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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is a common digestive 

cancer and the second leading cause of cancer-related 

death around the world. The number of deaths of HCC 

patients gradually increases every year, indicating its 

high lethality [1, 2]. This tumor always emerges in the 

background of chronic liver disease (e.g., cirrhosis) and 

is correlated with several well-known factors, such as 

hepatitis B virus (HBV), hepatitis C virus (HCV), 

alcohol consumption, diabetes mellitus, and metabolic 

syndrome [2]. In recent years, novel and fast-growing 

medical technologies have illuminated the molecular 

mechanisms underlying the occurrence and 

development of HCC; however, the current clinical 

therapeutic methods are limited [2, 3]. Only a subset of 

HCC patients diagnosed at an early stage obtain 
favorable effects when receiving conventional therapies, 

such as surgical resection, liver transplantation, or local 

ablation [2]. While for patients at advanced or 
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ABSTRACT 
 

Immune checkpoint inhibitors (ICI) prolong the survival for advanced/metastatic patients with lung cancer or 
melanoma; however, for hepatocellular carcinoma (HCC) patients, a durable response has not been reported. 
Herein, we used a total of 719 HCC patients with public genomic data to determine potential prognostic and 
immunogenic subtypes. The non-negative matrix factorization (NMF) method was applied to identify the 
immune classes and potential subtypes. The proportion of tumor infiltration immune cells was estimated using 
the CIBERSORT algorithm. Gene set enrichment analysis (GSEA) was utilized to calculate the dysregulated 
pathways. By using NMF analysis for the gene expression profile of the top immune genes, one HCC subtype 
with better survival (i.e., low-risk subtype) and another with worse survival (i.e., high-risk subtype) were 
identified in 3 HCC cohorts (all P < 0.05). Better immune cell infiltration, increased enrichment of immune 
signatures, higher expression of checkpoints, and elevated tumor mutation load (TML) were significantly 
enriched in the low-risk subtype (all P < 0.05). Higher mutation rates of immune response genes (e.g., TP53 and 
MUC16) were also observed in the low-risk subtype (both P < 0.05). Discovery of the HCC low-risk subtype 
might provide clues for HCC prognosis and immunotherapy prediction. 
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metastatic stages, the effective treatment that prolongs 

HCC survival is limited to multiple tyrosine kinase 

inhibitors, including first- (e.g., sorafenib) [4] and 

second-line agents (e.g., regorafenib) [5]. Although 

clinical benefits have been reported using these drugs, 

the median survival interval is still less than 2 years. 

Therefore, more effective therapeutic approaches are 

urgently needed for advanced HCC patients. 

 

In the past few years, immune checkpoint inhibitors (ICI) 

therapies, which reactivate the related regulatory signaling 

of T cells and revive the immune system of tumor patients 

to kill tumor cells, have remarkably extended the life 

expectancy in patients with distinct solid tumors [6, 7]. 

Owing to the favorable clinical efficacy, the Food and 

Drug Administration (FDA) has approved 4 immune 

checkpoint inhibition-based agents (i.e., ipilimumab, 

nivolumab, pembrolizumab and atezolimumab) for 

treatment of advanced stage cancers or metastases, such 

as melanoma and non-small cell lung cancer (NSCLC) 

[8]. The immune checkpoints directed against monoclonal 

antibodies from the above agents include cytotoxic T-

lymphocyte protein 4 (CTLA-4), the programmed cell 

death protein 1 (PD-1), and its ligand, PD-L1 [9]. 

Nevertheless, only a minority of patients could obtain a 

durable treatment response to these regimens [10]. High 

PD-L1 expression is a frequently-used indicator to predict 

the efficacy of anti-PD-1 therapy [11–13]. Previous 

experimental evidence revealed that the presence of a high 

T cell infiltration, an interferon-gamma (IFN-γ) signature, 

checkpoint gene (e.g., PD-1 and PD-L1) expression, or a 

high tumor mutational load (TML) could favor a 

treatment response [14–16]. Conversely, several immune-

suppressive factors, such as stromal cells and M2 

macrophages infiltration, may lead to a reduction in the 

anti-tumor immune response, and resistance to ICI 

therapy [17]. In a phase I/II HCC clinical trial, remarkable 

responses were reported when patients were treated with 

nivolumab, a monoclonal antibody targeting PD-1 [18]. 

Unfortunately, there is less evidence relevant to the 

immunologic subtypes of HCC and how to make use of 

this information to achieve the best efficacy from immune 

checkpoint-based treatment. 

 

The HCC microenvironment is a mixture of distinct cell 

types, including malignant hepatocytes, immune cells, 

endothelial cells, and stromal cells. A variety of analytic 

methods have been established to virtually extract 

molecular features from the tumor-immune micro-

environment [19, 20]. By applying a non-negative 

matrix factorization (NMF) algorithm [21], we 

deconvoluted the gene expression profile of 719 HCC 

patients and dissected the signals related to the immune 
microenvironment, which allowed us to determine a 

potential immune subtype of HCC with specific 

immunologic features. The key traits of this subtype 

include infiltration of immune cells, increased 

enrichment of the IFN-γ signature, a T cell-inflamed 

signature and cytolytic activity, elevated expression of 

immune checkpoints, and most importantly, a favorable 

prognosis. The HCC immune subtype in our study  

may provide a novel strategy for evaluating survival  

and immunotherapy implications. Further in-depth 

investigations are warranted based on the HCC patients 

who received immunotherapy. 

 

RESULTS 
 

Identification of an immune class for HCC 

 

Coefficient of variation (CV) analysis showed that 8163 

genes had CV values less than 0.1 in the TCGA cohort. 

Based on the gene expression profile of these genes, 9 

classes were identified using NMF clustering analysis 

(Figure 1A). We found that one class harbored the 

highest immune enrichment score than others (Figure 

1A), thus designated as the ‘immune class’. To verify the 

functionality of this immune class, we obtained the top 

100 genes (Supplementary Table 1) that had the greatest 

contribution to this class to perform pathway annotation. 

