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INTRODUCTION 
 

Throughout their existence, organisms are repeatedly 

exposed to various stresses and thus have evolved 

species-specific strategies to effectively resist them and 

improve survival. Drought, starvation, heat, and cold 

shocks are among the universal stressful stimuli, which 

living creatures encounter during their life cycle. In 

addition, the organisms utilizing aerobic respiration or 

photosynthesis to produce energy continually deal with 

numerous oxidative challenges related to reactive 

oxygen and nitrogen species. Remarkably, similar to 

starvation and heat shock, oxidative stress induces 

polyamine synthesis in various species [1]. 

 

Polyamines are omnipresent primordial polycationic 

bioactive molecules possessing multifarious 

evolutionary-conserved biochemical functions. They are 
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ABSTRACT 
 

Polyamines are nitrogen-rich polycationic ubiquitous bioactive molecules with diverse evolutionary-conserved 
functions. Their activity interferes with numerous genes' expression resulting in cell proliferation and signaling 
modulation. 
The intracellular levels of polyamines are precisely controlled by an evolutionary-conserved machinery. Their 
transient synthesis is induced by heat stress, radiation, and other traumatic stimuli in a process termed the 
polyamine stress response (PSR). 
Notably, polyamine levels decline gradually with age; and external supplementation improves lifespan in model 
organisms. This corresponds to cytoprotective and reactive oxygen species scavenging properties of 
polyamines. Paradoxically, age-associated neurodegenerative disorders are characterized by upsurge in 
polyamines levels, indicating polyamine pleiotropic, adaptive, and pathogenic roles. Specifically, arginase 
overactivation and arginine brain deprivation have been shown to play an important role in Alzheimer’s disease 
(AD) pathogenesis. 
Here, we assert that a universal short-term PSR associated with acute stimuli is beneficial for survival. However, 
it becomes detrimental and maladaptive following chronic noxious stimuli, especially in an aging organism. 
Furthermore, we regard cellular senescence as an adaptive response to stress and suggest that PSR plays a 
central role in age-related neurodegenerative diseases' pathogenesis. 
Our perspective on AD proposes an inclusive reassessment of the causal relationships between the classical 
hallmarks and clinical manifestation. Consequently, we offer a novel treatment strategy predicated upon this 
view and suggest fine-tuning of arginase activity with natural inhibitors to preclude or halt the development of 
AD-related dementia. 
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found ubiquitously at much higher concentrations than 

most other cellular metabolites [2]. The polyamine, 

spermidine, was presumably present in the last universal 

common ancestor (LUCA). Other polyamines are 

essential for growth and biofilm formation in simple 

bacteria [3]. Some bacteria produce diamines as a 

response to acid stress, via decarboxylation of arginine, 

ornithine, and lysine [4]. In plants, polyamines are 

omnipresent and protective in stressful events such as 

sudden drought and extreme salinization [5]. 

 

In mammals, polyamines are universal regulators of 

basal cellular functions. The natural polyamines 

spermidine and spermine, their diamine precursor 

putrescine, together with diamine cadaverine, are 

aliphatic molecules (Figure 1). They carry several 

nitrogen moieties, which are positively charged under 

physiological conditions. This feature provides them 

with an ability to interact with negatively charged 

nucleic acids and various proteins and influence critical 

cell functions via regulation of transcription, translation, 

and posttranslational modifications of a wide range of 

genes and proteins. 

The levels and activity of enzymes involved in 

polyamines’ biosynthesis and metabolism are regulated 

by various specialized and unconventional mechanisms 

at numerous levels. Their transcription, translation, 

posttranslational modification, and finally, degradation 

processes, comprise complex feedback mechanisms 

monitoring the substrates and products concentrations 

[6]. These mechanisms are highly conserved in different 

species, which points to a central role of polyamines’ 

function in all known life forms. Even though 

polyamines are universal primordial life elements, 

substantial gaps in the understanding of their precise 

physiological roles still exist. Moreover, polyamines’ 

role in the pathogenesis of neurodegenerative diseases 

has received particularly scant scientific attention. 

 

Recent discoveries have revealed many indispensable 

polyamines’ biological functions and attracted weighty 

attention to their evolutionary role in health and disease. 

In adult organisms, numerous stimuli have been shown 

to alter polyamine homeostasis and elicit a highly 

concerted polyamine stress response (PSR) [7]. 

Accruing evidence suggests that these alterations are 

 

 
 

Figure 1. Polyamine chemical structure. Shown are the chemical structures of the polyamine precursors amino acids L-arginine and L-

lysine; and polyamines: putrescine, spermidine, spermine, and cadaverine. 
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adaptive and beneficial when they follow a moderate 

temporary stimulus, while tenacious stress leads to a 

maladaptive polyamine response, which contributes to 

malfunction and, eventually, degeneration. This 

maladaptive response characterizes pathogenesis of 

neurodegenerative disorders with typical arginase 

upregulation, arginine brain deprivation, and substantial 

increase in the brain levels of polyamines [8–11]. 

 

Consequently, we postulate that polyamines function as 

universal bivalent regulators of cellular functions, 

which either promote growth of cells or induce their 

death depending on environmental signals. This view is 

in line with the recent hypotheses suggesting that 

natural polyamines are beneficial for the physiological 

processes in healthy cells, but excessively detrimental 

under some pathological conditions [12] hence 

activating senescence as an adaptive response to stress 

[13, 14]. Accordingly, we regard cell senescence  

as a complex stress response phenotype contributing  

to neurodegeneration and progressive neuronal  

loss [15, 16]. 

 

Remarkably, polyamines-related adaptive response 

share some similarities with the prokaryotic stringent 

response and the eukaryotic unfolded protein response 

(UPR) [1]. The former is a ubiquitous bacteria and 

chloroplast (plant organelle) stress response to 

starvation, heat shock, and other stimuli. The latter is 

related to the endoplasmic reticulum (ER) stress and is a 

common response within yeast, worms, and mammals. 

Therefore, PSR is one of the earliest mechanisms that, 

along with other mechanisms, cope with stresses and 

improve survival. 

 

Gilad and Gilad (2003) have proposed a model where 

the brain PSR is a component of the coordinated 

cellular stress program [17]. Here, we further develop 

this hypothesis and propose an original model that 

throws light on the pathogenesis of age-associated 

neurodegenerative diseases, and of Alzheimer’s disease 

(AD), in particular. We also describe a novel treatment 

strategy predicated upon this view and suggest fine-

tuning of arginase activity with natural inhibitors to 

preclude or halt the development of clinical dementia, 

and perhaps even delay aging. 

 

Biosynthesis and catabolism of polyamines 
 

Polyamine metabolism has been reviewed in detail by 

several authors. The interested reader is referred to an 

excellent review by Wallace et al. [18]. Here, we cover 

a topic that has received a relatively limited scientific 

attention and underline the role of enzymes that have 

been shown to play a role in the pathogenesis of 

neurodegenerative disorders. 

The cellular levels of polyamines in various tissues are 

congruous with their physiological requirements. This is 

achieved by a joint function of synthesis, catabolism, 

and transport. The chief biosynthetic polyamines' 

pathway in mammals utilizes arginine as a precursor of 

putrescine and comprises arginase and ornithine 

decarboxylase (ODC) or, alternatively, arginine 

decarboxylase (ADC), and agmatinase (AGM) [19] 

(Figure 2). 

 

In all life forms, putrescine is the most common 

diamine. Most eukaryotes produce putrescine via 

decarboxylation of ornithine. The polyamine, 

cadaverine, a product of lysine decarboxylation, is 

much less abundant in mammal species. Cadaverine is a 

precursor of piperidine, which efficiently accumulates 

against concentration gradient in the murine brain [20]. 

