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ABSTRACT

Immune checkpoint inhibitors (ICl) prolong the survival for advanced/metastatic patients with lung cancer or
melanoma; however, for hepatocellular carcinoma (HCC) patients, a durable response has not been reported.
Herein, we used a total of 719 HCC patients with public genomic data to determine potential prognostic and
immunogenic subtypes. The non-negative matrix factorization (NMF) method was applied to identify the
immune classes and potential subtypes. The proportion of tumor infiltration immune cells was estimated using
the CIBERSORT algorithm. Gene set enrichment analysis (GSEA) was utilized to calculate the dysregulated
pathways. By using NMF analysis for the gene expression profile of the top immune genes, one HCC subtype
with better survival (i.e., low-risk subtype) and another with worse survival (i.e., high-risk subtype) were
identified in 3 HCC cohorts (all P < 0.05). Better immune cell infiltration, increased enrichment of immune
signatures, higher expression of checkpoints, and elevated tumor mutation load (TML) were significantly
enriched in the low-risk subtype (all P < 0.05). Higher mutation rates of immune response genes (e.g., TP53 and
MUC16) were also observed in the low-risk subtype (both P < 0.05). Discovery of the HCC low-risk subtype
might provide clues for HCC prognosis and immunotherapy prediction.

INTRODUCTION alcohol consumption, diabetes mellitus, and metabolic

syndrome [2]. In recent years, novel and fast-growing
Hepatocellular carcinoma (HCC) is a common digestive medical technologies have illuminated the molecular
cancer and the second leading cause of cancer-related mechanisms  underlying the  occurrence  and
death around the world. The number of deaths of HCC development of HCC; however, the current clinical
patients gradually increases every year, indicating its therapeutic methods are limited [2, 3]. Only a subset of
high lethality [1, 2]. This tumor always emerges in the HCC patients diagnosed at an early stage obtain
background of chronic liver disease (e.g., cirrhosis) and favorable effects when receiving conventional therapies,
is correlated with several well-known factors, such as such as surgical resection, liver transplantation, or local
hepatitis B virus (HBV), hepatitis C virus (HCV), ablation [2]. While for patients at advanced or
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metastatic stages, the effective treatment that prolongs
HCC survival is limited to multiple tyrosine kinase
inhibitors, including first- (e.g., sorafenib) [4] and
second-line agents (e.g., regorafenib) [5]. Although
clinical benefits have been reported using these drugs,
the median survival interval is still less than 2 years.
Therefore, more effective therapeutic approaches are
urgently needed for advanced HCC patients.

In the past few years, immune checkpoint inhibitors (ICI)
therapies, which reactivate the related regulatory signaling
of T cells and revive the immune system of tumor patients
to kill tumor cells, have remarkably extended the life
expectancy in patients with distinct solid tumors [6, 7].
Owing to the favorable clinical efficacy, the Food and
Drug Administration (FDA) has approved 4 immune
checkpoint inhibition-based agents (i.e., ipilimumab,
nivolumab, pembrolizumab and atezolimumab) for
treatment of advanced stage cancers or metastases, such
as melanoma and non-small cell lung cancer (NSCLC)
[8]. The immune checkpoints directed against monoclonal
antibodies from the above agents include cytotoxic T-
lymphocyte protein 4 (CTLA-4), the programmed cell
death protein 1 (PD-1), and its ligand, PD-L1 [9].
Nevertheless, only a minority of patients could obtain a
durable treatment response to these regimens [10]. High
PD-L1 expression is a frequently-used indicator to predict
the efficacy of anti-PD-1 therapy [11-13]. Previous
experimental evidence revealed that the presence of a high
T cell infiltration, an interferon-gamma (IFN-y) signature,
checkpoint gene (e.g., PD-1 and PD-L1) expression, or a
high tumor mutational load (TML) could favor a
treatment response [14—16]. Conversely, several immune-
suppressive factors, such as stromal cells and M2
macrophages infiltration, may lead to a reduction in the
anti-tumor immune response, and resistance to ICI
therapy [17]. In a phase I/Il HCC clinical trial, remarkable
responses were reported when patients were treated with
nivolumab, a monoclonal antibody targeting PD-1 [18].
Unfortunately, there is less evidence relevant to the
immunologic subtypes of HCC and how to make use of
this information to achieve the best efficacy from immune
checkpoint-based treatment.