Based on the results of pathway analysis, we observed 

that antigen processing and presentation, and signaling 

mediated by immune cells (e.g., T cells, B cells and NK 

cells) were significantly enriched (all P < 0.05; Figure 

1B). Biology processes, such as innate and adaptive 

immune responses, T cell and B cell receptor signaling, T 

cell activation, and cytolysis were also observed (all P < 

0.05; Figure 1B). Together, these findings further 

confirm that this immune class is immunogenic. 

 

Identification and validation of an immune HCC 

subtype 

 

To obtain more accurate HCC subtypes, we performed 

NMF clustering based on the gene expression profile of 

the aforementioned top 100 genes of the immune class in 

the TCGA cohort. We separately evaluated the model 

parameters with clustering numbers set as 2-6. 

Cophenetic, dispersion, residuals, and RSS coefficients 

could obtain the maximum values when the cluster 

number was selected as 2 (Figure 2A) Consistently, 

heatmap analysis also exhibited the best clustering effect 

when the number was 2 (Supplementary Figure 1). We 

consider that two subtypes potentially exist in HCC 

patients. 

 

Kaplan-Meier survival analysis showed that these two 

subtypes were statistically prognostically different 

(Log-rank test P < 0.001; Figure 2B). The subtype with 

better prognosis was designated as the ‘low-risk’ 

subtype (n = 202), and the subtype with poor survival 

was designated as the ‘high-risk’ subtype (n = 171). 
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Multivariate Cox regression model with clinical 

characteristics and confounding factors (i.e., age, sex, 

grade, stage, drinking status, and HBV/HCV status) 

taken into account was still statistically significant (HR: 

0.48, 95% CI: 0.31-0.76, P = 0.002; Figure 2C). 

Differential analyses results of the top 100 immune 

genes between low- and high-risk HCC subtypes in the 

TCGA cohort were shown in Supplementary Table 2. 

 

Two independent HCC cohorts were utilized to validate 

the prognostic ability of the two subtypes identified from 

TCGA. Low- and high-risk subtypes were also observed 

via univariate analysis and the multivariate Cox regression 

model in ICGC cohort (Log-rank test P = 0.031; HR: 

0.64, 95% CI: 0.34-1.01, P = 0.048; Figure 3A, 3B), as 

well as the GEO cohort (Log-rank test P = 0.005; HR: 

0.46, 95% CI: 0.22-0.99, P = 0.042; Figure 3C, 3D). 

Patients from the low-risk HCC subtype harbored 

immune-activated microenvironment 

 

To elucidate the association of low-risk subtype with 

better prognosis, we explored the vital factors in the 

microenvironment in relation to the low-risk subtype. 

 

For the infiltration of immune cells, we found that the 

low-risk subtype had significantly higher CD8 T cell 

infiltration than the high-risk subtype (P < 0.01; Figure 

4A). In addition, resting CD4 memory T cells, 

monocytes, and resting mast cells were also 

significantly enriched in the low-risk subtype (all P < 

0.05; Figure 4A). Enrichment of the regulatory T cells, 

which exhibit the immune suppression, was markedly 

decreased in the low-risk subtype (P < 0.05; Figure 4A). 

Interestingly, the low-risk subtype had significantly

 

 
 

Figure 1. Identification of HCC immune class and its pathway analysis in the TCGA cohort. (A) The association of identified 9 HCC 

classes with immune enrichment score. (B) Pathway analysis of the top 100 genes contributed to immune class. 
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elevated infiltration of M1 macrophages (P < 0.05; 

Figure 4A), which is one subtype of macrophages that 

promotes the inflammation. M2 macrophages, which 

are associated with tumor growth and immune 

inhibition, were significantly enriched in the high-risk 

subtype, compared to the low-risk subtype (P < 0.001; 

Figure 4A). 

 

Patients of low-risk subtype had significantly higher 

enrichment of total immune cells, and immune cell 

subsets (i.e., T cells, B cells, and NK cells) (all P < 

0.01; Figure 4B). The enrichment of immune-

suppressive stromal cells was significantly decreased in 

the low-risk subtype (P < 0.001; Figure 4B). In the low-

risk subtype, we also found markedly increased 

enrichment of the IFN-γ signature and the T cell-

inflamed gene signature (both P < 0.05; Figure 4B), 

which were recently reported to be correlated with ICI 

efficacy [22]. In addition, enhanced cytolytic activity, 

and elevated enrichment of cytokines and chemokines 

were all observed in patients from the low-risk subtype 

(all P < 0.01; Figure 4B). 

 

We found that expression of PD-L1 and PD-1 was 

significantly upregulated in low-risk subtype patients 

(both P < 0.05; Figure 4C). Other checkpoints, 

including TIM-3, LAG-3, and TIGIT also obtained 

similar results (all P < 0.05; Figure 4C); however, no 

differences were detected in CTLA-4 and IDO1 

expression between low- and high-risk subtypes (both P 

> 0.05; Supplementary Figure 2). 

 

We also observed that the low-risk HCC subtype 

harbored a significantly higher TML than high-risk 

subtype (P < 0.001; Figure 4D). Multivariate Logistic 

regression model with mutations of DNA repair genes

 

 
 

Figure 2. Identification of the immune low-risk subtype of HCC in TCGA. (A) Associations between NMF coefficients and clustering 
numbers. (B) Kaplan-Meier survival analysis of identified low-risk and high-risk subtypes. (C) Forest plot of multivariate Cox regression model 
with HCC clinical factors taken into account. 
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(i.e., TP53, POLE, BRCA1, and BRCA2) taken into 

consideration was still significant (OR: 5.15, 95% CI: 

1.73-9.58, P = 0.008; Figure 4E). 

 

Pathways significantly enriched in the low-risk HCC 

subtype 

 

GSEA analysis between the two subtypes showed that 

immune cell-related pathways, such as NK cell-

mediated cytotoxicity, and T and B cell receptor 

signaling pathways were markedly enriched in the low-

risk subtype (all FDR < 0.05; Figure 5). Immune 

response pathways including antigen processing and 

presentation, and the inflammatory response were also 

enriched (all FDR < 0.05; Figure 5). Patients of low-risk 

subtype harbored the enrichment of IFN-γ-related 

pathways, which are associated with anti-tumor 

immunity and immunotherapy efficacy (all FDR < 0.05; 

Figure 5). 