Significant amounts of cadaverine are formed and 

resorbed in the intestine; however, endogenous sources 

of cadaverine in the mouse brain had been evidenced 

too [21] and suggested to be responsible for some 

central nervous system (CNS) functions [22]. In 

addition, cadaverine can be utilized by the gut 

Escherichia coli in an alternative pathway to produce 

putrescine [23]. 

 

In accordance with the dominant view, ODC is the 

limiting factor of the polyamines’ biosynthesis in 

mammals [6]. However, recent attention has been 

turned to arginase and ADC as putative gate keepers of 

polyamine synthesis. Agmatine has been recognized 

long ago as an ADC product in primitive life forms; 

nevertheless, ADC expression in mammals was 

doubted. Li et al. (1994) investigated the bovine brain 

and provided conclusive evidence that agmatine is an 

endogenous imidazoline receptors agonist. The authors 

demonstrated that agmatine is a locally synthesized 

noncatecholamine ligand of α2-adrenergic receptors that 

acts as a neurotransmitter [24] (Figure 3). Of note, both 

glia and mature neurons demonstrate ADC activity [25]. 

ADC activity has been identified in other organs and 

various cell types [26]. Several groups recurrently 

demonstrated the presence of mammalian ADC in 

rodents and humans [25, 27]. Moreover, it has been 

proven that ADC gene is responsible for the production 

of agmatine in the brain [25]. Additionally, it was 

revealed that ADC is associated with mitochondrial 

membranes and capable of decarboxylating both 

arginine and ornithine [28]. Remarkably, the brain ADC 

possesses a higher affinity for ornithine than for 

arginine [27] (Figure 2). Accordingly, in the cases of 

the mutual substrate (arginine) deficiency and relative 

ornithine excess, due to arginase upregulation for 
instance, ADC acts together with ODC to produce 

putrescine, which leads to a substantial decrease in the 

brain agmatine content. 
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Of note, agmatine demonstrates a broad spectrum of 

pharmacological actions in mammals, which include 

anti-nociceptive [29] and anti-inflammatory effects 

[30]. Likewise, it protects neurons against glutamate-

induced cytotoxicity in vitro [31] and ischemic neuronal 

injury in vivo [32] (Figure 3). Therefore, its deficit may 

have serious effects on brain function, particularly in 

the conditions of oxidative stress. 

 

Curiously, despite extensive literature, there are still 

papers suggesting that agmatine is synthesized 

exclusively by plants and bacteria, but not by mammals 

[12]. This proposition is indefensible. Moreover, 

mammalian ADC is unique and substantially distinct 

from ODC and ADC enzyme of bacteria and plants [27]. 

In prominent opposition to other polyamine pathway 

enzymes, ADC and arginase are both constitutively 

active enzymes, which are indispensable for polyamine 

synthesis, and are extensively expressed in the mammal 

brain. The cortical and hippocampal principal cells and 

interneurons clearly express both of them [33]. 

 

Arginase 
 

Remarkably, the minimal enzymatic content of the 

LUCA already included representatives of the arginase 

superfamily [34], pointing to their significance for the 

perpetuation of life. Arginase is a particularly 

interesting enzyme that has been present in early life 

forms and conserved throughout evolution. It is a 

manganese metalloenzyme catalyzing the hydrolysis of 

arginine to ornithine and urea in the last step of the urea 

cycle [35] (Figure 2). Two distinct genetic isoforms of 

human arginase, arginase-1 (Arg1) and arginase-2 

(Arg2), share 59.4% of amino acids sequence [33, 36]. 

Structurally, both isoenzymes are homotrimers 

stabilized in conformation by two Mn2+ ions per each 

monomer [37]. 

 

 
 

Figure 2. Schematic representation of the polyamine metabolism pathways in AD brain. Arginine is the mutual substrate for 
arginase (ARG), arginine decarboxylase (ADC), and nitric oxide synthase (NOS). Ornithine decarboxylase (ODC) decarboxylases ornithine to 
produce putrescine. Spermidine/spermine acetyltransferase (SSAT) catalyzes the acetyl-group transfer from acetyl-coenzyme A to the 
aminopropyl end of spermidine or spermine, producing acetylspermidine and acetylspermine. Acetylated polyamines are oxidized by 
polyamine oxidase (PAO) to produce hydrogen peroxide (H2O2), aminopropanal, and either putrescine or spermidine. Otherwise, spermine 
can be directly oxidized to spermidine by spermine oxidase (SMO) generating H2O2 and aminopropanal, which is spontaneously converted to 
acrolein. Other abbreviations: ornithine transcarbamylase (OTC), agmatinase (AGM), ODC antizyme (OAZ), spermidine synthase (SDS), 
spermine synthase (SMS), diamine oxidase (DAO). Rectangles’ color reflects the level of enzymes’ expression in relation to the healthy brain. 
Blue- reduction, shades of orange- increase in levels (arbitrary scale). 
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Of note, the duplication of the arginase coding gene is a 

relatively recent evolutionary event, which occurred 

following the separation of vertebrates and invertebrates 

[38]. Simple organisms, such as plants, bacteria, and 

yeasts, possess a single form of Arg2 situated in the 

mitochondria. Mitochondrial localization of Arg2 

indicates its evolutionary roots in bacteria [39]. 

Vertebrates additionally express a cytosolic isoform, 

Arg1 [35]. Therefore, it is presumed that the 

mitochondrial arginase is the ancestral isoform [40]. 

 

In mammals, both arginase isoforms show distinctive 

cell and tissue distribution patterns. They are encoded 

by genes in separate chromosomes; however, their 

mechanism of action and products are similar. Arg1 is 

generally presented as a cytosolic enzyme of the liver 

and is very common in other tissues including the brain. 

Arg2, in contrast, is described as a kidney-type 

mitochonrial enzyme; however, its expression has been 

shown in the mitochondria of various organs including 

the brain tissue [11, 41]. 

The chief function of arginase in ureotelic animals, 

being the last enzyme of the urea cycle, is to deal with 

excess of ammonia [42] (Figure 2). However, recent 

discoveries indicate the enzyme’s role in diverse 

physiological functions and pathological processes that 

are far beyond the urea cycle. The presence of both 

isoforms in the murine brain tissue, and particularly in 

the hippocampal neurons, has been proven by several 

groups [11, 43]. There are estimations that arginase 

brain activity is equally accounted for by both isoforms 

[40, 44], though Arg2 has been shown to be a dominant 

isoenzyme in the human frontal cortex [45]. 

 

Of importance, the levels of two central urea cycle 

enzymes, namely ornithine transcarbamylase (OTC) and 

carbamoyl phosphate synthetase 1 (CPS1), in the 

healthy mammal brain are extremely low [46], which 

points to a unique function of arginase in the CNS. 

 

Typically, the expression of arginase is inducible by a 

variety of cytokines and catecholamines. It has been 

 

 
 

Figure 3. A hypothetical synapse diagram. Arginine decarboxylase (ADC) converts arginine into agmatine and carbon dioxide. Agmatine 
is a neurotransmitter that is synthesized, stored in vesicles, and released following depolarization. Agmatine binds with high affinity to α2-
adrenoceptors (α2) and imidazoline receptors (IR). It antagonizes glutamatergic NMDA, AMPA, and nACh receptors. Polyamines, spermine, 
and spermidine modulate the activation of NMDA receptors via a unique allosteric regulatory site at the extracellular domain. The pore of 
ionotropic glutamate receptors is easily accessible to cationic polyamines, which are capable of blocking the ions movement via the channels. 
Polyamines efficiently block ACh-induced currents via nAChR. 
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shown that 5′ flanking region of Arg1 gene contains 

elements responsive to interleukin-4, cAMP, tumor 

growth factor β, dexamethasone, and 

lipopolysaccharides (LPS) [47]. Oxidative species also 

instigate Arg1 expression and stimulate its activity via 

Protein kinase C-mediated activation of RhoA/Rho 

kinase pathway [48]. 