The HCC microenvironment is a mixture of distinct cell
types, including malignant hepatocytes, immune cells,
endothelial cells, and stromal cells. A variety of analytic
methods have been established to virtually extract
molecular features from the tumor-immune micro-
environment [19, 20]. By applying a non-negative
matrix factorization (NMF) algorithm [21], we
deconvoluted the gene expression profile of 719 HCC
patients and dissected the signals related to the immune
microenvironment, which allowed us to determine a
potential immune subtype of HCC with specific
immunologic features. The key traits of this subtype

include infiltration of immune cells, increased
enrichment of the IFN-y signature, a T cell-inflamed
signature and cytolytic activity, elevated expression of
immune checkpoints, and most importantly, a favorable
prognosis. The HCC immune subtype in our study
may provide a novel strategy for evaluating survival
and immunotherapy implications. Further in-depth
investigations are warranted based on the HCC patients
who received immunotherapy.

RESULTS
Identification of an immune class for HCC

Coefficient of variation (CV) analysis showed that 8163
genes had CV values less than 0.1 in the TCGA cohort.
Based on the gene expression profile of these genes, 9
classes were identified using NMF clustering analysis
(Figure 1A). We found that one class harbored the
highest immune enrichment score than others (Figure
1A), thus designated as the ‘immune class’. To verify the
functionality of this immune class, we obtained the top
100 genes (Supplementary Table 1) that had the greatest
contribution to this class to perform pathway annotation.
Based on the results of pathway analysis, we observed
that antigen processing and presentation, and signaling
mediated by immune cells (e.g., T cells, B cells and NK
cells) were significantly enriched (all P < 0.05; Figure
1B). Biology processes, such as innate and adaptive
immune responses, T cell and B cell receptor signaling, T
cell activation, and cytolysis were also observed (all P <
0.05; Figure 1B). Together, these findings further
confirm that this immune class is immunogenic.

Identification and validation of an immune HCC
subtype

To obtain more accurate HCC subtypes, we performed
NMF clustering based on the gene expression profile of
the aforementioned top 100 genes of the immune class in
the TCGA cohort. We separately evaluated the model
parameters with clustering numbers set as 2-6.
Cophenetic, dispersion, residuals, and RSS coefficients
could obtain the maximum values when the cluster
number was selected as 2 (Figure 2A) Consistently,
heatmap analysis also exhibited the best clustering effect
when the number was 2 (Supplementary Figure 1). We
consider that two subtypes potentially exist in HCC
patients.

Kaplan-Meier survival analysis showed that these two
subtypes were statistically prognostically different
(Log-rank test P < 0.001; Figure 2B). The subtype with
better prognosis was designated as the ‘low-risk’
subtype (n = 202), and the subtype with poor survival
was designated as the ‘high-risk’ subtype (n = 171).
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Multivariate Cox regression model with clinical
characteristics and confounding factors (i.e., age, sex,
grade, stage, drinking status, and HBV/HCV status)
taken into account was still statistically significant (HR:
0.48, 95% CI: 0.31-0.76, P = 0.002; Figure 2C).
Differential analyses results of the top 100 immune
genes between low- and high-risk HCC subtypes in the
TCGA cohort were shown in Supplementary Table 2.

Two independent HCC cohorts were utilized to validate
the prognostic ability of the two subtypes identified from
TCGA. Low- and high-risk subtypes were also observed
via univariate analysis and the multivariate Cox regression
model in ICGC cohort (Log-rank test P = 0.031; HR:
0.64, 95% CI: 0.34-1.01, P = 0.048; Figure 3A, 3B), as
well as the GEO cohort (Log-rank test P = 0.005; HR:
0.46, 95% CI: 0.22-0.99, P = 0.042; Figure 3C, 3D).

A

Patients from the low-risk HCC subtype harbored
immune-activated microenvironment

To elucidate the association of low-risk subtype with
better prognosis, we explored the vital factors in the
microenvironment in relation to the low-risk subtype.