 

SMGs of the low-risk HCC subtype 

 

A total of 33 significantly mutated genes (SMGs) were 

identified using the MutSigCV algorithm. Differential

 

 
 

Figure 3. Validation for the 2 HCC subtypes with additional 2 independent datasets. (A, B) Univariate and multivariate survival 
analysis of 2 HCC subtypes in the ICGC cohort. (C, D) Univariate and multivariate survival analysis of 2 HCC subtypes in GSE76427. 
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analyses of the SMGs mutation rates between the two 

subtypes showed that TP53, MUC16, RB1, NBEA, 

SPEG, and DNAH10 mutations were significantly 

enriched in the patients of low-risk subtype (Fisher 

exact test, all P < 0.05; Figure 6). Among them, TP53 

mutations were previously reported to be associated 

with the ICI response in lung adenocarcinoma 

(LUAD), and MUC16 mutations harbored potential 

immunotherapy implications for gastric cancer (GC) 

patients. 

 

 
 

Figure 4. Immune microenvironment and genomic features in relation to 2 HCC subtypes. Distinct enrichment of (A) infiltration 

immune cells, (B) immune-related signatures, and (C) immune checkpoints in the 2 HCC subtypes. (D) The association of 2 identified subtypes 
with TML. (E) Forest plot representation of the association between the 2 identified subtypes and TML. * P < 0.05, ** P < 0.01, *** P < 0.001.
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DISCUSSION 
 

By using virtual dissection analytic methods, we 

deconvoluted the gene expression profile from mixed 

HCC tissues, and thus determined an undiscovered 

immune pattern and a moderate immunology subtype of 

HCC, herein designated the low-risk subtype. The low-

risk subtype harbored favorable survival outcomes, a 

better immune microenvironment, and genomic features 

compared to the high-risk subtype. The identified low-

risk subtype may be a promising indicator for prognosis 

prediction and clinical immunotherapy of HCC patients. 

 

The prognoses of patients with melanoma and NSCLC 

have dramatically changed owing to the approval of ICI 

agents by the FDA. Long-range clinical benefits and 

durable remissions induced by these agents have been 

observed in a subset of patients with metastatic or 

advanced stage cancer [10, 23]. Taking into 

consideration that the directed targets of these drugs are 

immune cells instead of tumor cells, the effective 

responses could be detected in multiple cancers, such as 

colorectal [13, 16] and bladder cancer [24]. In the phase 

II clinical trial that involved 214 HCC patients who 

received nivolumab, the objective response rate and 

median survival interval were 16% and 14 months, 

respectively [18]. In this trial, patients with clinical 

responses were not shown to be associated with high 

PD-L1 expression [18]. Therefore, the determination of 

more reliable indicators to select the appropriate sub-

population for receiving ICI therapy is urgently needed 

for HCC. Patients negative for PD-L1 sometimes 

exhibit durable benefits. This observation further 

indicates the instability of PD-L1 expression as a 

biomarker; novel moderate biomarkers are needed to be 

investigated. 

 

 
 

Figure 5. Significantly enriched immune cells, immune response, and IFN-related pathways in the low-risk subtype. 
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In this study, a novel immune subtype, herein 

designated the low-risk subtype of HCC, was identified 

and crucial insights into the immunologic features of 

this subtype were provided. Patients with the low-risk 

subtype, whose molecular traits, including an 

abundance of infiltration immune cells, enhanced 

enrichment of immune-related signatures, high 

expression of immune checkpoints, and an elevated 

TML, highly resemble the tumors that are responsive to 

ICI agents [14–16]. IFN-γ and the T cell-inflamed gene 

signature, which were previously reported to predict the 

efficacy of pembrolizumab [25], were demonstrated in 

HCC patients with the immune subtype. This finding 

reinforces the inference that ICI responses may appear 

in tumors with a pre-existing IFN-mediated immune 

signaling. Interestingly, the presence of high TML was 

observed in the low-risk immune subtype, indicating 

that, unlike melanoma [16, 26] and NSCLC [26], 

distinct potential mechanisms may actuate HCC 

immune responses. Prostate, ovarian, and pancreatic 

tumors with modest TML also exhibit a similar lack of 

association [27]. In these situations, the immunogenicity 

of tumors may be influenced by neoantigen quality, 

rather than quantity [26]. In addition, several mutation-

independent signals, for example, HCC-related antigens 

expression, may induce a vital effect on the anti-tumor 

immune response [8].  

 

Differential analysis of SMG mutations showed that six 

genes exhibited higher mutation rates in the low-risk 

subtype than high-risk subtype. Among these six SMGs, 

TP53 mutations were reported to be associated with 

high expression of immune checkpoints, an active IFNγ 

signature, and effector T cell signature, and favorable 

anti-PD-1 efficacy in LUAD [28]. A recent study 

revealed that MUC16 mutations are significantly 

correlated with a higher TML and better survival 

outcomes in patients with GC [29]. We demonstrated 

that patients with the low-risk subtype harbored higher 

mutation rates of the 2 SMGs further verify the 

predictive roles of this subtype in immune checkpoint-

based therapy. 

 

By using the Nearest Template Prediction (NTP) 

algorithm with 1950 representative meta-genes, 

Hoshida et al. identified three HCC subtypes (i.e., S1, 

S2, and S3) that were correlated with distinct biological 

processes [30]. We also employed the NTP method with 

the same meta-genes to determine Hoshida et al. 

subtypes in the three HCC datasets included in our 

study, and compared them with the low- and high-risk 

subtypes we identified. In the TCGA and ICGC cohorts, 

we showed that the low-risk subtype harbored a 

significantly decreased proportion of S1subclass 

(Supplementary Figure 2A, 2B), which was 

characterized by WNT-TGFβ pathway activation. 

Recent studies have demonstrated the WNT-TGFβ 

signal functions in immune suppression [31, 32].  