 

Arg2 levels in endothelial cells escalate as a reaction to 

numerous stimuli as well, including bacterial LPS, tumor 

necrosis factor alpha (TNFα), oxidized low-density 

lipoproteins (LDL), and hypoxia [49]. Remarkably, Arg2 

activation in the endothelial cells is associated with its 

translocation from the mitochondria to the cytosol [50]. 

A similar pattern has been reported in the hippocampal 

neurons of AD mice [11]. It is well-established that AD-

associated conditions with elevated ROS result in 

mitochondrial swelling, outer membrane rupture, and the 

cell death induction [51]. Therefore, the presence of Arg2 

in the cytoplasm may be explained by the disease-

associated severe mitochondrial damage (Figure 4). 

 

Of importance, arginase inhibition reduces the 

production of interleukin-8 in vascular endothelial and 

smooth muscle cells as a reaction to native low-density 

lipoprotein (LDL) [52]. Moreover, the mitochondrial 

membrane potential (MMP), which is generally 

decreased upon native LDL stimulation, is restored 

upon arginase inhibition. Thus, inhibition of arginase 

has been proposed to treat a list of cardiovascular 

diseases [53]. 

 

Growing evidence suggests a role that arginase plays in 

the pathogenesis of neurodegenerative diseases [54]. 

The activity and expression levels of arginase are 

significantly higher in the hippocampi of AD patients 

and AD mice [11, 55, 56]. Moreover, substantially 

reduced levels of arginase substrate, arginine, are 

observed in the cortices of AD patients [57]. The 

intriguing question of how Arg1 and Arg2 differ in their 

biological function and regulation under various 

pathological conditions remains an area of intensive 

research. 

 

Ornithine decarboxylase 
 

ODC is the rate-limiting enzyme for polyamine 

synthesis that decarboxylates ornithine to form 

putrescine (Figure 2). The adult brain contains 

substantial amounts of ODC protein, but its enzymatic 

activity is relatively low in the healthy adult brain. In 

contrast to other metabolic pathways, a family of 

specific antizymes inhibits ODC, and regulates 

polyamine transport [58]. ODC antizyme (OAZ) is a 

natural ODC inhibitor (Figure 2). Its binding to ODC 

also causes fast degradation of the enzyme [59]. 

Remarkably, OAZ is firmly preserved over evolution; 

however, its detailed function is poorly understood. The 

OAZ expression is promoted by high cellular 

polyamines’ concentration, perhaps as a feedback 

mechanism to limit polyamine modulation of N-methyl-

D-aspartate receptors (NMDAR), and the adult brain 

shows a relatively high expression of OAZ [60]. In the 

brain, the antizyme typically co-localizes with 

NMDARs of the cortical pyramidal cells [61], which 

indicates its role in regulating channel functions. 

 

Of note, a substantial accretion of OAZ in the brains of 

AD patients compared to healthy individuals has been 

reported. Remarkably, in these cases, OAZ 

preferentially accumulates in the neuronal bodies and 

axons of the hippocampus. Thus, it was proposed that 

AD-related OAZ accumulation possesses 

neuroprotective functions [61]. It is plausible to 

hypothesize that the upsurge in antizyme levels in the 

AD brains reflects the natural mechanism of reduction 

the polyamine pathway overactivation-associated 

toxicity, as well as NMDAR modulation, which is 

inadequate in the conditions of chronic PSR. 

 

Of importance, AD-associated ODC translocation from 

nucleus to cytoplasm in the pyramidal cortical cells has 

been reported [62]. Nilsson et al. elegantly evidenced an 

early shift of the ODC immunoreactivity from the 

nuclear compartment towards the cytoplasm in AD 

brains. This pattern of expression resembles the 

mentioned above translocation of Arg2 to the cytoplasm. 

Accordingly, we suggest that these characteristic 

translocation phenomena indicate AD-related changes 

in polyamine metabolism dependent upon subcellular 

localization of its principal enzymes (Figure 4). 

 

Polyamine catabolism 
 

Spermidine/spermine acetyltransferase (SSAT) is the 

rate-limiting polyamine catabolism enzyme that 

acetylates polyamines and converts them to functionally 

inactive forms via alteration in charge (Figure 2) [63]. 

Additionally, spermidine and spermine acetylation 

facilitate their degradation and excretion. Many factors 

are capable of inducing the polyamine catabolism. 

Polyamines, corticosteroids, estradiol, growth hormone, 

non-steroidal anti-inflammatory drugs instigate SSAT 

levels and activity [64]. 

 

Polyamine oxidase (PAO) oxidizes acetylspermine and 

acetylspermidine to form spermidine and putrescine 

respectively, together with aminopropanal and hydrogen 

peroxide. Additionally, spermine is oxidized by 

spermine oxidase (SMO) to produce hydrogen peroxide, 

and acrolein (Figure 2) that exert numerous cytotoxic, 

mutagenic, and immunosuppressive effects [65, 66]. 
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Figure 4. Molecular basis of AD (a simplified model). Schematic representation of a “normal” (A) and a dysfunctional (B) neuron with 
main organelles involved in APP processing and PSR. Following synthesis, APP undergoes posttranslational modifications in the ER and Golgi 
where it generates Aβ. In the healthy brain Aβ is localized in perikarya, trans-Golgi network, Golgi-derived vesicles (A), while oxidative stress 
upsurges intralysosomal Aβ content (B) (149). Mitochondria are essential for maintaining neuronal integrity and function. Arg2 is a typical 
mitochondria-associated enzyme (A). Mitochondria are targets for Aβ/ROS-mediated damage, which leads to swelling, outer membrane 
rupture, and followed by Arg2 appearance in the cytoplasm. Arg2, in turn, induces re-distribution of lysosome and mTOR from perinuclear 
area to cell periphery (B), activates mTORC1-S6K1 signaling and contributes to cell senescence phenotype characterized by impaired 
autophagy and apoptosis. This process eventuates in impediment of the autophagolysosomes maturation and lysosome-associated Aβ 
degradation, and leads to Aβ accumulation in autophagic vacuoles (B). Peroxisomes are not competent to cope with growing oxidative stress 
and become target for ROS. Oxidative stress leads to Arg1 overexpression, ODC translocation to the cytoplasm, and eventuates by polyamine 
overproduction (PSR). High-order polyamines stabilize the DNA conformation and modulate the chromatin structure and gene transcription 
via ionic interactions (A). Their elevated levels shut down some vital genes (B). Extensive polyamine catabolism is followed by the generation 
of hydrogen peroxide and cytotoxic aldehydes. NOS1 deprived of arginine undergoes uncoupling and switches to the production of 
superoxide anion. NMDA receptor function is modulated by polyamines via a special recognition site. 
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Remarkably, acrolein levels are significantly increased 

in AD patients’ hippocampi [67]. Additionally, acrolein 

adducts are present in dystrophic neurites surrounding 

senile plaques [68]. Accordingly, acrolein’s role in the 

AD pathogenesis has been suggested [69]. Moreover, 

proved neurotoxicity of the polyamine degradation 

products such as hydrogen peroxide, acrolein, and 

aminopropanal, led to the "aldehyde load" hypothesis of 

neurodegenerative disorders [70, 71]. 