For the infiltration of immune cells, we found that the
low-risk subtype had significantly higher CD8 T cell
infiltration than the high-risk subtype (P < 0.01; Figure
4A). In addition, resting CD4 memory T cells,
monocytes, and resting mast cells were also
significantly enriched in the low-risk subtype (all P <
0.05; Figure 4A). Enrichment of the regulatory T cells,
which exhibit the immune suppression, was markedly
decreased in the low-risk subtype (P < 0.05; Figure 4A).
Interestingly, the low-risk subtype had significantly
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Figure 1. Identification of HCC immune class and its pathway analysis in the TCGA cohort. (A) The association of identified 9 HCC
classes with immune enrichment score. (B) Pathway analysis of the top 100 genes contributed to immune class.
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elevated infiltration of M1 macrophages (P < 0.05;
Figure 4A), which is one subtype of macrophages that
promotes the inflammation. M2 macrophages, which
are associated with tumor growth and immune
inhibition, were significantly enriched in the high-risk
subtype, compared to the low-risk subtype (P < 0.001;
Figure 4A).

Patients of low-risk subtype had significantly higher
enrichment of total immune cells, and immune cell
subsets (i.e., T cells, B cells, and NK cells) (all P <
0.01; Figure 4B). The enrichment of immune-
suppressive stromal cells was significantly decreased in
the low-risk subtype (P < 0.001; Figure 4B). In the low-
risk subtype, we also found markedly increased
enrichment of the IFN-y signature and the T cell-
inflamed gene signature (both P < 0.05; Figure 4B),
which were recently reported to be correlated with ICI

efficacy [22]. In addition, enhanced cytolytic activity,
and elevated enrichment of cytokines and chemokines
were all observed in patients from the low-risk subtype
(all P <0.01; Figure 4B).

We found that expression of PD-LI and PD-I was
significantly upregulated in low-risk subtype patients
(both P < 0.05; Figure 4C). Other checkpoints,
including TIM-3, LAG-3, and TIGIT also obtained
similar results (all P < 0.05; Figure 4C); however, no
differences were detected in CTLA-4 and [DOI
expression between low- and high-risk subtypes (both P
> 0.05; Supplementary Figure 2).

We also observed that the low-risk HCC subtype
harbored a significantly higher TML than high-risk
subtype (P < 0.001; Figure 4D). Multivariate Logistic
regression model with mutations of DNA repair genes
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Figure 2. Identification of the immune low-risk subtype of HCC in TCGA. (A) Associations between NMF coefficients and clustering
numbers. (B) Kaplan-Meier survival analysis of identified low-risk and high-risk subtypes. (C) Forest plot of multivariate Cox regression model

with HCC clinical factors taken into account.
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(i.e., TP53, POLE, BRCAI, and BRCA2) taken into
consideration was still significant (OR: 5.15, 95% CI:
1.73-9.58, P = 0.008; Figure 4E).

Pathways significantly enriched in the low-risk HCC
subtype

GSEA analysis between the two subtypes showed that
immune cell-related pathways, such as NK cell-
mediated cytotoxicity, and T and B cell receptor
signaling pathways were markedly enriched in the low-
risk subtype (all FDR < 0.05; Figure 5). Immune

A

response pathways including antigen processing and
presentation, and the inflammatory response were also
enriched (all FDR < 0.05; Figure 5). Patients of low-risk
subtype harbored the enrichment of IFN-y-related
pathways, which are associated with anti-tumor
immunity and immunotherapy efficacy (all FDR < 0.05;
Figure 5).

SMGs of the low-risk HCC subtype

A total of 33 significantly mutated genes (SMGs) were
identified using the MutSigCV algorithm. Differential
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Figure 3. Validation for the 2 HCC subtypes with additional 2 independent datasets. (A, B) Univariate and multivariate survival
analysis of 2 HCC subtypes in the ICGC cohort. (C, D) Univariate and multivariate survival analysis of 2 HCC subtypes in GSE76427.
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analyses of the SMGs mutation rates between the two mutations were previously reported to be associated

subtypes showed that TP53, MUCI6, RBI, NBEA, with the ICI response in lung adenocarcinoma
SPEG, and DNAHI0 mutations were significantly (LUAD), and MUCI6 mutations harbored potential
enriched in the patients of low-risk subtype (Fisher immunotherapy implications for gastric cancer (GC)
exact test, all P < 0.05; Figure 6). Among them, TP53 patients.
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DISCUSSION

By wusing virtual dissection analytic methods, we
deconvoluted the gene expression profile from mixed
HCC tissues, and thus determined an undiscovered
immune pattern and a moderate immunology subtype of
HCC, herein designated the low-risk subtype. The low-
risk subtype harbored favorable survival outcomes, a
better immune microenvironment, and genomic features
compared to the high-risk subtype. The identified low-
risk subtype may be a promising indicator for prognosis
prediction and clinical immunotherapy of HCC patients.