The lower proportion of S1 further verified the 

immunotherapy implications of patients from the 

 

 
 

Figure 6. Mutation rates of SMGs stratified with the 2 HCC subclasses. Genes with bold and italic font were observed to be 

significantly differentially mutated in the 2 HCC subtypes. * P < 0.05, ** P < 0.01, *** P < 0.001. 
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low- risk subtype; however, no significant distribution 

differences were observed between the low/high-risk 

subtypes and the S2/S3 subclasses. The distribution 

differences of the 3 subclasses in low- vs. high-risk 

subtypes were not statistically significant in GSE76427 

(Supplementary Figure 2C); this may be owing to the 

smaller sample size of this cohort. 

 

Taking into consideration the important effects of 

ethnicity on precision medicine, we therefore compared 

the race distribution between HCC low- and high-risk 

subtypes. We observed that there is no significantly 

distinct race distribution in low- vs. high-risk subtypes 

(Fisher exact test P = 0.271; Supplementary Figure 3).  

 

Meanwhile, several inadequacies existed in our study. 

First, the gene expression data were acquired from 

distinct sequencing or microarray platforms, which may 

introduce result biases in the analysis. Second, somatic 

mutation data used in this work were only from the 

TCGA project; no additional HCC datasets contained 

mutation profiles were available. 

 

Our study discovered a novel immune subtype of HCC 

patients that was associated with favorable survival 

outcomes and a better immune microenvironment, who 

may represent the appropriate sub-populations to 

receive ICI agents. In-depth explorations of this 

immune subtype in larger immunotherapy cohorts are 

needed to validate its potential utility as a predictive 

indicator of response to ICI therapies. 

 

MATERIALS AND METHODS 
 

Gene expression profile, somatic mutation data, and 

clinical information of used HCC patients 

 

A total of 373 HCC patients with mRNA expression 

profile and follow-up information in the Cancer 

Genome Atlas (TCGA) were obtained from Genomic 

Data Commons (https://gdc.cancer.gov/). Among them, 

325 patients had complete clinical characteristics (i.e., 

age, sex, grade, stage, drinking status, and HBV/HCV 

status). From International Cancer Genome Consortium 

(ICGC) [LIRI-JP cohort] and Gene Expression 

Omnibus (GEO) [accession number: GSE76427], we 

respectively acquired 232 and 114 patients with gene 

expression and clinical data for further validation 

(Supplementary Table 3). All gene expression data were 

normalized for subsequent analyses. For genes with 

multiple probe sets, the mean gene expression was 

utilized as the expression level. Somatic mutation data 

of 364 patients with mRNA expression were obtained 

from the TCGA cohort. In this study, non-synonymous 

mutational types, including missense mutation, 

nonsense mutation, frame shift del/ins, in frame del/ins, 

and splice site mutation were included to perform 

related analyses. 

 

NMF clustering analysis 

 

Clustering analyses based on mRNA expression profile 

were conducted with non-negative matrix factorization 

(NMF) method embedded in the R NMF package [21]. 

A binary matrix A representing gene expression levels 

(rows) across HCC patients (columns) was generated. 

Then, expression matrix A was divided into two non-

negative matrices W and H (i.e., A≈WH). Distinct 

classes or subtypes were identified with a clustering 

approach based on Matrix H. Optimal clustering 

number was determined according to the values of 

cophenetic, dispersion, residuals and RSS coefficient.  

 

Identification of immune expression patterns and 

potential immune subtypes 

 

Tumor, stromal and immune cell gene expression data 

from the TCGA cohort were virtually microdissected 

using abovementioned NMF algorithm. In this study, 

genes with a CV less than 0.1 were selected to reduce 

the biases of results [33]. We selected the number of 

clustering factor as 9, as it could effectively divide the 

expression data in the TCGA cohort, and thus exhibit a 

high cophenetic coefficient [34].  

 

Then we took the following steps to identify an 

immune class as previously reported by Sia et al. [8]. 

Firstly, an immune enrichment score gene signature 

[20], which represents the proportion of infiltration 

immune cells in tumor tissue, was utilized to 

determine the potential immune relevant class (or 

expression pattern). By integrating all 9 NMF-

identified clusters with the immune enrichment score 

gene signature, we observed the NMF cluster with the 

highest immune enrichment score, and named this as 

the immune class. Then, we curated the top 100 genes 

based on their contributions to the immune class, and 

these 100 genes were annotated with the DAVID tool 

(https://david.ncifcrf.gov/) to further verify their 

immune functionalities. Finally, the top 100 genes 

were utilized to perform unsupervised NMF clustering 

analysis to divide the TCGA HCC patients into distinct 

subtypes. 

 

Infiltration immune cells, immune-related 

signatures, and immune checkpoint genes in 

microenvironment 

 

Proportion of tumor infiltration immune cells was 
estimated with CIBERSORT algorithm, which is an 

analytical tool developed by Newman et al. to provide 

the calculated abundances of 22 immune cell types in 
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the mixed tumor tissue, using the LM22 signature based 

on gene expression data [35]. 

 

Recently reported vital immune-related signatures that 

represented distinct immunology and cellular statuses 

were collected as follows: 1) overall immune cells and 

stromal cells signature, which indicates the infiltration 

proportion of total immune cells and stromal cells in 

mixed tumor tissue [20]; 2) immune cell subsets, which 

represents the enrichment of T cells, B cells and NK 

cells [36]; 3) IFNγ signature, which is a signal 

correlated with anti-tumor immune response and ICI 

efficacy [25]; 4) T cell-inflamed signature, which is a 

signature with high expression of dendritic cell and 

CD8+ T cell-associated genes, and this signature was 

also reported to have a positive link with immuno-

therapy response [25]; 6) cytolytic activity [37]; 7) 

immune signaling molecules [36]; 8) cytokines and 

chemokines [36]. 

 

Immune checkpoints in current ICI therapy mainly 

contain PD-L1, PD-1 and CTLA-4 [38, 39]. Other 

checkpoints, for instance, LAG-3, TIM-3, TIGIT and 

IDO1, which are undergoing clinical trials, play vital 

roles in checkpoint blockade treatment [40–43]. 

 

Besides the microenvironment-based immune factors in 

relation to distinct subtypes, we also evaluated the 

association of potential subtypes with TML with 

univariate analysis and multivariate regression model. 