 

General biological functions of polyamines (with 

focus on CNS) 
 

We have mentioned that polyamines carry positively 

charged nitrogen moieties. DNA is typically negatively 

charged polymer due to the presence of negatively 

charged phosphate ions in the sugar-phosphate backbone. 

In his pioneering work, Tsuboi Masamichi (1964) 

reported that the distances between the charged entities of 

polyamines correspond well to the distances between 

DNA phosphates [72]. The author proposed an original 

model of spermine interaction with the DNA molecule, 

which leads to stabilization of its double-helical 

conformation. More recent studies proved that large 

amounts of the intracellular polyamines are associated 

with DNA and RNA and capable of influencing the 

genes’ transcription and translation rate [73, 74]. Muscari 

et al. demonstrated that spermine efficiently bounds to 

the DNA strands and exerts a potent antioxidative effect 

at physiological (0.1 mM) concentration [75]. Spermine 

has also been shown to scavenge free radicals and protect 

DNA from the ROS-associated damage [76]. 

 

Remarkably, polyamines demonstrate dissimilar effects 

on gene expression in relation to their concentration. 

They enhance gene expression at low concentrations but 

completely inhibit at high concentrations [77]. Of note, 

the polyamines concentrations used in the study [77] are 

at physiological range (0.1-2mM). The authors 

speculate that polyamines provide favorable conditions 

for RNA polymerase to access DNA segments with a 

reduced negative charge. A similar pattern of 

concentration-dependent differential effects of 

polyamines on the initiation and elongation of protein 

synthesis has been reported by Giannakouros et al. in an 

original experiment in cell-free system [78]. 

Accordingly, a dual role of polyamines in stress is 

related to their ability to turn on some stress-responsive 

genes but shut down other genes has been suggested [1]. 

 

In relation to the CNS, polyamines show numerous 

physiological effects, which support normal neuronal 

function and axonal integrity. At functional level, 
polyamines modulate complex cognitive processes and 

facilitate associative memory acquisition and recall [79] 

[80]. However, besides regulation of basal cellular 

functions, in the mammal brain polyamines subserve 

highly specific tasks. In neurons, they regulate gating of 

several ion channels. In some cases, the mechanism is 

very simple. Membrane depolarization attracts cytosolic 

polyamines into the channel pore, which prevents ion 

flow [81] (Figure 3). This mechanism may moderate 

overexcitation associated with acute trauma. 

Additionally, polyamines have been shown to confer 

inward rectification to certain potassium channels, α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptors, and nicotinic acetylcholine 

receptors (nAChR). Intracellular spermine, particularly, 

is responsible for intrinsic gating and rectification of 

inward rectifier potassium channels by plugging the 

channel pore [82]. Moreover, polyamines bind with 

high affinity to the omnipresent inwardly rectifying 

potassium channels. This process efficiently facilitates 

influx of potassium and affects electrolyte balance, 

resting membrane potential, and the cell electrical 

activity [83] (Figure 3). 

 

Pioneering studies by Williams et al. (1989) suggested 

that NMDA receptor complex possesses a polyamine 

recognition site [84]. Considering the NMDA receptor 

as the predominant molecular device for controlling 

synaptic plasticity and memory function at cellular 

level, polyamines appear to efficiently modulate human 

memory. Later works demonstrated multiple effects of 

extracellular spermine and evidenced polyamine 

binding to glutamate-sensitive NMDA, AMPA, and 

kainite receptors [82, 85]. 

 

Considering the complex effects of polyamines upon 

the neuronal activity via interaction with numerous ion 

channels it is explicable why the polyamines pathway is 

highly responsive to pathological brain conditions like 

trauma [7], stroke [86] and epilepsy [87], and plays a 

role in the pathogenesis of numerous mental disorders. 

Of note, substantial alterations in the levels of 

polyamines have been demonstrated in schizophrenia, 

mood disorders, anxiety and suicidal behavior [88, 89]. 

Though, the direct causal relationship between the 

events is still debated in the literature. 

 

Of importance, various pathophysiological processes 

associated with neuronal damage have been shown to 

induce activation of putrescine synthesis. Dempsey et 

al. utilized bilateral carotid artery occlusion to produce 

dense forebrain ischemia and demonstrated enhanced 

levels of ODC in cortical neurons of ischemic gerbils 

[90]. However, in this case, the authors propose that 

ODC is a causative factor or, at least, a marker, which is 

associated with metabolic events leading to progressive 
functional deterioration after cerebral ischemia. Paschen 

et al. used hypoglycemic coma in rats to induce 

significantly increased putrescine levels throughout the 
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brain [91]. The authors speculate that the increase in 

putrescine content is an early marker of neuronal cell 

necrosis regardless of the injury pathogenesis. 

 

Sauer et al. occluded cerebral artery to induce ischemia 

in rats [92]. The procedure led to elevation in the levels 

of putrescine in infarcted and non-infarcted areas. 

Remarkably, treatment with difluoromethylornithine 

(DFMO), an inhibitor of ODC, prevented the ischemia-

induced increase in putrescine levels; though, it did not 

affect the infarct volume, which indicated polyamines 

function as protective rather than pathogenic. 

Subsequently, it has been proven in numerous models 

that the universally observed after acute neuronal 

damage ODC activation followed by putrescine 

accumulation are the means of cellular protective 

mechanisms [93–95]. 

 

Gilad and Gilad (1992) pointed out that the capability of 

polyamines to modulate the ion channels functions may 

assume importance in cellular defense mechanisms [7]. 

The authors revolutionarily proposed that neurotrauma-

related induction of the inherently transient polyamine 

response is an integral part of protective biochemical 

programs that are vital for neuronal survival. 

Consequently, the authors further developed their model 

and suggested that the brain PSR, is a common reaction 

to stressful stimuli, including physical, emotional, and 

other stressors, with a magnitude directly correlated 

with the stress intensity [17]. The researchers indicated 

that traumatic injury of extreme degree results in an 

incomplete PSR associated with accumulation of 

putrescine but reduction in the levels of the higher 

polyamines, spermidine and spermine. 

 

This model explains the protective effects of the 

systemic polyamines application evident in forebrain 

neurons following acute ischemia [96]. Direct 

application of polyamines has also been shown to be 

neuroprotective. For instance, L-arginyl-3,4-spermidine 

neuroprotective properties have been proven in several 

in vitro models of neurodegeneration and in vivo 

transient forebrain ischemia rat model [97]. 

 

Extracellularly applied arginase has been proven to be a 

potent neuroprotector and a nitric oxide-independent 

inhibitor of neuronal apoptosis [41]. Moreover, 

upregulation of Arg1 leading to a substantial upsurge in 

spermidine synthesis has been shown to promote axonal 

regeneration [98]. Accordingly, we suggest that Arg1 is 

an integral part of the brain adaptive PSR. 

 

Recently, Dhara et al. elegantly demonstrated that 
polyamines control assembly of neuronal nicotinic α4β2 

and α7 acetylcholine receptors [99]. This capability is 

unique, since polyamines do not modulate assembly of 

any other ion channels. Remarkably, lowering 

polyamine levels upregulates brain α4β2 and α7 levels. 

The authors evidence strong correlation between 

increased acetylcholine-evoked currents and SSAT 

activity. Additionally, they show that SSAT promotes 

cell-surface expression and assembly of nAChRs by 

catalyzing polyamines. Strikingly, DFMO pretreatment 

leads to the same phenotype [99]. 