The prognoses of patients with melanoma and NSCLC
have dramatically changed owing to the approval of ICI
agents by the FDA. Long-range clinical benefits and
durable remissions induced by these agents have been
observed in a subset of patients with metastatic or

advanced stage cancer [10, 23]. Taking into
consideration that the directed targets of these drugs are
immune cells instead of tumor cells, the effective
responses could be detected in multiple cancers, such as
colorectal [13, 16] and bladder cancer [24]. In the phase
II clinical trial that involved 214 HCC patients who
received nivolumab, the objective response rate and
median survival interval were 16% and 14 months,
respectively [18]. In this trial, patients with clinical
responses were not shown to be associated with high
PD-L1 expression [18]. Therefore, the determination of
more reliable indicators to select the appropriate sub-
population for receiving ICI therapy is urgently needed
for HCC. Patients negative for PD-L1 sometimes
exhibit durable benefits. This observation further
indicates the instability of PD-L1 expression as a
biomarker; novel moderate biomarkers are needed to be
investigated.
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Figure 5. Significantly enriched immune cells, immune response, and IFN-related pathways in the low-risk subtype.
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In this study, a novel immune subtype, herein
designated the low-risk subtype of HCC, was identified
and crucial insights into the immunologic features of
this subtype were provided. Patients with the low-risk
subtype, whose molecular traits, including an
abundance of infiltration immune cells, enhanced
enrichment of immune-related signatures, high
expression of immune checkpoints, and an elevated
TML, highly resemble the tumors that are responsive to
ICI agents [14—16]. IFN-y and the T cell-inflamed gene
signature, which were previously reported to predict the
efficacy of pembrolizumab [25], were demonstrated in
HCC patients with the immune subtype. This finding
reinforces the inference that ICI responses may appear
in tumors with a pre-existing IFN-mediated immune
signaling. Interestingly, the presence of high TML was
observed in the low-risk immune subtype, indicating
that, unlike melanoma [16, 26] and NSCLC [26],
distinct potential mechanisms may actuate HCC
immune responses. Prostate, ovarian, and pancreatic
tumors with modest TML also exhibit a similar lack of
association [27]. In these situations, the immunogenicity
of tumors may be influenced by neoantigen quality,
rather than quantity [26]. In addition, several mutation-
independent signals, for example, HCC-related antigens
expression, may induce a vital effect on the anti-tumor
immune response [8].

Differential analysis of SMG mutations showed that six
genes exhibited higher mutation rates in the low-risk

Low-risk subtype

subtype than high-risk subtype. Among these six SMGs,
TP53 mutations were reported to be associated with
high expression of immune checkpoints, an active [FNy
signature, and effector T cell signature, and favorable
anti-PD-1 efficacy in LUAD [28]. A recent study
revealed that MUCI6 mutations are significantly
correlated with a higher TML and better survival
outcomes in patients with GC [29]. We demonstrated
that patients with the low-risk subtype harbored higher
mutation rates of the 2 SMGs further verify the
predictive roles of this subtype in immune checkpoint-
based therapy.

By using the Nearest Template Prediction (NTP)
algorithm with 1950 representative meta-genes,
Hoshida et al. identified three HCC subtypes (i.e., S1,
S2, and S3) that were correlated with distinct biological
processes [30]. We also employed the NTP method with
the same meta-genes to determine Hoshida et al.
subtypes in the three HCC datasets included in our
study, and compared them with the low- and high-risk
subtypes we identified. In the TCGA and ICGC cohorts,
we showed that the low-risk subtype harbored a
significantly decreased proportion of Slsubclass
(Supplementary  Figure 2A, 2B), which was
characterized by WNT-TGFp pathway activation.
Recent studies have demonstrated the WNT-TGFf
signal functions in immune suppression [31, 32].
The lower proportion of S1 further verified the
immunotherapy implications of patients from the

High-risk subtype

|
rRBT I | | | | |

\ Mutation Type
Nonsense Mutation

. Frame Shift Ins

B Frame Shift Del

B In Frame Del

B splice site

| Missense Mutation

Figure 6. Mutation rates of SMGs stratified with the 2 HCC subclasses. Genes with bold and italic font were observed to be
significantly differentially mutated in the 2 HCC subtypes. * P < 0.05, ** P <0.01, *** P < 0.001.
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low- risk subtype; however, no significant distribution
differences were observed between the low/high-risk
subtypes and the S2/S3 subclasses. The distribution
differences of the 3 subclasses in low- vs. high-risk
subtypes were not statistically significant in GSE76427
(Supplementary Figure 2C); this may be owing to the
smaller sample size of this cohort.