 

Gene set enrichment analysis 

 

Single sample gene set enrichment analysis (ssGSEA) 

method embedded in R package GSVA (version 1.32.0) 

was utilized to calculate the enrichment scores of above 

immune signatures for each sample [44]. We used gene 

set enrichment analysis (GSEA) from fgsea package 

(version 1.10.0, https://bioconductor.org/packages/fgsea/) 

to explore the dysregulated pathways in distinct 

subgroups. Annotated pathways in Molecular Signature 

Database (MSigDB, version 3.0) [45] were utilized as the 

background signals. 

 

Significantly mutated genes 

 

Significantly mutated genes (SMGs) were determined 

by applying MutSigCV method [46]. The significant 

enrichment of non-silent somatic variants of a specific 

gene was calculated by MutSigCV via addressing 

mutational context specific background mutation rates. 

The following criteria were needed to authenticate 

SMGs: statistically significant (i.e., q value less than 
0.1), expressed in TCGA HCC data [47] and 

encyclopedia of cell lines [48], and mutation rate 

greater than 5%. 

Statistical analyses 
 

R software (version 4.0.3) and its packages were 

utilized to perform statistical analyses and produce 

relevant figures. Kaplan-Meier survival curves were 

generated with R survival (version 2.44-1.1) and 

Survminer (version 0.4.5) packages, and the Log-rank 

test was used to compare the difference between 

survival curves. In addition to univariate analyses, 

multivariate Logistic and Cox regression models with 

confounding factors taken into consideration were 

performed using Forestmodel package (version 0.5.0) to 

control the false positive. Associations of distinct 

subtypes with continuous and categorical variables were 

calculated with Wilcoxon rank-sum test and Fisher 

exact test, respectively. In this study, P values less than 

0.05 were considered to be statistically significant, 

unless special instructions. 
 

AUTHOR CONTRIBUTIONS 
 

LX and YZ designed this study; LX, YZ and JS 

developed the methodology and acquired the related 

data; JS, NX and YZ performed data analysis and 

interpretation; LX, YZ and JS drafted and revised the 

manuscript; LX and YZ supervised this study. 
 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of interest. 
 

REFERENCES 
 

1. Murray CJ, Vos T, Lozano R, Naghavi M, Flaxman AD, 
Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, 
Aboyans V, Abraham J, Ackerman I, et al. Disability-
adjusted life years (DALYs) for 291 diseases and injuries 
in 21 regions, 1990-2010: a systematic analysis for the 
Global Burden of Disease Study 2010. Lancet. 2012; 
380:2197–223. 

 https://doi.org/10.1016/S0140-6736(12)61689-4 
PMID:23245608 

2. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, 
Schwartz M, Sherman M, Gores G. Hepatocellular 
carcinoma. Nat Rev Dis Primers. 2016; 2:16018. 

 https://doi.org/10.1038/nrdp.2016.18  
PMID:27158749 

3. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. 
Genetic Landscape and Biomarkers of Hepatocellular 
Carcinoma. Gastroenterology. 2015; 149:1226–39.e4. 

 https://doi.org/10.1053/j.gastro.2015.05.061 
PMID:26099527 

4. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, 
Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, 
Schwartz M, Porta C, Zeuzem S, et al, and SHARP 

2868

https://bioconductor.org/packages/fgsea/
https://doi.org/10.1016/S0140-6736(12)61689-4
https://pubmed.ncbi.nlm.nih.gov/23245608
https://doi.org/10.1038/nrdp.2016.18
https://pubmed.ncbi.nlm.nih.gov/27158749
https://doi.org/10.1053/j.gastro.2015.05.061
https://pubmed.ncbi.nlm.nih.gov/26099527


www.aging-us.com 11 AGING 

Investigators Study Group. Sorafenib in advanced 
hepatocellular carcinoma. N Engl J Med. 2008; 
359:378–90. 

 https://doi.org/10.1056/NEJMoa0708857 
PMID:18650514 

5. Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, 
Pracht M, Yokosuka O, Rosmorduc O, Breder V, 
Gerolami R, Masi G, Ross PJ, et al, and RESORCE 
Investigators. Regorafenib for patients with 
hepatocellular carcinoma who progressed on sorafenib 
treatment (RESORCE): a randomised, double-blind, 
placebo-controlled, phase 3 trial. Lancet. 2017; 
389:56–66. 

 https://doi.org/10.1016/S0140-6736(16)32453-9 
PMID:27932229 

6. Darvin P, Toor SM, Sasidharan Nair V, Elkord E. 
Immune checkpoint inhibitors: recent progress and 
potential biomarkers. Exp Mol Med. 2018; 50:1–11. 

 https://doi.org/10.1038/s12276-018-0191-1 
PMID:30546008 

7. Abril-Rodriguez G, Ribas A. SnapShot: Immune 
Checkpoint Inhibitors. Cancer Cell. 2017; 31: 
848–48.e1. 

 https://doi.org/10.1016/j.ccell.2017.05.010 
PMID:28609660 

8. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-
Martin C, Castro de Moura M, Putra J, Camprecios G, 
Bassaganyas L, Akers N, Losic B, Waxman S, Thung SN, 
et al. Identification of an Immune-specific Class of 
Hepatocellular Carcinoma, Based on Molecular 
Features. Gastroenterology. 2017; 153:812–26. 

 https://doi.org/10.1053/j.gastro.2017.06.007 
PMID:28624577 

9. Llovet JM, Villanueva A, Lachenmayer A, Finn RS. 
Advances in targeted therapies for hepatocellular 
carcinoma in the genomic era. Nat Rev Clin Oncol. 
2015; 12:408–24. 

 https://doi.org/10.1038/nrclinonc.2015.103 
PMID:26054909 

10. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 
pathway blockade for cancer therapy: Mechanisms, 
response biomarkers, and combinations. Sci Transl 
Med. 2016; 8:328rv4. 

 https://doi.org/10.1126/scitranslmed.aad7118 
PMID:26936508 

11. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, 
Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, 
Carcereny E, Ahn MJ, Felip E, et al, and KEYNOTE-001 
Investigators. Pembrolizumab for the treatment of 
non-small-cell lung cancer. N Engl J Med. 2015; 
372:2018–28. 