 

Of importance, α4β2 and α7AChR are the most 

abundant nAChR in the brain that control various 

aspects of synaptic signaling and plasticity related to 

memory acquisition and recall [100]. It seems that 

polyamine control on their function possesses 

evolutionary significance. We suggest that acute PSR, 

caused by trauma, for instance, leads to a transient 

reduction in the density of nAChRs, which protects the 

brain against excitotoxic damage. In contrast, AD-

associated chronic PSR is followed by a persistent and 

substantial loss of nAChRs, which is partially 

responsible for the development of cognitive decline 

[100]. Considering pathogenic significance of α7AChR 

in AD, the described polyamine aptitude to control the 

receptor assembly may explain some features of this 

devastating disease and be tailored for its treatment. 

 

In order to investigate the precise function of 

polyamines, numerous models have been utilized. 

Halmekyto et al. (1991) generated transgenic mice 

carrying intact human ODC gene and demonstrated 

expression of human-specific ODC mRNA across 

tissues [101]. In contrast to their wild-type littermates, 

the transgenic mice exhibited a significantly elevated 

enzyme activity. Of note, ODC activity was moderately 

elevated in parenchymal organs such as the liver, 

kidney, and spleen of the transgenic animals. However, 

the most remarkable difference has been found in the 

brain tissue, where the ODC activity was about 70 times 

higher. 

 

It is worth mentioning that the extremely elevated ODC 

activity was not followed by changes in the polyamines’ 

content. The only change in most tissues was an 

increase in the spermidine to spermine ratio. However, 

testis and brain demonstrated a different pattern with a 

dramatic upsurge in putrescine levels. Of note, the 

elevated brain ODC activity and accumulation of 

putrescine in the transgenic animals did not result in 

morphological changes [101]. 

 

To clarify whether the high putrescine content 

influences the functional properties of the brain tissue, 

Halonen et al. took advantage of the same model 
overexpressing the human ODC gene and performed 

behavioral tests [93]. The authors evaluated the rate of 

memory acquisition in a maze and showed that 
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transgenic mice had significantly impaired 

performances. Additionally, they proved the aberrant 

expression of the transgene was most prominent in the 

brain and led to dramatic increase in putrescine levels. 

Moreover, the seizure threshold to chemical and 

electrical stimuli was significantly elevated, even 

though the concentrations of glutamate and GABA were 

not changed. Subsequently, the authors suggest that the 

observed increase in ODC activity following by 

escalation in brain putrescine levels is neuroprotective 

rather than detrimental [93]. 

 

Polyamines’ supplement has been shown to be 

beneficial for mental health and improve memory 

acquisition and recall in humans and rodent models 

[102]. However, putrescine application leads to 

neurotoxicity in some circumstances in rodents. Several 

lines of evidence prove that the systemic administration 

of putrescine in supraphysiological doses induces a 

characteristic toxic response. De Vera et al. (1992) 

injected rats with putrescine 200 mg/kg, which 

consequently displayed a behavioral pattern that 

included wet dog shakes and motor discoordination 

[103]. Of note, the brain concentration of putrescine 

correlated with the severity of clinical signs. Moreover, 

histological examination proved the presence of 

perivascular edema and spongiosis, which were present 

two hours after the treatment. The authors indicated that 

the putrescine effects are similar to those of kainic acid 

at convulsant doses. 

 

Several studies utilized models with local brain 

administration of polyamines. De Sarro et al. injected 

putrescine directly into the rats’ pre-piriform cortex 

[104]. The procedure elicited bilateral clonic seizures. 

Remarkably, injection at the same site of the selective 

NMDA receptor antagonist prior to putrescine, 

prevented the seizures’ development. Moreover, 

injection of dizocilpine, a specific inhibitor of the 

polyamine site at the NMDA receptor, before 

putrescine, significantly protected against seizures 

elicited by this polyamine. 

 

Sparapani et al. utilized an in vitro neuronal system, 

consisting of primary rat cerebellar granule cells, to study 

the neurotoxicity of spermine, spermidine, and putrescine 

[105]. The mature cultures exposed to increased 

concentrations of spermine showed dose-dependent cells’ 

death, with the half-maximal effect below 50 µM. 

Spermidine demonstrated toxicity, which was about 50% 

that of spermine; and putrescine showed a moderate 

toxicity. Of note, spermine-caused neuronal death was 

apoptotic by nature and has been prevented by application 
of the NMDA receptor antagonists. The authors speculate 

that polyamines are toxic to granule cells and their 

toxicity is mediated by the NMDA receptors. 

De Vera et al. (2008) investigated the effects of 

spermine and putrescine in human primary cerebral 

cortical cultures containing both neurons and glia [106]. 

Both spermine and glutamate were toxic to aged 

neurons (cultures of 26th and later division), though 

putrescine induced relatively minor effects. 

Remarkably, spermine toxicity was inhibited by both 

Dizocilpine and Ifenprodil, which points to an NMDA 

receptor depending mechanism. 

 

Several groups demonstrated that numerous 

pathological factors, including toxic and mechanical 

lesions, are capable of inducing ODC activity following 

by a rapid but transient elevation in the brain putrescine 

levels [107–111]. It seems that various stimuli elicit a 

typical PSR in the brain and the magnitude of the 

response is stimuli-dependent. 

 

Crosstalk between S6K1 and Arg2 
 

The mechanistic target of rapamycin (mTOR) is a 

kinase encoded by the MTOR gene [112]. mTOR serves 

as a central component of two distinct protein 

complexes, mTOR complex1 and complex2, which 

regulate essential cellular processes, and function as 

serine/threonine kinases to control cell growth, 

proliferation, motility, and survival [113]. mTOR 

signaling has been shown to be overactive in AD brains 

and contribute to disease progression [114]. 

 

The ribosomal protein S6 kinase beta-1 (S6K1) is a 

downstream target of mTOR. Mounting evidence 

indicates an interesting phenomenon related to interaction 

between S6K1 and Arg2 [115]. This interaction may be 

involved in degeneration and aging. Of note, S6K1 levels 

and activity are resolutely increased in various human 

aging tissues, which may play a causal role in age-

associated NOS-uncoupling, oxidative stress, and 

senescence. Remarkably, S6K1 overexpression 

upregulates Arg2 expression and contrariwise, S6K1 

silencing in senescent cells reduces Arg2 expression 

[115]. Moreover, inhibition of S6K1 in the senescent 

cells decreases Arg2 expression and activity, pointing to 

a regulatory role of S6K1 activity in Arg2 function and 

vice versa; Arg2 gene silencing in senescent endothelial 

cells has been shown to reduce S6K1 activity. On the 

other hand, Arg2 knockout eliminates S6K1 overactivity 

[115]. Remarkably, Arg2 deficiency extends lifespan in 

mice [116]. This phenomenon is in the line with studies 

evidencing an antiaging effect of mTOR inhibitors, 

particularly rapamycin [117]. 

 

Several reports link mTOR signaling alterations to age-

associated cognitive decline and AD pathogenesis 

pointing to this kinase as the crossroad between 

cognitive aging and AD [118, 119]. Remarkably, 
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inhibition of mTOR with rapamycin abolishes cognitive 

deficits and diminishes Aβ levels in a mouse model of 

AD [120]. Moreover, reducing S6K1 expression 

improves spatial memory and synaptic plasticity [121]. 

 

Of note, mTOR complex1 negatively regulates 

autophagy, which is the indispensable cellular 

mechanism to eliminate unnecessary and dysfunctional 

components [122]. The housekeeping role of autophagy 

in the brain is particularly evident in neurons loaded 

with pathogenic misfolded proteins, such as Aβ 

aggregates [123]. In AD the autophagic-lysosomal 

dysfunction causes severe neurodegenerative 

phenotypes associated with accumulations of lysosomes 

and autophagic vacuoles (Figure 4) [124, 125]. 

