV-HCC group (Supplementary Figure 1B) 

and WCH-nonHBV-HCC group (Supplementary 

Figure 1C). 

 

For patients in the WCH-HBV-HCC group, copy 

number amplification (CNV-Amp) was found mainly 

on chromosomes 1 and 8, and other locations including 

4p, 4q, 5p, 6p, 7p, 7q, 11q, 12q, 13q, 14q, 15q, 17p, 

17q, 19p and 19q, etc. Copy number deletion (CNV-

Del) was observed predominantly on chromosomes 7q, 

8p, 15q, and other locations including 1p, 1q, 2q, 3q, 

4p, 4q, 5q, 6q, 9p, 9q, 10q, 11p, 11q, 16p and 17q, etc. 

Among WCH-NonHBV-HCC patients, CNV-Amp was 

found to mainly locate at 1q, 8q, 10q, 11p, and 19p; 

CNV-Del was found to mainly locate at 8p, 15q, and 9p 

(Figure 1). In summary, the CNV levels in the WCH-

HBV-HCC group and WCH-NonHBV-HCC group are 

significantly distinct. 

 

Firstly, we compared the CNV levels of patients in the 

WCH-HBV-HCC group and the TCGA-HBV-HCC 

group. We found that in the above two groups, the 

locations and frequencies of CNV-Amp and CNV-Del 

were obviously different between two groups 

(Supplementary Figure 2A, 2B). For example, cases in 

the WCH-HBV-HCC group had CNV-Amp in 4p, 4q, 

5p, 6p and 14q and CNV-Del in 14q, 15q, 16p and 21q, 

while CNV in these locations were not significantly 

observed in the TCGA-HBV-HCC group. Besides, 

significant difference was also observed between the 

WCH-NonHBV-HCC group and the TCGA-Alcol-HCC 

group (Supplementary Figure 2C, 2D). 

 

Additionally, patients in the WCH-HBV-HCC group 

and the TCGA-HBV-HCC group were compared at the 

gene level (genes affected by CNV). The number of 

unique CNV-Amp genes in the WCH-HBV-HCC group 
and TCGA-HBV-HCC group were 668 and 771, 

respectively, while the number of CNV-Amp genes 

shared by the two was 184. The number of unique 

CNV-Del genes of the above two groups is 2487 and 

236, respectively, while the number of CNV-Del genes 

shared by the two groups is 684. Supplementary Figure 

3 shows parts of the CNV-affected genes that are 

common or unique in the WCH-HBV-HCC and TCGA-

HBV-HCC groups (Supplementary Figure 3A, 3B), or 

WCH-NonHBV-HCC and TCGA-Alcol-HCC groups 

(Supplementary Figure 3C, 3D). The shared CNV-Amp 

genes include CYC1, ATP4B, SCCPDH and KISS1, 

etc. The shared CNV-Del genes include ACADVL and 

FAM138A, etc. In addition to the above-mentioned 

shared CNV genes, there are a large number of CNV-

affected genes that only observed in their respective 

cohorts. For example, CNV-Amp of MUC16, 

ZDHHC1, DUX4, NBPF20, PPIAL4C, REXO1L2P, 

RASA4 and CCND1 was only found in the WCH-

HBV-HCC group, and CNV-Amp of ADCY8, TPCN2, 

FOXK2 and CAPZA2 was only shown in the TCGA-

HBV-HCC group. In addition, in line with expectations, 

due to differences in pathogenic causes, the locations of 

CNV (Supplementary Figure 2C, 2D) and the genes 

affected by CNV (Supplementary Figure 3C, 3D) for 

patients in the WCH-NonHBV-HCC and TCGA-Alcol-

HCC cohorts are significantly heterogeneous. 

 

In addition to the genes shown in Supplementary Figure 

3, there are a large number of common genes affected 

by CNV that appear separately in the WCH-HBV-HCC 

group and the TCGA-HBV-HCC group (Supplementary 

Figures 1–4). For example, CNV-Amp of genes such as 

FGF4, FGF19, ETV1, PMS2, RPTOR, CARD11, 

ERCC5 and RAC1 appeared only in the WCH-HBV-

HCC group, and CNV-Amp of genes such as MET, 

MYC, AKT3, AGO2, BRD4 and IKBKE appeared only 

in the TCGA-HBV-HCC group. In addition, we found 

that CNV-Del of genes such as CDKN2A, AXIN1, 

ACVR1, PTPRD and ATM only appeared in the WCH-

HBV-HCC group, while CNV-Del of genes such as 

FGFR2, STK11, TCF3, and KMT5A were only shown 

in the TCGA-HBV-HCC group. 

 

Somatic mutation and tumor mutation burden 

 

There are 4.5 (median) somatic mutations detected per 

million bases in WCH-HBV-HCC group, and the 

number is 5 (median) in WCH-NonHBV-HCC group. 

As shown in Figure 2, the most common mutational 

genes in patients from the WCH-HBV-HCC group are 

TP53, TTN, MUC4, CTNNB1, CDC27 and MUC16, 

etc. The most common mutations in patients from the 

WCH-NonHBV-HCC group are MUC16, TP53, TTN, 

ASTN1, ARID1A and HMCN1, etc. The most common 

mutant genes in cases from the TCGA-HBV-HCC 
group are TP53, CTNNB1, TTN, MUC16, AXIN1 and 

MUC4, etc. The most commonly mutated genes for 

patients in the TCGA-Alcol-HCC group are TP53, 
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Figure 1. GISTIC analysis showed the whole-genome distribution of copy number alterations. (A) CNV amplifications in the WCH-
HBV-HCC group. (B) CNV deletions in the WCH-HBV-HCC group. (C) CNV amplifications in the WCH-NonHBV-HCC group. (D) CNV deletions in 
the WCH-NonHBV-HCC group. GISTIC q-values (x-axis) for deletions (B, D) and amplifications (A, C) are plotted across the genome (y-axis). 
The green vertical line is where the q-value is 0.25. 
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Figure 2. Identification of mutation Signatures in the WCH group. (A) Patterns of 3 signatures (Signatures A–C) identified in the WCH-