Taking into consideration the important effects of
ethnicity on precision medicine, we therefore compared
the race distribution between HCC low- and high-risk
subtypes. We observed that there is no significantly
distinct race distribution in low- vs. high-risk subtypes
(Fisher exact test P = 0.271; Supplementary Figure 3).

Meanwhile, several inadequacies existed in our study.
First, the gene expression data were acquired from
distinct sequencing or microarray platforms, which may
introduce result biases in the analysis. Second, somatic
mutation data used in this work were only from the
TCGA project; no additional HCC datasets contained
mutation profiles were available.

Our study discovered a novel immune subtype of HCC
patients that was associated with favorable survival
outcomes and a better immune microenvironment, who
may represent the appropriate sub-populations to
receive ICI agents. In-depth explorations of this
immune subtype in larger immunotherapy cohorts are
needed to validate its potential utility as a predictive
indicator of response to ICI therapies.

MATERIALS AND METHODS

Gene expression profile, somatic mutation data, and
clinical information of used HCC patients

A total of 373 HCC patients with mRNA expression
profile and follow-up information in the Cancer
Genome Atlas (TCGA) were obtained from Genomic
Data Commons (https://gdc.cancer.gov/). Among them,
325 patients had complete clinical characteristics (i.e.,
age, sex, grade, stage, drinking status, and HBV/HCV
status). From International Cancer Genome Consortium
(ICGC) [LIRI-JP cohort] and Gene Expression
Omnibus (GEO) [accession number: GSE76427], we
respectively acquired 232 and 114 patients with gene
expression and clinical data for further validation
(Supplementary Table 3). All gene expression data were
normalized for subsequent analyses. For genes with
multiple probe sets, the mean gene expression was
utilized as the expression level. Somatic mutation data
of 364 patients with mRNA expression were obtained
from the TCGA cohort. In this study, non-synonymous
mutational types, including missense mutation,
nonsense mutation, frame shift del/ins, in frame del/ins,

and splice site mutation were included to perform
related analyses.

NMF clustering analysis

Clustering analyses based on mRNA expression profile
were conducted with non-negative matrix factorization
(NMF) method embedded in the R NMF package [21].
A binary matrix A representing gene expression levels
(rows) across HCC patients (columns) was generated.
Then, expression matrix A was divided into two non-
negative matrices W and H (i.e., AWH). Distinct
classes or subtypes were identified with a clustering
approach based on Matrix H. Optimal clustering
number was determined according to the values of
cophenetic, dispersion, residuals and RSS coefficient.

Identification of immune expression patterns and
potential immune subtypes

Tumor, stromal and immune cell gene expression data
from the TCGA cohort were virtually microdissected
using abovementioned NMF algorithm. In this study,
genes with a CV less than 0.1 were selected to reduce
the biases of results [33]. We selected the number of
clustering factor as 9, as it could effectively divide the
expression data in the TCGA cohort, and thus exhibit a
high cophenetic coefficient [34].

Then we took the following steps to identify an
immune class as previously reported by Sia et al. [8].
Firstly, an immune enrichment score gene signature
[20], which represents the proportion of infiltration
immune cells in tumor tissue, was utilized to
determine the potential immune relevant class (or
expression pattern). By integrating all 9 NMEF-
identified clusters with the immune enrichment score
gene signature, we observed the NMF cluster with the
highest immune enrichment score, and named this as
the immune class. Then, we curated the top 100 genes
based on their contributions to the immune class, and
these 100 genes were annotated with the DAVID tool
(https://david.ncifcrf.gov/) to further verify their
immune functionalities. Finally, the top 100 genes
were utilized to perform unsupervised NMF clustering
analysis to divide the TCGA HCC patients into distinct
subtypes.