 https://doi.org/10.1056/NEJMoa1501824 
PMID:25891174 

12. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, 
Han JY, Molina J, Kim JH, Arvis CD, Ahn MJ, Majem 
M, Fidler MJ, de Castro G Jr, et al. Pembrolizumab 
versus docetaxel for previously treated, PD-L1-
positive, advanced non-small-cell lung cancer 
(KEYNOTE-010): a randomised controlled trial. 
Lancet. 2016; 387:1540–50. 

 https://doi.org/10.1016/S0140-6736(15)01281-7 
PMID:26712084 

13. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith 
DC, McDermott DF, Powderly JD, Carvajal RD, Sosman 
JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, et al. 
Safety, activity, and immune correlates of anti-PD-1 
antibody in cancer. N Engl J Med. 2012; 366:2443–54. 

 https://doi.org/10.1056/NEJMoa1200690 
PMID:22658127 

14. Bald T, Landsberg J, Lopez-Ramos D, Renn M, Glodde 
N, Jansen P, Gaffal E, Steitz J, Tolba R, Kalinke U, 
Limmer A, Jönsson G, Hölzel M, Tüting T. Immune cell-
poor melanomas benefit from PD-1 blockade after 
targeted type I IFN activation. Cancer Discov. 2014; 
4:674–87. 

 https://doi.org/10.1158/2159-8290.CD-13-0458 
PMID:24589924 

15. Ji RR, Chasalow SD, Wang L, Hamid O, Schmidt H, 
Cogswell J, Alaparthy S, Berman D, Jure-Kunkel M, 
Siemers NO, Jackson JR, Shahabi V. An immune-active 
tumor microenvironment favors clinical response to 
ipilimumab. Cancer Immunol Immunother. 2012; 
61:1019–31. 

 https://doi.org/10.1007/s00262-011-1172-6 
PMID:22146893 

16. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, 
Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, 
Biedrzycki B, Donehower RC, Zaheer A, et al. PD-1 
Blockade in Tumors with Mismatch-Repair Deficiency. 
N Engl J Med. 2015; 372:2509–20. 

 https://doi.org/10.1056/NEJMoa1500596 
PMID:26028255 

17. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, Zheng P, Zhao 
S. Gastric cancer-derived mesenchymal stromal cells 
trigger M2 macrophage polarization that promotes 
metastasis and EMT in gastric cancer. Cell Death Dis. 
2019; 10:918. 

 https://doi.org/10.1038/s41419-019-2131-y 
PMID:31801938 

18. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, 
Hsu C, Kim TY, Choo SP, Trojan J, Welling TH 3rd, 
Meyer T, Kang YK, Yeo W, et al. Nivolumab in patients 
with advanced hepatocellular carcinoma (CheckMate 
040): an open-label, non-comparative, phase 1/2 dose 
escalation and expansion trial. Lancet. 2017; 
389:2492–502. 

2869

https://doi.org/10.1056/NEJMoa0708857
https://pubmed.ncbi.nlm.nih.gov/18650514
https://doi.org/10.1016/S0140-6736(16)32453-9
https://pubmed.ncbi.nlm.nih.gov/27932229
https://doi.org/10.1038/s12276-018-0191-1
https://pubmed.ncbi.nlm.nih.gov/30546008
https://doi.org/10.1016/j.ccell.2017.05.010
https://pubmed.ncbi.nlm.nih.gov/28609660
https://doi.org/10.1053/j.gastro.2017.06.007
https://pubmed.ncbi.nlm.nih.gov/28624577
https://doi.org/10.1038/nrclinonc.2015.103
https://pubmed.ncbi.nlm.nih.gov/26054909
https://doi.org/10.1126/scitranslmed.aad7118
https://pubmed.ncbi.nlm.nih.gov/26936508
https://doi.org/10.1056/NEJMoa1501824
https://pubmed.ncbi.nlm.nih.gov/25891174
https://doi.org/10.1016/S0140-6736(15)01281-7
https://pubmed.ncbi.nlm.nih.gov/26712084
https://doi.org/10.1056/NEJMoa1200690
https://pubmed.ncbi.nlm.nih.gov/22658127
https://doi.org/10.1158/2159-8290.CD-13-0458
https://pubmed.ncbi.nlm.nih.gov/24589924
https://doi.org/10.1007/s00262-011-1172-6
https://pubmed.ncbi.nlm.nih.gov/22146893
https://doi.org/10.1056/NEJMoa1500596
https://pubmed.ncbi.nlm.nih.gov/26028255
https://doi.org/10.1038/s41419-019-2131-y
https://pubmed.ncbi.nlm.nih.gov/31801938


www.aging-us.com 12 AGING 

 https://doi.org/10.1016/S0140-6736(17)31046-2 
PMID:28434648 

19. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, 
Hoadley KA, Rashid NU, Williams LA, Eaton SC, Chung 
AH, Smyla JK, Anderson JM, Kim HJ, et al. Virtual 
microdissection identifies distinct tumor- and stroma-
specific subtypes of pancreatic ductal adenocarcinoma. 
Nat Genet. 2015; 47:1168–78. 

 https://doi.org/10.1038/ng.3398 PMID:26343385 

20. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna 
R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird 
PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, et 
al. Inferring tumour purity and stromal and immune 
cell admixture from expression data. Nat Commun. 
2013; 4:2612. 

 https://doi.org/10.1038/ncomms3612  
PMID:24113773 

21. Gaujoux R, Seoighe C. A flexible R package for 
nonnegative matrix factorization. BMC Bioinformatics. 
2010; 11:367. 

 https://doi.org/10.1186/1471-2105-11-367 
PMID:20598126 

22. Havel JJ, Chowell D, Chan TA. The evolving landscape of 
biomarkers for checkpoint inhibitor immunotherapy. 
Nat Rev Cancer. 2019; 19:133–50. 

 https://doi.org/10.1038/s41568-019-0116-x 
PMID:30755690 

23. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The 
future of cancer treatment: immunomodulation, CARs 
and combination immunotherapy. Nat Rev Clin Oncol. 
2016; 13:273–90. 