HBV-HCC group. (B) Patterns of 3 signatures (Signatures A–C) identified in the WCH-NonHBV-HCC group. (C) The distribution of mutation 
Signatures that were identified in the WCH-HBV-HCC group. (D) The relative contribution of the 3 Signatures in samples from the WCH-HBV-
HCC group. (E) The contributions of mutational signatures to tumors in the WCH-HBV-HCC group. The sample names are displayed on the 
horizontal axis, whereas the vertical axis depicts the number of mutations of samples in the WCH-HBV-HCC group. (F) The distribution of 
mutation Signatures that were identified in the WCH-NonHBV-HCC group. (G) The relative contribution of the 3 Signatures in samples from 
the WCH-NonHBV-HCC group. (H) The contributions of mutational signatures to tumors in the WCH-NonHBV-HCC group. 
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CTNNB1, TTN, PCLO, ALB and MUC16, etc. We 

found that more than half (51%) of patients in WCH-

HBV-HCC cohort had TP53 mutations, while CTNNB1 

mutations accounted for only 28% (ranking fourth). 

Other highly-mutated bur rarely-reported genes include 

TTN, MUC4, CDC27, MUC16, PCLO and UBA52, etc. 

The most frequently mutated genes in WCH-NonHBV-

HCC patients are MUC16 and TP53, and only 4 patients 

in this group had CTNNB1 mutation. In contrast, in the 

TCGA-HBV-HCC group and the TCGA-Alcol-HCC 

groups, TP53 and CTNNB1 mutations are the most 

common genetic mutations. The sum of patients with 

TP53 or CTNNB1 mutation exceeds half of the 

individual cohort. Most of the samples do not have 

TP53 and CTNNB1 mutations simultaneously, which 

indicates that these two mutations represent two distinct 

types of tumors. 

 

Similar to CNV, the main driver mutations showed 

significant heterogeneity in the four cohorts including 

WCH-HBV-HCC, WCH-NonHBV-HCC, TCGA-HBV-

HCC and TCGA-Alcol-HCC groups (Figure 3 and 

Supplementary Figure 4). Gene with q value <0.1 was 

defined as significantly mutated gene. Figure 3E shows 

the significantly mutated genes appearing in the above 

groups. The genes presented in Figure 3E are those with 

q values <0.1 in at least one group. This study compared 

the significantly mutated genes in the above four groups 

and found that TP53 and UBA52 are the significantly 

mutated genes shared in the WCH-HBV-HCC group 

and WCH-NonHBV-HCC group (Figure 3F); TP53, 

CTNNB1 and ALB are significantly mutated genes 

shared in the TCGA-HBV-HCC group and the TCGA-

Alcol-HCC group (Figure 3G); TP53, CTNNB1 and 

AXIN1 are the significantly mutated genes shared in the 

WCH-HBV-HCC group and the TCGA-HBV-HCC 

group (Figure 3H); TP53 is a significantly mutated gene 

shared in the WCH-NonHBV-HCC group and the 

TCGA-Alcol-HCC group (Figure 3I). Consequently, 

TP53 is a significantly mutated gene shared by the four 

groups of patients in this study, and the role of UBA52 

mutations in HCC has not been studied (Figure 3F). In 

addition to these shared genes, a large number of unique 

mutations were observed in each group (Supplementary 

Figure 4 and Figure 3E–3I). 

 

Mutation signature and mutation spectrum analysis 

 

There are 6 types of point mutations: C>A/G>T, 

C>G/G>C, C>T/G>A, T>A/A>T, T>C/A>G, 

T>G/A>C. We analyzed the mutation spectrum of 

patients in the WCH-HBV-HCC group and the WCH-

NonHBV-HCC group (Supplementary Figure 5), and 
found that the two most commonly mutation types were 

C>T and T>A in the WCH-HBV-HCC group, followed 

by T>C and C>A mutations. In contrast, in the WCH-

NonHBV-HCC group, the frequencies of T>C and C>A 

mutations were significantly lower than the C>T and 

T>A mutations. 

 

Based on results (cophenetic curves) of the Nonnegative 

Matrix Factorization (NMF) method (Supplementary 

Figures 6, 7), we found that the optimal number of 

clusters in both groups is 3. Finally, mutation signature 

analysis of 96 substitution patterns identified 3 

signatures in the WCH-HBV-HCC group and WCH-

NonHBV-HCC group, respectively (Figure 2A, 2B). 

Signature A of the WCH-HBV-HCC group and WCH-

NonHBV-HCC group is a mutation signature that has 

been described and verified in previous studies, namely 

Signature 22 (characterized by dominant T>A 

mutations) in the COSMIC database, which is a 

characteristic mutation of HCC related to aristolochic 

acid. Signature B and Signature C in the WCH-HBV-

HCC group are newly discovered mutation signatures 

(Figure 2A). Signature B (C>T) of the WCH-HBV-

HCC group shows some similarity to the previously 

described Signature 1 (characterized by dominant C>T 

mutations) and 6 (C>T mutation; related to the loss of 

DNA mismatch repair function), 14 (C>T and C>A), 15 

(C>T), 19 (C>T) and 23 (C>T). Signature C of WCH-

HBV-HCC group has part of characteristics of 

COSMIC Signature 5 (T>C), 16 (T>C), 3 (shows all 6 

types of mutation), 12 (T>C) and other signatures 

(Supplementary Figure 8A). Signature B and Signature 

C of the WCH-NonHBV-HCC group are also newly 

discovered mutation signatures (Figure 2B). Signature 

C (C>T) of the WCH-NonHBV-HCC group shows 

some mutation features of COSMIC Signature 1 (C>T) 