 

Additional evidence indicates that impaired autophagy 

and enhanced Arg2-mTOR crosstalk are strongly 

implicated in vascular aging and atherosclerosis. Xiong 

et al. credibly demonstrated that Arg2 impairs 

endothelial autophagy function independently of the 

arginine ureahydrolase activity but via activation of 

S6K1 [126]. Accordingly, it was hypothesized that 

disruption of the S6K1-Arg2 crosstalk by inhibition of 

Arg2 or S6K1 may restore NOS function, improve NO 

production, reduce inflammation, and eventually, 

preclude senescence and decelerate aging [127]. 

 

More recent investigations have deciphered the precise 

mechanisms of the mTOR complex1 pathway Arg2-

associated activation contributing to cell senescence and 

apoptosis. It was shown that overexpression of Arg2 

induces the re-distribution of lysosome and mTOR from 

perinuclear area to cell periphery and activation of 

mTOR-S6K1 pathway (Figure 4) [128]. Therefore, 

S6K1-Arg2 crosstalk represents a promising therapeutic 

target to slowdown the age-associated processes and 

treat the neurodegenerative diseases. 

 

Evolutionary perspective on aging and 

Alzheimer's disease 
 

Inevitable aging and death are universal phenomena 

across multicellular organisms, indicating that they are 

the natural consequences of life and are not related to 

disease. Moreover, average lifespan is a species-specific 

characteristic, which varies significantly between 

different species pointing to natural limits of life 

expectancy. Nevertheless, in recent decades, human 

longevity well exceeds the ever-chronicled numbers. 

Still, this spectacular phenomenon is accompanied by 

increased somatic and mental morbidity. In this context, 

AD is a very interesting example of the evolution-related 
pathology. AD is a peculiar and specific to Homo 

sapiens pathology that may relate to adaptive changes 

transpired only in evolutionary recent history. 

Apparently, many of the AD-associated risk-factors 

were not present prior to industrialization era, potentially 

reducing the prevalence of the disease in ancient times. 

However, the recent theories of aging predicated upon 

evolutionary concepts provide an alternative explanation 

for the recently increased AD morbidity [129]. 

 

In accordance with a prevailing view, the senile 

dementia of the Alzheimer type is a logical consequence 

of continuously increasing lifespan and an inevitable 

manifestation of senescence. Some estimations even 

predict dementia by the age of 130 for everyone as an 

unescapable toll of longevity [130]. Another hypothesis 

of “antagonistic pleiotropy” has been articulated by 

several groups who comprehend some genes’ 

expression to be extremely beneficial or even necessary 

during an early phase of the life cycle but detrimental at 

the late phase [131]. 

 

This approach refers to the incredible plasticity of the 

human brain, which is critical for learning and 

memory during development, as a particularly 

beneficial capability associated with an increased 

expression of neuroplasticity-related genes. On the 

other hand, this theory considers these genes’ 

expression as a detrimental and bioenergetically 

costly event for the aging brain, which plays a critical 

role in the AD pathogenesis [132]. Accordingly, it 

was hypothesized that susceptibility genes associated 

with AD development possess pleiotropic effects 

[133]. The ubiquitous in ancestral species APOEε4 

precursor gene has become the strongest AD genetic 

risk-factor [134]. However, this ε4 allele is apparently 

beneficial for young individuals’ mental and physical 

health and confers a risk for atherosclerosis and 

cognitive decline only in advanced ages. Hence, it 

was proposed that APOE gene represents an example 

of antagonistic pleiotropy [135]. Antagonistic 

pleiotropy has also been suggested for tau-protein role 

in the AD development [136]. 

 

Mounting evidence indicates general down-regulation of 

polyamine biosynthesis during aging [137]. Pioneering 

work by Duffy and Kremzner (1977) in human 

fibroblasts demonstrated that cell senescence is 

associated with the reduction in ODC activity [138]. 

Beyer et al. established that aging alters ODC activity 

and leads to decrease in polyamine content [139]. Lin et 

al. reported a significant 2.65-fold down-regulation of 

ODC levels and 4.73-fold of PAO levels in 24-month-old 

mice muscle tissue compared to 3-month-old mice [140]. 

Accordingly, spermidine intracellular concentrations tend 

to decline during normal aging as well; though, its 
administration evidently extends the lifespan in various 

model organisms, including yeast, worms, flies, and mice 

[141]. Contrariwise, depletion of endogenous polyamines 



 

www.aging-us.com 10781 AGING 

causes hyperacetylation, ROS generation, and early 

necrotic death eventuating in diminished lifespan [141]. 

 

Surprisingly, Arg1 levels gradually increase in skeletal 

muscles of mice during aging [142], nevertheless, its 

upturn is not followed by elevation in polyamine levels. 

This phenomenon may reflect a compensatory 

mechanism, which in any case is inadequate to support 

the polyamine content in aged organism, and causes 

arginine deficiency, NOS and ADC substrate 

deprivation. Of importance, the age-associated 

upregulation of arginase has been suggested to be 

involved in various pathologies. Endothelial 

dysfunction [143], hypertension [144], and diabetes 

mellitus [145] are among them. 

 

In this context, we comprehend aging as an extremely 

intricate genetically programmed and epigenetically 

influenced natural biological process, which may be 

accelerated by stressful or harmful stimuli leading to 

cell senescence and eventually death. 

 

Polyamine pathway in Alzheimer’s disease 
 

Despite a century-long investigation, no clear 

understanding of AD etiology and pathogenesis is 

achieved. Several definite hallmarks of the disease have 

been described and studied with precision, however, the 

causal relationships between them and clinical dementia 

remain to be revealed. Mounting evidence indicates that 

AD is a pervasive metabolic disorder characterized and 

possibly caused by dysregulation of numerous 

biochemical pathways, which underlie its complex 

pathogenesis [146, 147]. 

 

Many groups have tried to correlate the AD-associated 

brain metabolic changes with clinical manifestation and 

objective morphological alterations. In their pioneering 

work, Bernstein and Müller (1995) convincingly 

demonstrated augmented immunopositivity for ODC in 

neocortical neurons of AD patients [148]. Accordingly, 

the authors hypothesized that the polyamine system is 

actively involved in neurorestorative processes taking 

place in AD brains trying to cope with emerging 

neurodegeneration. Additionally, they proposed that 

ODC is activated to modulate the NMDA receptor 

function. Morrison and Kish proved that brain 

polyamine levels are substantially altered in AD brains 

[149]. The authors suggested that abnormal polyamine 

metabolism is involved in the AD-associated 

neurodegeneration due to its influence upon calcium 

dynamics and glutamate receptors function. The 

scientists substantiated the early rodent-based data by 

human postmortem research and demonstrated 

significantly elevated brain levels of ODC in the 

perinatal period, which indicated a developmental role 

of polyamines [150]. Moreover, the authors linked the 

increased levels of ODC in the temporal cortex of AD 

patients’ brains with the disease progression. 

 

Yatin et al. confirmed in an elegant in vitro study that 

Aβ-treated hippocampal neurons show an increased 

polyamine metabolism in response to free radical-

mediated oxidative stress [151]. Additionally, the 

authors showed that the free radical scavenger, vitamin 

E, application prevents these attenuations. Thus, the 

authors speculated that the observed polyamine 

response is a reaction to Aβ-mediated oxidative stress. 