 https://doi.org/10.1038/nrclinonc.2016.25 
PMID:26977780 

24. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, 
Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, 
Boyd Z, Hegde PS, et al. MPDL3280A (anti-PD-L1) 
treatment leads to clinical activity in metastatic 
bladder cancer. Nature. 2014; 515:558–62. 

 https://doi.org/10.1038/nature13904  
PMID:25428503 

25. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda 
A, Kaufman DR, Albright A, Cheng JD, Kang SP, 
Shankaran V, Piha-Paul SA, Yearley J, Seiwert TY, et al. 
IFN-γ-related mRNA profile predicts clinical response 
to PD-1 blockade. J Clin Invest. 2017; 127:2930–40. 

 https://doi.org/10.1172/JCI91190  
PMID:28650338 

26. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, 
Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, 
Birkbak NJ, Hiley CT, Watkins TB, Shafi S, Murugaesu N, 
et al. Clonal neoantigens elicit T cell immunoreactivity 
and sensitivity to immune checkpoint blockade. 
Science. 2016; 351:1463–69. 

 https://doi.org/10.1126/science.aaf1490 
PMID:26940869 

27. Balli D, Rech AJ, Stanger BZ, Vonderheide RH. Immune 
Cytolytic Activity Stratifies Molecular Subsets of 
Human Pancreatic Cancer. Clin Cancer Res. 2017; 
23:3129–38. 

 https://doi.org/10.1158/1078-0432.CCR-16-2128 
PMID:28007776 

28. Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, Tu HY, 
Chen HJ, Sun YL, Zhou Q, Yang JJ, Yang XN, Lin JX, et al. 
Potential Predictive Value of TP53 and KRAS Mutation 
Status for Response to PD-1 Blockade Immunotherapy 
in Lung Adenocarcinoma. Clin Cancer Res. 2017; 
23:3012–24. 

 https://doi.org/10.1158/1078-0432.CCR-16-2554 
PMID:28039262 

29. Li X, Pasche B, Zhang W, Chen K. Association of MUC16 
Mutation With Tumor Mutation Load and Outcomes in 
Patients With Gastric Cancer. JAMA Oncol. 2018; 
4:1691–98. 

 https://doi.org/10.1001/jamaoncol.2018.2805 
PMID:30098163 

30. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet 
JP, Chiang DY, Villanueva A, Newell P, Ikeda K, 
Hashimoto M, Watanabe G, Gabriel S, Friedman SL, et 
al. Integrative transcriptome analysis reveals common 
molecular subclasses of human hepatocellular 
carcinoma. Cancer Res. 2009; 69:7385–92. 

 https://doi.org/10.1158/0008-5472.CAN-09-1089 
PMID:19723656 

31. Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, 
Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. 
Wnt/beta-catenin pathway: modulating anticancer 
immune response. J Hematol Oncol. 2017; 10:101. 

 https://doi.org/10.1186/s13045-017-0471-6 
PMID:28476164 

32. Galluzzi L, Spranger S, Fuchs E, López-Soto A. WNT 
Signaling in Cancer Immunosurveillance. Trends Cell 
Biol. 2019; 29:44–65. 

 https://doi.org/10.1016/j.tcb.2018.08.005 
PMID:30220580 

33. Aja-Fernández S, Alberola-López C. On the estimation 
of the coefficient of variation for anisotropic diffusion 
speckle filtering. IEEE Trans Image Process. 2006; 
15:2694–701. 

 https://doi.org/10.1109/TIP.2006.877360 
PMID:16948314 

34. Chen YP, Wang YQ, Lv JW, Li YQ, Chua ML, Le QT, Lee 
N, Colevas AD, Seiwert T, Hayes DN, Riaz N, Vermorken 
JB, O’Sullivan B, et al. Identification and validation of 
novel microenvironment-based immune molecular 
subgroups of head and neck squamous cell carcinoma: 

2870

https://doi.org/10.1016/S0140-6736(17)31046-2
https://pubmed.ncbi.nlm.nih.gov/28434648
https://doi.org/10.1038/ng.3398
https://pubmed.ncbi.nlm.nih.gov/26343385
https://doi.org/10.1038/ncomms3612
https://pubmed.ncbi.nlm.nih.gov/24113773
https://doi.org/10.1186/1471-2105-11-367
https://pubmed.ncbi.nlm.nih.gov/20598126
https://doi.org/10.1038/s41568-019-0116-x
https://pubmed.ncbi.nlm.nih.gov/30755690
https://doi.org/10.1038/nrclinonc.2016.25
https://pubmed.ncbi.nlm.nih.gov/26977780
https://doi.org/10.1038/nature13904
https://pubmed.ncbi.nlm.nih.gov/25428503
https://doi.org/10.1172/JCI91190
https://pubmed.ncbi.nlm.nih.gov/28650338
https://doi.org/10.1126/science.aaf1490
https://pubmed.ncbi.nlm.nih.gov/26940869
https://doi.org/10.1158/1078-0432.CCR-16-2128
https://pubmed.ncbi.nlm.nih.gov/28007776
https://doi.org/10.1158/1078-0432.CCR-16-2554
https://pubmed.ncbi.nlm.nih.gov/28039262
https://doi.org/10.1001/jamaoncol.2018.2805
https://pubmed.ncbi.nlm.nih.gov/30098163
https://doi.org/10.1158/0008-5472.CAN-09-1089
https://pubmed.ncbi.nlm.nih.gov/19723656
https://doi.org/10.1186/s13045-017-0471-6
https://pubmed.ncbi.nlm.nih.gov/28476164
https://doi.org/10.1016/j.tcb.2018.08.005
https://pubmed.ncbi.nlm.nih.gov/30220580
https://doi.org/10.1109/TIP.2006.877360
https://pubmed.ncbi.nlm.nih.gov/16948314


www.aging-us.com 13 AGING 

implications for immunotherapy. Ann Oncol. 2019; 
30:68–75. 

 https://doi.org/10.1093/annonc/mdy470 
PMID:30407504 

35. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, 
Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust 
enumeration of cell subsets from tissue expression 
profiles. Nat Methods. 2015; 12:453–57. 