and 6 (C>T). Signature B of the WCH-NonHBV-HCC 

group has some similarity to COSMIC Signature 5 

(T>C), 16 (T>C), 3 (all 6 mutation types appear) 4 

(C>A; related to smoking) and 8 (C>A) (Supplementary 

Figure 8B). In addition, previous literatures reported 

that COSMIC Signature 24 (C>A) is a predominant 

signature of aflatoxin-related HCC. In this study, 

Signature B of WCH-HBV-HCC group and Signature C 

of WCH-NonHBV-HCC group have some mutation 

characteristics of Signature 24. 

 

Figure 2C–2E, 2F–2H display the distribution of 

mutation signatures (Signature A, B and C) of all 

samples in the WCH-HBV-HCC group and WCH-

NonHBV-HCC group, respectively. We found that 

samples in both groups showed obvious heterogeneity, 

and the dominant signature was distinct in different 

samples. Meanwhile, we clustered the HCC samples of 

the WCH-HBV-HCC and WCH-NonHBV-HCC groups 

according to the 30 mutation signatures identified in the 
COSMIC database (Supplementary Figures 9, 10). We 

observed that, except for Signature A (similar to 

COSMIC Signature 22), there were no signatures in the 
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Figure 3. Gene mutations in the four groups. (A) The top 30 most commonly mutant genes in the WCH-HBV-HCC group. (B) The top 30 

most commonly mutant genes in the WCH-NonHBV-HCC group. (C) TCGA-HBV- The top 30 most commonly mutant genes in the HCC group. 
(D) Top 30 most commonly mutant genes in the TCGA-Alcol-HCC group. (E) Hierarchical cluster analysis shows the q value of gene mutations 
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in each group. The screening criteria of genes shown in Figure 2E is: q value <0.1 in at least one group. (F) Gene mutations in the WCH-HBV-
HCC group and WCH-NonHBV-HCC group. (G) Gene mutations in the TCGA-Alcol-HCC group and TCGA-HBV-HCC group. (H) Gene mutations in 
the WCH-HBV-HCC group and TCGA-HBV-HCC group. (I) Gene mutations in the WCH-NonHBV-HCC group and TCGA-Alcol-HCC group. The q 
values for gene mutations are compared among different groups. Gene mutations with q values <0.1 were deemed as significant. The 
position of the dotted line is the cutoffs of the q value. 

WCH group showed a strong similarity to the 

previously described signatures. 

 

Immune cell infiltration in different types of HCC 

 

We analyzed the immune cell infiltration in the TCGA-

HBV-HCC group and the TCGA-Alcol-HCC group 

based on the mRNA sequencing data (Supplementary 

Figure 11). Based on the specifically expressed gene set 

of immune cells related to innate and adaptive immune 

responses, using GSVA method, we calculated the 

relative expression of immune cells, angiogenesis and 

antigen-presenting machinery (APM) in the above two 

groups. The results showed that cases in the TCGA-

HBV-HCC group and the TCGA-Alcol-HCC group had 

numerous T cell infiltration. Compared to cases in the 

TCGA-Alcol-HCC group, patients in the TCGA-HBV-

HCC group had more infiltration (without statistically 

significance) of helper T cells (96.12% vs. 87.30%), 

overall T cells (68.93% vs. 57.14%) and B cells (9.71% 

vs. 1.59%). In contrast, the distribution of the remaining 

immune cells between the two groups is more similar. 

The above results indicate that, compared to gene 

alterations, the immune cell infiltration in the TCGA-

HBV-HCC group and the TCGA-Alcol-HCC group is 

less heterogeneous. It is worth noting that a high 

frequency of samples in both groups have infiltration of 

CD8+ T cells and other types of T cells, which provides 

the possibility of immunotherapy. 

 

Association of gene mutation with immune cell 

infiltration in the TCGA cohorts 

 

Using the GSVA algorithm, we calculated the distribution 

of 24 types of immune cells for patients in the TCGA-

HBV-HCC group (Figure 4A) and TCGA-Alcol-HCC 

group (Figure 4B). Meanwhile, after hierarchical 

clustering analysis based on the GSVA score, we divided 

patients in the above two groups into three subgroups with 

distinct immune cell infiltration status (Figure 4). The 

immune-HIGH subgroup has the highest GSVA score and 

more immune cell infiltration and the GSVA score and 

number of tumor-infiltrating immune cell in the immune-

LOW subgroup is the lowest. The GSVA score and 

immune cell number in the immune-MIX subgroup is 

between the immune-HIGH and immune-LOW groups. 

As shown in Figure 4, there is no significant relationship 
between tumor mutation burden and immune cell 

infiltration for patients in the TCGA-HBV-HCC and 

TCGA-Alcol-HCC groups. Besides, we analyzed the 

relationship between gene mutations and immune cell 

infiltration. We found that, compared to the total number 

of patients in the immune-HIGH and immune-MIX 

group, more cases in the immune-LOW subgroup had 

TP53 mutation (P = 0.007) (Figure 4A). In contrast, in the 

TCGA-Alcol-HCC group, compared to all patients in the 

Immune-HIGH and Immune-MIX subgroups, cases in the 

Immune-LOW subgroup had similar frequency of 

mutations in TP53, CTNNB1 and other genes (all P 

values> 0.05) (Figure 4B). 