However, in a modified study, the same group 

demonstrated a strong synergistic neurotoxic effect of 

Aβ applied together with spermine to treat cultured 

neurons [152]. The authors suggest that Aβ-related 

spermine accumulation is harmful to neurons and 

hypothesize that in the AD brains polyamine pathway’ 

regulatory enzymes are damaged by oxidative insults 

and incapable of polyamine synthesis and uptake’s 

regulation, which leads to accumulation of 

intracellular polyamines up to toxic levels. This 

hypothesis accords with the data acquired in the 

pioneering in vivo experiments utilizing an ODC 

inhibitor, DFMO, in the brain ischemia/reperfusion 

paradigm in rodents [153]. It has been well-established 

that administration of DFMO results in a dose-

dependent beneficial effect upon hippocampal neurons 

survival rate indicating that ODC activity and the 

polyamines’ levels play a significant role in the brain 

response to ischemic injury. 

 

The same ODC inhibitor has been used by Kan et al. to 

show protective effect of the treatment on cognitive 

functions in AD mice [8]. The authors disclosed a 

substantial cerebral arginine deprivation and immune 

suppression caused by arginase overexpression in the 

AD mice brains. Despite a very promising phenotype 

observed in AD model, subsequent 12-month-long 

clinical trial did not demonstrate a noticeable effect in 

an AD patient [154]. 

 

Rodent studies prove a substantial polyamine 

dysregulation in a model of tauopathy [155]. 

Accordingly, it has been proposed that pathological 

tau represents a chronic physiological stressor 

provoking a typical PSR. The authors took advantage 

of transgenic mice harboring human tau P301L 

associated with frontotemporal dementia mutation to 

show the brain accumulation of putrescine and 

acetylated spermidine. Additionally, they 

demonstrated that acetylspermidine accretion 

intensifies tau oligomerization, however, SSAT 
repression reduces tau aggregation. These data signify 

a detrimental role of polyamine acetylated products 

accumulation on tau fate in the brain [155]. 
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Of importance, several sets of data pointed to arginase, 

which is up-stream to ODC enzyme, as the main cause 

of the AD-related polyamine pathway abnormalities. 

Hansmannel et al. revealed a significant escalation of 

Arg2 levels in AD brains compared to healthy controls 

[156]. Moreover, the authors associated the presence of 

the rare Arg2 allele with increased risk of AD onset 

and posed a question on the urea cycle involvement in 

AD pathogenesis. Additionally, in the mentioned above 

murine study [8] the researchers revealed a significant 

elevation in the brain Arg1 levels correlating with the 

onset of cognitive decline. We published data showing 

a significant increase in the intracellular Arg1 levels in 

the hippocampal neurons of AD mice compared to 

wild-type animals [11]. A pioneering metabolomic 

human study revealed dramatically elevated (by several 

folds) levels of urea, a by-product of arginase (Figure 

2), in all AD patients’ brain regions compared to 

healthy controls indicating disease-associated 

overactivation of arginase [157]. 

 

Other groups utilized advanced techniques to prove the 

AD-associated polyamine metabolism disturbances. 

Inoue et al. applied ultra-performance liquid 

chromatography coupled with mass spectrometry to 

profile and differentiate metabolically the frontal, 

parietal, and occipital lobes of the AD patients’ brains 

in comparison with healthy controls [9]. The authors 

disclosed a significant increase in spermidine, spermine, 

and putrescine levels, without a change in ornithine 

levels in frontal and parietal lobes of AD patients’ 

brains. 

 

Liu et al. compared the metabolic profile of arginine 

and its downstream metabolites in brains from AD 

patients with healthy brains to reveal significant 

differences [158]. The authors also analyzed the activity 

and protein levels of NOS and arginase and 

demonstrated their inverse age- and region-specific 

alterations linked to significant elevation in the rate of 

arginase activity. 

 

Recently, Mahajan et al. (2020) applied a targeted 

metabolomic and transcriptomic study to demonstrate 

dysregulation of multiple metabolic networks related to 

brain transmethylation and polyamine pathway in AD 

[159]. The authors reported significant, correlating with 

severity of disease, alterations in concentrations of 

numerous metabolites in AD brains compared to control 

samples. These metabolites represent biochemical 

reactions in the polyamine pathway (with significantly 

higher spermidine concentrations in AD brains) and 

urea cycle. A transcriptomics analysis accords with the 
metabolomics results, further revealing significant 

alterations in gene expression of pivotal polyamine 

metabolism regulators. Of note, SSAT and PAO 

demonstrated significantly elevated levels of expression 

in entorhinal cortex and hippocampus of AD patients’ 

brains. 

 

Remarkably, the levels of ornithine are generally 

normal in AD brains despite a significant elevation in 

the urea levels, which is a product of the same reaction 

(Figure 2), even though the levels of arginine and its 

brain bioavailability are decreased [57]. This paradox 

misled some researchers to speculate that the defective 

urea clearance characterizes AD [157]. Though, 

apparently, ornithine generated by up-regulated arginase 

in AD brains is immediately consumed by OTC and 

ODC, which are overactivated as well [54]. 

 

It is noteworthy that metabolomics investigations of AD 

patients’ CSF detect a relative disease-associated 

reduction in arginine levels [160, 161]. Moreover, the 

patients with mild cognitive impairment (MCI) are 

characterized by substantially lower than in controls 

urine arginine levels [162]. These patients also 

demonstrate a reduced global arginine bioavailability 

ratio positively correlating with the Mini-Mental Status 

Examination score, which points to diminished urinary 

arginine levels as an early diagnostic biomarker of MCI 

and AD. 

 

Additionally, metabolomics studies of human plasma 

clearly indicate differentially affected polyamine and 

arginine metabolism in AD patients. As a result, the 

subjects with MCI are easily distinguishable from 

healthy controls and AD patients [163], which gives 

hope for AD diagnosis at early stages with routine 

laboratory blood tests and further supports our 

perspective on AD as a brain expression of a complex 

metabolic disorder [146]. 

 

It should be pointed out that arginase upregulation in 

the AD brain causes NOS and ADC substrate 

deficiency. In this case, NOS generates diminished 

amounts of NO and switches into production of 

superoxide anion, which aggravates the oxidative stress 

(Figure 4B). Additionally, ADC lacking the regular 

substrate, arginine, consumes ornithine to produce 

putrescine, which further upsurges the polyamines’ 

levels (Figure 2). Moreover, spermine directly inhibits 

NOS activity in various cell types. In the rodent brain 

this effect upon NOS1 activity is very prominent [164] 

and leads to improvement in arginine bioavailability for 

arginase in the AD brain, facilitates the polyamine 

synthesis, and closes the vicious circle of 

neurodegeneration. 

 
On the other hand, overactivated PAO generates 

hydrogen peroxide to exacerbate the oxidative damage 

(Figure 4B). Likewise, a relative decline in the levels of 
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agmatine deprives the brain of the potent neuronal 

protector [165]. 

 

In our studies, we utilized a non-competitive arginase 

inhibitor, norvaline, which also inhibits S6K1 [166], to 

moderate the activity of the brain arginase in AD mice 

[11]. The spatial memory was significantly improved in 

the treated animals, and the improvement was 

associated with a reduction in neuroinflammation. 

Additionally, we evidenced a treatment-related decline 

in β-amyloidosis [167], followed by an improvement in 

the BBB integrity [168] and neurogenesis [169]. Of 

note, the hippocampal levels of Arg1 protein 

significantly reduced following the treatment. Yang et 

al. credibly demonstrated that Arg1 expression is 

regulated by histone deacetylase 4 (HDAC4)-mediated 

histone acetylation [170]. Our data proved that HDAC4 

levels decrease dramatically following the treatment 

with norvaline. Moreover, its functionally active form, 

demonstrated a substantial reduction in levels [169]. Of 

importance, HDAC inhibitors are promising AD-

modifying agents [171], therefore, we speculate that 

HDAC is partially responsible for the phenotype we 

observed. 