 https://doi.org/10.1038/nmeth.3337 PMID:25822800 

36. Cancer Genome Atlas Network. Genomic Classification 
of Cutaneous Melanoma. Cell. 2015; 161:1681–96. 

 https://doi.org/10.1016/j.cell.2015.05.044 
PMID:26091043 

37. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. 
Molecular and genetic properties of tumors associated 
with local immune cytolytic activity. Cell. 2015; 
160:48–61. 

 https://doi.org/10.1016/j.cell.2014.12.033 
PMID:25594174 

38. Tsai KK, Zarzoso I, Daud AI. PD-1 and PD-L1 antibodies 
for melanoma. Hum Vaccin Immunother. 2014; 
10:3111–16. 

 https://doi.org/10.4161/21645515.2014.983409 
PMID:25625924 

39. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, 
Zimmer L, Sucker A, Hillen U, Foppen MH, Goldinger 
SM, Utikal J, Hassel JC, Weide B, et al. Genomic 
correlates of response to CTLA-4 blockade in 
metastatic melanoma. Science. 2015; 350:207–11. 

 https://doi.org/10.1126/science.aad0095 
PMID:26359337 

40. Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, 
Zeng Y, Chen H. The promising immune checkpoint 
LAG-3: from tumor microenvironment to cancer 
immunotherapy. Genes Cancer. 2018; 9:176–89. 

 https://doi.org/10.18632/genesandcancer.180 
PMID:30603054 

41. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in 
regulating anti-tumor immunity. Immunol Rev. 2017; 
276:97–111. 

 https://doi.org/10.1111/imr.12520 PMID:28258697 

42. Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT 
and CD96: new checkpoint receptor targets for cancer 
immunotherapy. Immunol Rev. 2017; 276:112–20. 

 https://doi.org/10.1111/imr.12518  
PMID:28258695 

43. Blair AB, Kleponis J, Thomas DL 2nd, Muth ST, Murphy 
AG, Kim V, Zheng L. IDO1 inhibition potentiates 
vaccine-induced immunity against pancreatic 
adenocarcinoma. J Clin Invest. 2019; 129:1742–55. 

 https://doi.org/10.1172/JCI124077  
PMID:30747725 

44. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set 
variation analysis for microarray and RNA-seq data. 
BMC Bioinformatics. 2013; 14:7. 

 https://doi.org/10.1186/1471-2105-14-7 
PMID:23323831 

45. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, 
Mesirov JP, Tamayo P. The Molecular Signatures 
Database (MSigDB) hallmark gene set collection. Cell 
Syst. 2015; 1:417–25. 

 https://doi.org/10.1016/j.cels.2015.12.004 
PMID:26771021 

46. Lawrence MS, Stojanov P, Polak P, Kryukov GV, 
Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel 
CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, 
et al. Mutational heterogeneity in cancer and the 
search for new cancer-associated genes. Nature. 2013; 
499:214–18. 

 https://doi.org/10.1038/nature12213  
PMID:23770567 

47. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, 
Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, 
Leiserson MD, Miller CA, Welch JS, et al. Mutational 
landscape and significance across 12 major cancer 
types. Nature. 2013; 502:333–39. 

 https://doi.org/10.1038/nature12634  
PMID:24132290 

48. Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu 
H, Degenhardt J, Mayba O, Gnad F, Liu J, Pau G, Reeder 
J, Cao Y, et al. A comprehensive transcriptional portrait 
of human cancer cell lines. Nat Biotechnol. 2015; 
33:306–12. 

 https://doi.org/10.1038/nbt.3080  
PMID:25485619 

 

 

  

2871

https://doi.org/10.1093/annonc/mdy470
https://pubmed.ncbi.nlm.nih.gov/30407504
https://doi.org/10.1038/nmeth.3337
https://pubmed.ncbi.nlm.nih.gov/25822800
https://doi.org/10.1016/j.cell.2015.05.044
https://pubmed.ncbi.nlm.nih.gov/26091043
https://doi.org/10.1016/j.cell.2014.12.033
https://pubmed.ncbi.nlm.nih.gov/25594174
https://doi.org/10.4161/21645515.2014.983409
https://pubmed.ncbi.nlm.nih.gov/25625924
https://doi.org/10.1126/science.aad0095
https://pubmed.ncbi.nlm.nih.gov/26359337
https://doi.org/10.18632/genesandcancer.180
https://pubmed.ncbi.nlm.nih.gov/30603054
https://doi.org/10.1111/imr.12520
https://pubmed.ncbi.nlm.nih.gov/28258697
https://doi.org/10.1111/imr.12518
https://pubmed.ncbi.nlm.nih.gov/28258695
https://doi.org/10.1172/JCI124077
https://pubmed.ncbi.nlm.nih.gov/30747725
https://doi.org/10.1186/1471-2105-14-7
https://pubmed.ncbi.nlm.nih.gov/23323831
https://doi.org/10.1016/j.cels.2015.12.004
https://pubmed.ncbi.nlm.nih.gov/26771021
https://doi.org/10.1038/nature12213
https://pubmed.ncbi.nlm.nih.gov/23770567
https://doi.org/10.1038/nature12634
https://pubmed.ncbi.nlm.nih.gov/24132290
https://doi.org/10.1038/nbt.3080
https://pubmed.ncbi.nlm.nih.gov/25485619


www.aging-us.com 14 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Heatmap presentation of clustering results of HCC patients. 

 

 
 

Supplementary Figure 2. Distribution of Hoshida et al. three HCC subclasses in low- vs. high-risk subtypes in (A) TCGA cohort, (B) ICGC 

cohort, and (C) GSE76427 cohort. 
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Supplementary Figure 3. Distinct race distribution in HCC low- and high-risk subtypes in the TCGA cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

Supplementary Table 1. The top 100 genes used for the pathway annotation. 

Supplementary Table 2. Differential analyses results of the top 100 immune genes between low- and high-risk 
HCC subtypes in the TCGA cohort.  

Supplementary Table 3. Information of three datasets included in this study. 

Datasets Datasets Datasets 

TCGA Illumina RNAseq HTSeq 373 

ICGC Illumina RNAseq HTSeq 232 

GSE76427 Illumina HumanHT-12 V4.0 expression beadchip 114 

Total   719 
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