 

Association of gene mutation with immune cell 

infiltration in the WCH-HBV-HCC group 

 

For patients in the WCH group, all tumor samples were 

performed immunohistochemical staining. Immune cell 

markers include CD3, CD8 and CD20. A representative 

image of the above IHC staining is shown in 

Supplementary Figure 12. The hematoxylin and eosin 

(HE) staining shows that cases in the WCH-NonHBV-

HCC had distinct histopathological features 

(Supplementary Figure 13). Owing to the limited sample 

number and heterogeneous composition in the WCH-

NonHBV-HCC group, in this section, we only analyzed 

the association of gene mutation and tumor-infiltrating 

immune cell in the WCH-HBV-HCC group (Figure 5). 

We divided the WCH-HBV-HCC group into Immune-

HIGH, Immune-MIX, and Immune-LOW subgroups 

(Figure 5A). Similar to the TCGA cohorts, the number 

of most types of immune cells including CD8+ T cells, 

CD3+ T cells and CD20+ B cells is the highest in the 

immune-HIGH subgroup. Consistent to patients in the 

TCGA-HBV-HCC group, the tumor mutation burden in 

the WCH-HBV-HCC group was not significantly 

associated with the infiltration of immune cells in the 

tumor. Among patients in the WCH-HBV-HCC group, 

we verified the findings in the TCGA-HBV-HCC group. 

Finally, we found that the Immune-LOW subgroup had 

more TP53 mutation than cases in the immune-HIGH 

and immune-MIX subgroups (P = 0.049). 
 

This study also analyzed the relationship between TP53 

mutation types and immune grouping (Figure 5B). The 

main mutation types of TP53 in the WCH-HBV-HCC 

group include Missense mutation, Nonsense mutation, 

Frame shift deletion and Splice mutation. Figure 5A 

clustered the immune cells based on the above mutation 

types and find that, for patients in the WCH-HBV-HCC 

group, all frame-shift mutations, nonsense mutations, 

and parts of missense mutations of TP53 were 

associated with the decrease in the number of tumor-

infiltrating immune cells. 
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Figure 4. Characterization of immune infiltration and gene mutations in the TCGA-HBV-HCC and TCGA-Alcol-HCC groups. (A) 
Heat map shown the normalized GSVA score, tumor mutation burden (TMB) and the most common 20 mutation genes in the TCGA-HBV-HCC 
group. (B) Heat map shown the normalized GSVA score, TMB and the most common 20 mutation genes in the TCGA-Alcol-HCC group. 
Samples were labeled using 4 types of data: (1) Immune status (red, yellow, and blue for HIGH, MIX, and LOW); (2) Mutation burden for each 
sample (green); (3) The most commonly 20 mutated genes in each subtype. Mutation types including 9 types represented in different colors; 
(4) Enrichment score. 
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Association of CNV with immune cell infiltration 

 

We explored the relationship between the immune 

infiltration score (ESTIMATE immune score) and 

gene copy number alterations. We observed that 

higher number of copy number amplifications 

correlated with lower ESTIMATE immune infiltrate 

scores in both TCGA-HBV-HCC (Figure 6A) and 

TCGA-Alcol-HCC (Figure 6C) groups. In addition, 

higher number of copy number losses were also 

associated with lower ESTIMATE immune scores in 

both TCGA-HBV-HCC (Figure 6B) and TCGA-

Alcol-HCC (Figure 6D) groups (P < 0.05, Pearson’s  

correlation). To identify genes with CNVs that were 

significantly associated with immune cell infiltrate, 

we evaluated the relationship between the most 

commonly CNV-affected genes of HCC (VEGFA, 

FGF3/4/19, CCND1, AXIN1, CDKN2A, CDKN2B, 

IRF2, MAP2K3, PTEN and RB1) and ESTIMATE 

immune infiltrate scores. However, none of the above 

genes, CNV were related to the immune infiltration 

scores. In melanoma, PTEN loss was found to be 

associated with the immune cell infiltration status, 

while on such associations were observed in HCC 

(TCGA-HBV-HCC, WCH-HBV-HCC and TCGA-

Alcol-HCC groups) (Figure 6E). 

 

 
 

Figure 5. Characterization of immune cell infiltration and gene mutations in the WCH-HBV-HCC group. (A) Heat map shown 

the expression of immune cells by IHC staining (Log2 cells/mm2), tumor mutation burden (TMB) and the most common 20 mutation genes 
in the WCH-HBV-HCC group. (B) Heat map shown the expression of immune cells, TMB and the most common 20 mutation genes based 
on the TP53 mutation type in the WCH-HBV-HCC group. (C) Heat map shown the TP53 mutation type based on the immune type (HIGH, 
MIX, and LOW). 
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Figure 6. Associations between copy number alterations and ESTIMATE immune score. (A) Pearson correlation of the number of 
amplified genes and immune scores generated from ESTIMATE for the TCGA-HBV-HCC cohort. (B) Pearson correlation of the number of 
deleted genes and immune scores for the TCGA-HBV-HCC cohort. (C) Pearson correlation of the number of amplified genes and immune 
scores for the TCGA-Alcol-HCC cohort. (D) Pearson correlation of the number of deleted genes and immune scores for the TCGA-Alcol-HCC 
cohort; (E) Boxplot of PTEN copy number levels (in log2 level) in each of the immune infiltrate groups (HIGH, MIX and LOW) for the TCGA-
HBV-HCC, WCH-HBV-HCC and TCGA-Alcol-HCC groups. 
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DISCUSSION 
 

In this study, 100 HCC samples from the West China 

Hospital were tested for CNV, gene mutation, and 

tumor immune cell infiltration (IHC staining). We 

divided HCC patients in the WCH cohort into WCH-

HBV-HCC group and WCH-NonHBV-HCC group. 