 

Our approach has been recently tested with another 

non-competitive arginase inhibitor, citrulline, in AD 

mice [172]. The treated animals demonstrated 

increased arginine CSF levels and performed 

significantly better in a maze. The authors 

demonstrated that the therapeutic time window is 

limited to the period prior to the development of 

cognitive symptoms, like in our studies. Consequently, 

we suggest that arginase gradually alters its functional 

role during the disease progression and propose that 

treatment strategy directed at fine-tuning of arginase 

activity with natural inhibitors is a promising AD-

modifying approach capable of interfering with various 

aspects of this pathology. Moreover, we state that 

polyamine metabolism dysregulation is a causal factor 

of neurodegeneration, but not just a signature. Still, 

regardless of several successful attempts to interfere 

with PSR activity at various levels (Table 1) and halt 

the development of AD-like pathology in animal 

models, the chicken or the egg causality dilemma 

remains to be resolved. 

 

In this context, it is worth noting that several groups 

tried to manipulate Arg1 expression in the models of 

familial frontotemporal dementia [173] and AD [174]. 

Remarkably, Arg1 overexpression mitigated 

hippocampal atrophy in transgenic mice, but Arg1 

deletion in myeloid cells increased tau accumulation 
relative to Arg1-sufficient mice [173]. Of note, 

rTg4510 mice used in this study express a human tau 

containing the mutation linked to familial 

frontotemporal dementia. The animals progressively 

develop age-related neurofibrillary tangles, neuronal 

loss, and behavioral impairments [175]. The tangles are 

observed by about 4 months of age and the deficits in 

spatial navigation are seen as early as 1.3 months of 

age [175]. In the cited above study [173], four-month-

old rTg4510 mice were injected in the hippocampus 

with an rAAV9-Arg1 construct. The animals 

demonstrated elevated levels of Arg1 throughout the 

hippocampus that was associated with reduced tangle 

pathology; however, no behavioral effect has been 

reported. Another recent study utilized 

haploinsufficiency of Arg1 in myeloid cells of Tg2576 

mice [174]. This manipulation promoted Aβ deposition 

and exacerbated behavioral impairment. 

 

There are several possible explanations for these 

contradictory results. First of all, overexpression 

methodology obviously does not represent physiologic 

phenomena [176]. It creates supraphysiological levels 

of protein that dysregulate many biological pathways, 

interfere with the protein assembly, which severely 

confuses the results’ interpretation [177]. Knockout 

technique is problematic and sometime inappropriate as 

well [178], because, apparently, the absence of one gene 

alters expression of other genes and changes entire 

developmental programs [179]. Nevertheless, the 

question of how Arg1 and Arg2 differ in their biological 

function is still open. 

 

Furthermore, in our opinion, it is critical to start the 

treatment prior to any cognitive impairment symptoms, 

literally precluding the neurodegeneration. This is the 

only way to eradicate dementia. There are sensitive 

periods for the most successful therapeutic intervention. 

After the vicious cycle is already ongoing and 

neurodegeneration is pronounced, it is too late to 

intervene, unfortunately. 

 

CONCLUSIONS 
 

For decades the confirmed diagnosis of AD had been 

dependent upon the postmortem brain investigation and 

analysis of the β-amyloid deposition patterns and 

identification of the neurofibrillary tangles. 

Nevertheless, the canonical pathological changes poorly 

correlate with clinical manifestation, laboratory 

findings, and even the prognosis of the disease. 

Moreover, a cornucopia of clinical trials aimed at 

lessening of amyloid and/or tau brain burden, yielded 

no reliable disease-modifying therapy. Thus, it seems 

that the presence of amyloid plaques and neurofibrillary 

tangles in the brain does not presume the causal 

relationships between the hallmarks and other AD-

associated neurodegenerative processes and cannot be 

recognized as etiological factors. 
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Table 1. Possible theranostic applications and their effects within the polyamine metabolism. 

Target gene Manipulation/ agent Mechanism Effect References 

ODC DFMO Irreversible ODC inhibition Neuroprotective [8] 

SSAT KO mouse Deletion of SSAT Neuroprotective [155] 

PAO MDL 72527 Irreversible PAO inhibition Neuroprotective [180, 181] 

SMO Transgenic mouse SMO overexpression Neurotoxic [182] 

Arg1, Arg2 Norvaline Noncompetitive arginase inhibition Neuroprotective 
[11, 167–

169] 

Arg1, Arg2 Resveratrol Noncompetitive arginase inhibition Neuroprotective [183] 

Arg1, Arg2  Chloroquine Competitive arginase inhibition Neuroprotective [184] 

Arg1, Arg2 Citrulline Noncompetitive arginase inhibition Neuroprotective [172, 185] 

Arg2 KO mouse Deletion of Arg2 Neuroprotective [186] 

Arg1 
AAV-mediated 

overexpression 
Arg1 overexpression in the hippocampus Neuroprotective [173] 

Arg1 in myeloid cells Transgenic mouse Arg1 haploinsufficiency Neurotoxic [174] 

 

A novel perspective on AD, with emphasis upon its 

evolutionary and metabolic aspects, proposes an 

inclusive reassessment of the causal relationships 

between traditional hallmarks, homeostatic features, and 

clinical manifestations. Accordingly, we comprehend 

AD as a chronic disease characterized by an unwinding 

vicious cycle of metabolic aberrations with a series of 

pathogenetic steps that reinforce each other, lead to 

neurodegeneration, and eventuate in clinical dementia. 

We envision the AD-associated polyamine response as 

an integrated part of the conserved adaptive mechanism 

and emphasize that prolonged induction of polyamines 

possesses limited efficacy in coping with gradual 

oxidative stress and may not have beneficial effects due 

to toxicity issues. We also underline that continual 

induction of the polyamine pathway is followed by 

arginine brain deprivation, extensive catabolic oxidation 

of polyamines, ROS generation, and induction of 

oxidative stress, which aggravate the AD symptoms. 

 

Accruing evidence highlights polyamines as the pivotal 

players in signaling responses to various environmental 

stimuli, which are involved in various aspects of 

metabolism, maintenance of antioxidant capacity, and 

osmotic regulation. This pathway represents a metabolic 

hub existing virtually in all phyla, including simple 

organisms, plants, and mammals, and constitutes an 

evolutionary-conserved adaptive response. 

 

We indicate the beneficial role of the polyamines’ levels 

elevation following a short-term stimulus. While 

chronic stress, in some conditions, and in aging 

organism principally, may lead to an aberrant 

polyamine metabolism, which becomes maladaptive. 
Enduring stimuli such as repetitive brain trauma, 

cerebral arteriosclerosis-associated ischemia, metabolic 

stress, etc. lead to a deviant PSR and initiate the vicious 

cycle of neurodegeneration with distinctive β-amyloid 

aggregation and tau protein hyperphosphorylation, the 

main hallmarks of AD, which are just epiphenomena of 

the upstream pathology. Accordingly, we propose fine-

tuning of arginase activity with natural inhibitors to halt 

the development of AD-associated cognitive decline. 

 

Additionally, we suggest that AD may be driven by 

various pleiotropic mechanisms, which deserve close 

attention and further research. This view approaches the 

enigmatic AD pathogenesis within the framework of 

evolutionary sciences that comprehend some genes as 

necessary for early development, but which are harmful 

in the elderly. Consequently, we believe that 

investigation of the fragile equilibrium between 

neurodegenerative and neuroprotective effects of ROS, 

NO, arginase, β-amyloid, ΑPOΕε4, and intimately 

pertinent to them, neuroinflammation in the aging brain, 

may eventually decipher the AD pathogenesis 

conundrum and lead to efficient disease-modifying 

treatment. 
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