Infiltration immune cells, immune-related
signatures, and immune checkpoint genes in
microenvironment

Proportion of tumor infiltration immune cells was
estimated with CIBERSORT algorithm, which is an
analytical tool developed by Newman et al. to provide
the calculated abundances of 22 immune cell types in
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the mixed tumor tissue, using the LM22 signature based
on gene expression data [35].

Recently reported vital immune-related signatures that
represented distinct immunology and cellular statuses
were collected as follows: 1) overall immune cells and
stromal cells signature, which indicates the infiltration
proportion of total immune cells and stromal cells in
mixed tumor tissue [20]; 2) immune cell subsets, which
represents the enrichment of T cells, B cells and NK
cells [36]; 3) IFNy signature, which is a signal
correlated with anti-tumor immune response and ICI
efficacy [25]; 4) T cell-inflamed signature, which is a
signature with high expression of dendritic cell and
CD8" T cell-associated genes, and this signature was
also reported to have a positive link with immuno-
therapy response [25]; 6) cytolytic activity [37]; 7)
immune signaling molecules [36]; 8) cytokines and
chemokines [36].

Immune checkpoints in current ICI therapy mainly
contain PD-L1, PD-1 and CTLA-4 [38, 39]. Other
checkpoints, for instance, LAG-3, TIM-3, TIGIT and
IDO1, which are undergoing clinical trials, play vital
roles in checkpoint blockade treatment [40—43].

Besides the microenvironment-based immune factors in
relation to distinct subtypes, we also evaluated the
association of potential subtypes with TML with
univariate analysis and multivariate regression model.

Gene set enrichment analysis

Single sample gene set enrichment analysis (ssGSEA)
method embedded in R package GSVA (version 1.32.0)
was utilized to calculate the enrichment scores of above
immune signatures for each sample [44]. We used gene
set enrichment analysis (GSEA) from fgsea package
(version 1.10.0, https://bioconductor.org/packages/fgsea/)
to explore the dysregulated pathways in distinct
subgroups. Annotated pathways in Molecular Signature
Database (MSigDB, version 3.0) [45] were utilized as the
background signals.

Significantly mutated genes

Significantly mutated genes (SMGs) were determined
by applying MutSigCV method [46]. The significant
enrichment of non-silent somatic variants of a specific
gene was calculated by MutSigCV via addressing
mutational context specific background mutation rates.
The following criteria were needed to authenticate
SMGs: statistically significant (i.e., q value less than
0.1), expressed in TCGA HCC data [47] and
encyclopedia of cell lines [48], and mutation rate
greater than 5%.

Statistical analyses

R software (version 4.0.3) and its packages were
utilized to perform statistical analyses and produce
relevant figures. Kaplan-Meier survival curves were
generated with R survival (version 2.44-1.1) and
Survminer (version 0.4.5) packages, and the Log-rank
test was used to compare the difference between
survival curves. In addition to univariate analyses,
multivariate Logistic and Cox regression models with
confounding factors taken into consideration were
performed using Forestmodel package (version 0.5.0) to
control the false positive. Associations of distinct
subtypes with continuous and categorical variables were
calculated with Wilcoxon rank-sum test and Fisher
exact test, respectively. In this study, P values less than
0.05 were considered to be statistically significant,
unless special instructions.
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SUPPLEMENTARY MATERIALS

Supplementary Figures

Clustering numbers
n=>5

Supplementary Figure 1. Heatmap presentation of clustering results of HCC patients.
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Supplementary Figure 2. Distribution of Hoshida et al. three HCC subclasses in low- vs. high-risk subtypes in (A) TCGA cohort, (B) ICGC
cohort, and (C) GSE76427 cohort.
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Supplementary Figure 3. Distinct race distribution in HCC low- and high-risk subtypes in the TCGA cohort.
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Supplementary Tables
Please browse Full Text version to see the data of Supplementary Tables 1, 2.

Supplementary Table 1. The top 100 genes used for the pathway annotation.

Supplementary Table 2. Differential analyses results of the top 100 immune genes between low- and high-risk

HCC subtypes in the TCGA cohort.

Supplementary Table 3. Information of three datasets included in this study.

Datasets Datasets

TCGA Illumina RNAseq HTSeq

ICGC [llumina RNAseq HTSeq

GSE76427 [lumina HumanHT-12 V4.0 expression beadchip
Total
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