Patients in the WCH-HBV-HCC group had HBV 

infection, while most patients in WCH-NonHBV-HCC 

group had no viral hepatitis and other clear pathogenic 

factors. Meanwhile, this study included two types of 

HCC in the TCGA database (TCGA-HBV-HCC group 

and the TCGA-Alcol-HCC group) [1]. The WCH-HBV-

HCC group and the WCH-NonHBV-HCC group 

represent HCC of different causes in the same 

population, while the WCH-HBV-HCC group and the 

TCGA-HBV-HCC group represent HCC in different 

populations with the same etiological factor. Compared 

with the other three groups, the TCGA-Alcol-HCC 

group represents HCC with different etiologies and 

different populations (patients in TCGA-Alcol-HCC 

group are mainly the White). Based on transcriptome 

sequencing and exon sequencing data, we analyzed the 

genomic and immune microenvironment profiles of the 

above two HCC groups in Western populations. 

Through the analysis and comparison of the above four 

types of HCC population, this study found that these 

four types of HCC had extensive heterogeneity at the 

genomic level. 

 

First, this study analyzed the CNV status of the four 

groups of HCC. Previous literatures showed that 

CNV-Amp of chromosome 1q is the most common 

CNV in HCC, and it is also one of the earliest events 

in the development of HCC [25]. Consistent with 

these conclusions, we observed that CNV-Amp of 

chromosome 1q in all four groups. Similarly, the 

CNV-Amp of chromosome 8q also appeared in the 

above four groups. In addition to CNV-Amp, CNV-

Del was also frequently found in the four groups. For 

example, CNV-Del of chromosome 4q exists in both 

WCH-HBV-HCC group and TCGA-HBV-HCC 

group; CNV-Del of chromosome 8 such as 8p appears 

in all four groups. These observations are consistent 

with previous studies that the deletion of chromosome 

8 is closely related to the occurrence of early HCC [3, 

26]. In this study, we compared the CNV levels in the 

TCGA-HBV-HCC group and WCH-HBV-HCC group 

and found that some CNVs were significantly 

different in the above groups. For example, focal 

alteration at 6p21 (gene region of VEGFA) was 

specifically identified in the WCH-HBV-HCC group, 

but not in the TCGA-HBV-HCC group. The focally 

amplified genes in the region of 11q13 include 

CCND1 (which is a common CNV-affected gene in 

HCC) [27], and the amplification of CCND1 was only 

detected in the WCH-HBV-HCC group. This study 

found that the CNV levels of HBV-related HCC in the 

Eastern and Western populations were heterogeneous. 

The genomic instability caused by different 

carcinogenic factors in HCC leads to the frequent 

appearance of CNV in HCC, and these CNVs may 

play an important role in the development and 

progression of HCC. 

 

Second, this study identified high-frequency mutated 

genes in patients from the WCH-HBV-HCC group, 

WCH-NonHBV-HCC group, TCGA-HBV-HCC group, 

and TCGA-Alcol-HCC group. TP53 had the highest 

mutation frequency in HBV-related HCC of the WCH 

and TCGA groups. In the WCH-HBV-HCC group, 

more than half (51%) of patients had TP53 mutations. 

The mutation frequency of CTNNB1 was similar in the 

TCGA-HBV-HCC group and the TCGA-HBV-HCC 

group (28% vs. 25%). In addition, TP53 and CTNNB1 

were also two genes with the highest mutation 

frequency in the TCGA-Alcol-HCC group, and most of 

the TP53 and CTNNB1 mutations appeared 

individually, and only a small number of patients had 

the above two types of mutations simultaneously [10, 

12]. As mentioned above, most of patients in the WCH-

NonHBV-HCC group represent a group of HCC with 

unknown causes. In this group, TP53 mutation and 

MUC16 mutation were the two most common types of 

gene mutation. MUC16 is a member of the mucin 

family glycoprotein, which has been used as a tumor 

marker in the early diagnosis of ovarian cancer and 

other tumors [28, 29]. MUC16 can promote 

tumorigenesis in ovarian cancer and play a role in tumor 

proliferation [30, 31]. Previous studies have suggested 

that HCC tumor cells did not produce mucin, but the 

latest research proved that tumor cells can produce 

mucins such as MUC16 in HCC with bile duct 

differentiation. Future researches need to further 

explore the role of mucin molecules such as MUC16 

and MUC4 in the development of HCC [32]. In 

summary, TP53 is the most common genetic mutation 

that occurs in all four types of HCC patients. However, 

the most common genetic mutations in HCC, such as 

TP53 and CTNNB1, cannot currently be used as drug 

treatment targets. For solid tumors, the frequency of 

gene mutations that can be treated (kinase mutations, 

such as EGFR) is very low. The CNV-Amp of FGF19 

(11q13) is a genetic change that appears in the WCH-

HBV-HCC group. Currently, drugs targeting FGF19 

have been developed. However, the frequency of CNV-

Amp of FGF19 is still very low in the WCH-HBV-HCC 

group. Therefore, it is still very difficult in screening of 

targeted drugs that are generally effective for HCC. In 
the future, targeted therapy for HCC needs to be more 

individualized, and combinatorial approaches may 

achieve better therapeutic effects [33, 34]. 
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Next, through the NMF method, this paper 

systematically analyzed the mutation spectrum and 

signatures of patients in the WCH-HBV-HCC and 

WCH-NonHBV-HCC groups. This study identified 

three types of mutation signatures in the WCH-HBV-

HCC group and the WCH-NonHBV-HCC group, 

respectively. We found that Signature A (characterized 

by T>A) in the above two groups was associated with 

exposure to aristolochic acid (Signature 22 of the 

COSMIC database). The HCC patients in the WCH 

group mainly come from the western region of China, 

but HCC patients in the eastern coastal region of China 

have also identified the widespread existence of this 

mutation signature [35–37]. This is consistent with the 

clinically observed phenomenon [10], that is, a large 

proportion of patients in China have received Chinese 

herbal medicine containing aristolochic acid. However, 

previous studies only analyzed the genomic mutation 

profile, and there is no direct evidence that aristolochic 

acid causes HCC. Recently, the study published by 

Zeguang et al. directly proved the association of 

aristolochic acid and HCC [38]. The animal models in 

this study proved that aristolochic acid can lead to HCC 

in mice in a dose-dependent manner. Aristolochic acid 

can cause DNA damage in mice liver and form adduct 

with DNA. The study proves that aristolochic acid 

causes a typical DNA base T>A transversion in mouse 

liver. Clonal evolution analysis found that gene 

mutations caused by aristolochic acid appeared very 

early in the process of clonal evolution, indicating that 

aristolochic acid may be the key to malignant 

transformation of cells. In addition, we found that 

Signature B and C of the WCH-HBV-HCC group and 

Signature B and C of the WCH-NonHBV-HCC group 

could not correspond well with the existing Signature of 

the COSMIC database. The four types of Signature 

integrate the characteristics of some signature from the 

COSMIC database, which indicates that the pathogenic 

factors of HCC patients in the WCH group may be 

complex, and multiple factors have caused the 

occurrence of HCC. Compared to patients with HCC in 

eastern China [12, 35], HCC patients in the WCH group 

have unique mutation characteristics. The mutation 

signatures established in this study can classify patients 

in the West China Hospital effectively, compared with 

the existing liver cancer mutation signatures. 

 

With the application of immunotherapy, understanding 

the immune microenvironment profile of HCC is crucial 

for screening of specific populations sensitive to 

immunotherapy. Through the GSVA algorithm, we 

compared the immune cell infiltration status in the 

TCGA-HBV-HCC group and the TCGA-Alcol-HCC 
group. We found that the number of most types of 

immune cells was not significantly different between 

the two groups, which indicated that the heterogeneity 

of tumor immune microenvironment may be lower than 

the in the genomic level, and immunotherapy holds 

substantial promise for tumors that are resistant to 

standard therapies [39]. We found that tumor mutation 

burden and most gene mutations have no correlation 

with tumor-infiltrating immune cells. This is 

inconsistent with the findings in some other types of 

solid tumors. For example, Knudsen et al. demonstrated 

that, in some patients with pancreatic cancer, the tumor 

mutation burden is positively correlated with immune 

cell infiltration [40]. The above-mentioned correlation 

was not observed in HCC, and the explanation may be 

that, except for several genes such as TP53 and 

CTNNB1, the frequency of other molecular mutation in 

HCC is low. In addition, due to the immunosuppressive 

microenvironment of HCC, tumor neoantigens 

produced by tumor mutations cannot cause a significant 

immune response within the tumor. However, we found 

that the total CNV levels (both amplification and 

deletion of genes) were significantly associated with 

immune cell infiltration, which is consistent with other 

types of tumor [41, 42]. These data highlight the need to 

explore multiple contributors to immune cell infiltration 

in HCC, and future studies are needed to illustrate the 

impact of gene CNV on tumor immune cell infiltration 

and responses to immune therapy. 

 

This study found that the mutation of TP53 may affect 

the infiltration of immune cells in the tumor. In the 

WCH-HBV-HCC and TCGA-HBV-HCC groups, the 

immune-LOW subgroup had more TP53 mutations. 

Previous studies have found that TP53 mutations can 

affect the generation of anti-tumor immune responses 

and promote immune escape [43]. Studies have shown 

that TP53 mutations can predict the therapeutic effect 

of PD-1/PD-L1 inhibitors in non-small cell lung cancer 

(patients with TP53 mutation have a higher overall 

survival rate after immunotherapy) [44]. Prof. Wu 

Yilong found that, in non-small cell lung cancer, TP53 

can regulate the expression of PD-L1, and the TP53 

frameshift mutation predicts better immunotherapy 

efficacy [45]. In HCC, because there is no obvious 

correlation between TMB and immune infiltration, and 

the expression of PD-L1 in tumor is low, future 

research still needs to develop new markers to predict 

the efficacy of PD-1/PD-L1 inhibitors in HCC, and 

whether the TP53 mutation can be used as a predictor 

for the efficacy of immunotherapy in HCC needs 

further illustrations. In the TCGA-Alcol-HCC group, 

this study found that mutations such as TP53 and 

CTNNB1 had no significant correlation with immune 

cell infiltration. In the immune-LOW subgroup of the 

TCGA-Alcol-HCC group, the proportion of CTNNB1 
mutations was higher, but there was no statistical 

difference. In melanoma, studies have found that the 

activated Wnt/β-catenin pathway affected the strength 
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of tumor immune responses [46]. The activated Wnt 

pathway can down-regulate the expression of CCL4 

through ATF3-dependent transcriptional inhibition, 

which ultimately affects the infiltration and activation 

of dendritic cells and CD8+ T cells [47]. In HCC 

(especially alcoholic HCC), it is necessary to further 

illustrate the relationship between CTNNB1 mutation 

and the immune response and the underlying 

mechanism behind it. 

 

This study has some limitations. For example, the 

immune cell infiltration of patients in the WCH group 

was analyzed by immunohistochemical staining, while 

transcriptome sequencing data was used in the TCGA 

group, which may influence the accuracy of the results; 

In addition, the pathogenic causes of patients in the 

WCH-NonHBV-HCC group is unknown; The sample 

size of the WCH-NonHBV-HCC group is small, so we 

did not classify the immune infiltration status in this 

group. Finally, the CNV, gene mutation and mutation 

signatures identified in this study need to be verified by 

study with a larger sample size. In the future, more 

researches are needed to elaborate the function and 

significance of the molecular mutations discovered in 

this study in the development and progression of HCC. 
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SUPPLEMENTARY MATERIALS   
 

Supplementary Method 

 
Analysis of tumor infiltrating immune cells in the 

TCGA-HBV-HCC and TCGA-Alcol-HCC cohorts 

 

The gene sets representing different immune cells were 

obtained from previous literatures [1, 2]. A total of 26 

gene sets were identified, and 11 of which represent 

innate immune cells: dendritic cells (DC), activated 

dendritic cells (aDC), plasma cell-like dendritic cells 

(pDC), immature trees Identical cells (iDC), mast cells, 

neutrophils, macrophages, eosinophils, NK cells, 

CD56bright NK cells and CD56dim NK cells; 13 types 

of adaptive immune cells: T cells, cytotoxic cells, B 

cells, and helper T cells 17 (Th17 cells), Regulatory T 

cells (Treg cells), helper T cells, helper T cells type 1 

(Th1 cells), helper T cells type 2 (Th2 cells), follicular 

helper T cells (Tfh cells), γδ T cells (Tgd cells), CD8 T 

cells, effect memory T cells (Tem cells) and central 

memory T cells (Tcm cells); The remaining two 

represent angiogenesis and antigen presentation System. 

Cytotoxic cells include parts of CD8 + T cells, some γδ 

T cells and some NK cells. Tumor RNA-seq data of 69 

cases of alcoholic HCC and 106 cases of HBV-related 

HCC in the TCGA database were used to analyze 

tumor-infiltrating immune cell. In this study, the Gene 

Set Variation Analysis (GSVA) algorithm was  

used to calculate the immune score (GSVA package). 

The RNA sequencing data of all gene sets was first 

standardized by Z-score, then all patients were sorted 

according to Z-score, and finally the expression of each 

immune cell is calculated by the GSVA algorithm. 

False discovery rate (FDR; q value) <10% is considered 

to be significantly enriched for this type of immune cell. 

In the heat map, we classified all samples into immune-

High, immune-Mix, and immune-Low groups based on 

the number of immune cell infiltration, especially T 

cells, B cells and cytotoxic cells. 
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Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Overview of copy number variation in the WCH group (A) All patients in the WCH group; (B) Patients with 
hepatitis B (WCH-HBV-HCC group); (C) Patients without hepatitis B (WCH-NonHBV-HCC group). The red color represents copy number 
amplification, and the green represents copy number deletion. 

 

 
 

Supplementary Figure 2. Comparison of arm level copy number alterations between WCH and TCGA cohorts. (A) Amplification 

frequencies of WCH-HBV-HCC versus TCGA-HBV-HCC group; (B) Deletion frequencies of WCH-HBV-HCC versus TCGA-HBV-HCC group; (C) 
Amplification frequencies of WCH-NonHBV-HCC versus TCGA-Alcol-HCC group; (D) Deletion frequencies of TCGA-Alcol-HCC versus WCH-
NonHBV-HCC group. 
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Supplementary Figure 3. The focal CNV profile between the WCH and TCGA were compared to identify novel focal events. 
(A) Focal amplifications in the WCH-HBV-HCC and TCGA-HBV-HCC groups. (B) Focal deletions in the WCH-HBV-HCC and TCGA-HBV-HCC 
groups. (C) Focal amplifications in the WCH-NonHBV-HCC and TCGA-NonHBV-HCC groups. (D) Focal deletions in the WCH-NonHBV-HCC and 
TCGA-NonHBV-HCC groups. The q values for amplifications (A, C) and deletions (B, D) in the WCH group were plotted against q values from 
the TCGA cohort. CNVs with q values <0.25 were deemed as significant. Owing to the similar q values of a large number of genes, we only 
showed parts of representative genes in this figure. All shared and unique genes among the above groups are shown in the Supplementary 
data file 2-5. The dashed line are q value cutoffs. 
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Supplementary Figure 4. Comparison of the mutation frequencies of significantly mutated gene between the WCH and TCGA 
cohorts. (A) The total WCH and TCGA cohorts; (B) TCGA-HBV-HCC and TCGA-Alcol-HCC groups; (C) WCH-HBV-HCC and WCH-NonHBV-HCC 

groups. 
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Supplementary Figure 5. Mutation spectrum of patients in WCH group. (A) WCH-HBV-HCC group; (B) WCH-NonHBV-HCC group. 
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Supplementary Figure 6. Calculating the optimal clustering value based on the NMF algorithm in the WCH-HBV-HCC group. 
Cophenetic refers to correlation coefficient; Dispersion is the dispersion coefficient (evaluation of the repeatability of the NMF results); Evar 
is used to evaluation of the interpretation effect of the NMF model to the matrix differences; Silhouette is aimed to evaluate the stability of 
the model; Sparseness is used to calculate the sparsity of the matrix. RSS, Residual Sum of Squares. 
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Supplementary Figure 7. Calculating the optimal clustering value based on the NMF algorithm in the WCH-NonHBV-HCC 
group. Cophenetic refers to correlation coefficient; Dispersion is the dispersion coefficient (evaluation of the repeatability of the NMF 

results); Evar is used to evaluation of the interpretation effect of the NMF model to the matrix differences; Silhouette is aimed to evaluate 
the stability of the model; Sparseness is used to calculate the sparsity of the matrix. RSS, Residual Sum of Squares. 
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Supplementary Figure 8. Association of the mutation Signatures identified in this study with the existing mutation 
signatures of the COSMIC database. (A) WCH-HBV-HCC group; (B) WCH-NonHBV-HCC group. 

 

 
 

Supplementary Figure 9. Distribution of the 30 mutation Signatures of the COSMIC database among all samples in the WCH-HBV-HCC 
group (A) The contributions of the 30 mutational signatures to tumors in the WCH-HBV-HCC group. The sample names are displayed on the 
horizontal axis, whereas the vertical axis depicts the number of mutations of samples in the WCH-HBV-HCC group; (B) The relative 
contribution of the 30 Signatures in samples from the WCH-HBV-HCC group; (C) The distribution of the 30 mutation Signatures in the WCH-
HBV-HCC group. 
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Supplementary Figure 10. Distribution of the 30 mutation Signatures of the COSMIC database among all samples in the WCH-NonHBV-

HCC group (A) The contributions of the 30 mutational signatures to tumors in the WCH-NonHBV-HCC group. The sample names are displayed 
on the horizontal axis, whereas the vertical axis depicts the number of mutations of samples in the WCH-NonHBV-HCC group; (B) The relative 
contribution of the 30 Signatures in samples from the WCH-NonHBV-HCC group; (C) The distribution of the 30 mutation Signatures in the 
WCH-NonHBV-HCC group. 
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Supplementary Figure 11. Comparison of Tumor-infiltrating lymphocytes enrichment profile in the TCGA-HBV-HCC group 
and TCGA-Alcol-HCC group. Percentage of cases with enriched immune cell signatures were calculated using the GSVA and pre-rank Gene 
Set Enrichment Analysis (GSEA) methods (see Supplementary Methods). The GSEA was utilized to calculate enrichment score, while the pre-
rank GSEA was used to calculate FDR values and for each immune cell signature, enrichment is defined as q-value ≤0.1. The black bars 
indicate the percentage of patients having significant enrichment for the given immune cell type in the TCGA-HBV-HCC group, while gray bars 
represent the percentage in the TCGA-Alcol-HCC group. Immune cell signatures were classified into adaptive, innate and other. Source data 
are provided in the Supplementary data file 16. 
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Supplementary Figure 12. Representative images of immunohistochemical staining of HCC samples in the WCH group. These 
immune markers are CD3+ T cells, CD20+ T cells and CD8+ B cells. 
 

 
 

Supplementary Figure 13. Representative images of hematein-eosin staining of HCC samples in the WCH-NonHBV-HCC 
group. The pathological features for samples in the WCH-NonHBV-HCC is distinct, and these different pathological patterns include 

pseudoglandular histological pattern (A52), fibrolamellar-HCC (A19), trabecular histological pattern (A107) and steatosis (A66), etc. 
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Supplementary Tables 
 

Supplementary Table 1. Detailed information of the primary antibodies. 

Antibody Source Species Dilution Antigen retrieval 

CD20 Abcam, ab9475 Mouse 1:200 Citrate buffer (pH 6.0) microwave 16min 

CD3 Abcam, ab16669 Rabbit 1:200 Citrate buffer (pH 6.0) microwave 16min 

CD8 Abcam, ab33786 Mouse 1:200 Citrate buffer (pH 6.0) microwave 16min 

 

Supplementary Table 2. Clinicopathologic characteristics of WCH cohort according to HBV infection. 

 WCH-NonHBV-HCC (N=19) WCH-HBV-HCC (N=81) P-value 

Age, years 59.3 ± 10.7 49.7 ± 11.3 0.002 

Gender   0.154 

  Male 14 (73.7%) 71 (87.7%)  

  Female 5 (26.3%) 10 (12.3%)  

Alpha-fetoprotein, ng/mL   0.448 

  <400 13 (68.4%) 47 (58.0%)  

  ≥400 6 (31.6%) 34 (42.0%)  

Tumor size, cm 7.9 ± 4.9 6.7 ± 4.1 0.297 

Tumor number   0.143 

  Single 9 (52.9%) 58 (73.4%)  

  Multiple 8 (47.1%) 21 (26.6%)  

TNM stage   0.272 

  I 6 (31.6%) 34 (42.0%)  

  II 7 (36.8%) 27 (33.3%)  

  IIIA 5 (26.3%) 9 (11.1%)  

  IIIB 1 (5.3%) 11 (13.6%)  

Tumor differentiation   1.000 

  High 8 (47.1%) 40 (50.6%)  

  Low 9 (52.9%) 39 (49.4%)  

Microvascular invasion   1.000 

  No 13 (68.4%) 57 (70.4%)  

  Yes 6 (31.6%) 24 (29.6%)  
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Supplementary Table 3. Clinicopathologic characteristics of TCGA cohort. 

 TCGA-Alcol-HCC (N=69) TCGA-HBV-HCC (N=106) P-value 

Age, years 63.5 ± 11.6 54.8 ± 11.7 <0.001 

Gender   0.734 

  Male 58 (84.1%) 87 (82.1%)  

  Female 11 (15.9%) 19 (17.9%)  

Race   <0.001 

  White 41 (61.2%) 9 (8.7%)  

  Asian 25 (37.3%) 92 (88.5%)  

  Black 1 (1.5%) 3 (2.9%)  

Alpha-fetoprotein, ng/mL   0.518 

  <400 32 (80.0%) 74 (73.3%)  

  ≥400 8 (20.0%) 27 (26.7%)  

TNM stage   <0.001 

  I 23 (38.3%) 71 (68.3%)  

  II 12 (20.0%) 21 (20.2%)  

  III 25 (41.7%) 10 (9.6%)  

  IV 0 (0.0%) 2 (1.9%)  

Tumor differentiation   <0.001 

  High 50 (72.5%) 44 (41.5%)  

  Low 19 (27.5%) 62 (58.5%)  

Vascular invasion*   0.032 

  No 23 (53.5%) 74 (71.8%)  

  Yes 20 (46.5%) 29 (28.2%)  

*Including macro- and micro-vascular invasion. 

 


