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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the most life-

threatening tumors worldwide. According to current 

statistics, HCC is the sixth-leading cause of cancer and 

the fourth-leading cause of cancer death worldwide [1]. 

HCC is also the fourth most common malignant tumor 

and the second-leading cause of cancer death in China, 
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ABSTRACT 
 

Epithelial cell transformation (EMT) plays an important role in the pathogenesis and metastasis of 
hepatocellular carcinoma (HCC). We aimed to establish a genetic risk model to evaluate HCC prognosis based 
on the expression levels of EMT-related genes. The data of HCC patients were collected from TCGA and ICGC 
databases. Gene expression differential analysis, univariate analysis, and lasso combined with stepwise Cox 
regression were used to construct the prognostic model. Kaplan–Meier curve, receiver operating 
characteristic (ROC) curve, calibration analysis, Harrell’s concordance index (C-index), and decision curve 
analysis (DCA) were used to evaluate the predictive ability of the risk model or nomogram. GO and KEGG 
were used to analyze differently expressed EMT genes, or genes that directly or indirectly interact with the 
risk-associated genes. A 10-gene signature, including TSC2, ACTA2, SLC2A1, PGF, MYCN, PIK3R1, EOMES, 
BDNF, ZNF746, and TFDP3, was identified. Kaplan–Meier survival analysis showed a significant prognostic 
difference between high- and low-risk groups of patients. ROC curve analysis showed that the risk score 
model could effectively predict the 1-, 3-, and 5-year overall survival rates of patients with HCC. The 
nomogram showed a stronger predictive effect than clinical indicators. C-index, DCA, and calibration analysis 
demonstrated that the risk score and nomogram had high accuracy. The single sample gene set enrichment 
analysis results confirmed significant differences in the types of infiltrating immune cells between patients in 
the high- and low-risk groups. This study established a new prediction model of risk gene signature for 
predicting prognosis in patients with HCC, and provides a new molecular tool for the clinical evaluation of 
HCC prognosis. 
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with 500,000 new confirmed cases and more than 

400,000 deaths each year in China [2, 3]. In recent 

decades, great progress has been made in the diagnosis 

and treatment of HCC. The 5-year survival rate has 

reached more than 50% after surgery for early-stage 

HCC, but the recurrence rate is still relatively high. The 

treatment methods for advanced HCC are limited, and 

the prognosis is poor. In recent years, molecular  

and immune-targeted therapies such as Lenvatinib, 

programmed cell death protein 1 (PD-1) monoclonal 

antibodies, and bevacizumab have achieved good 

results in HCC; however, they still face problems such 

as high cost, poor targeting, and adverse reactions [4, 

5]. How to scientifically evaluate the prognosis of HCC 

patients and implement precise treatment is currently a 

hot topic in the field of HCC research. 

 

HCC is highly heterogeneous, and commonly used 

indicators such as α-fetoprotein (AFP), D-γ-hydro-

xyprothrombin (DCP), and cytokeratin (CK)-18 are 

unable to meet the clinical prognosis evaluation needs 

of patients with HCC. Previous studies that have 

examined single or multiple genes have found several 

molecular markers for predicting HCC prognosis [6, 

7]. The development of genomics, proteomics,  

and metabolomics has helped to establish the 

corresponding molecular typing of HCC and provide 

new means and indicators for its prognosis [8–10]. 

However, high-throughput sequencing and large-scale 

gene mutation detection have not yet solved the 

obstacles that challenge the precise diagnosis and 

treatment of HCC, including the variety of HCC types 

and the technical difficulty in identifying them. To 

address this problem, several scholars have recently 

established small panel gene prediction models to 

predict the prognosis of HCC [11–13], which have 

shown better predictive accuracy than single 

biomarkers. The application of epithelial 

mesenchymal transition (EMT)-related genes in 

predicting HCC prognosis has not yet been reported. 

 

The poor prognosis of HCC occurs primarily because 

HCC is prone to metastasis. There are many factors 

related to the mechanisms of tumorigenesis and 

metastasis, and EMT and its reverse process are 

important underlying mechanisms [14]. After EMT 

occurs, cell adhesion decreases and the movement and 

invasion capacity increases; this allows tumor cells to 

detach from the primary lesion and enter the peripheral 

blood vessels and lymphatic system [15]. The reverse 

process of EMT—mesenchymal epithelial cell trans-

formation (MET)—is conducive to the homing and 

proliferation of tumor cells to form metastases. EMT 
involves multiple signaling pathways and complex 

molecular mechanisms, including the TGF-beta, WNT, 

and FGF signaling pathways [16]. A database of EMT-

related genes has been established by some scholars 

[17]. Considering the above, we examined EMT-related 

genes and applied the HCC data to The Cancer Genome 

Atlas (TCGA) for bioinformatics analysis. We then 

screened the EMT genes that are closely related to HCC 

prognosis to establish a molecular prediction model to 

evaluate HCC prognosis. We validated the prediction 

model in an International Cancer Genome Consortium 

(ICGC) data cohort. This provided a new molecular 

model to evaluate the prognosis of patients with HCC 

and guide clinical diagnosis and treatment. 

 

MATERIALS AND METHODS 
 

Data acquisition and arrangement 

 

The mRNA expression RNA-Seq data and DNA 

methylation data were analyzed by an Illumina Human 

Methylation 450 BeadChip, and clinical information 

about liver hepatocellular carcinoma (LIHC) was 

acquired from the TCGA (https://cancergenome. 

nih.gov/)-LIHC database to analyze differentially 

expressed genes and build gene prognostic models. 

ICGC data were downloaded from the ICGC database 

(https://icgc.org/) for external validation of the 

prognostic gene models. EMT-related genes were 

collected from the dbEMT database [17]. 

 

Identification of differentially expressed genes in 

HCC 

 

The raw RNA-seq data were annotated and then 

normalized by the variance stabilizing transformation 

(VST) function [18]. The differential gene expressions 

of the TCGA-LIHC tumor samples were analyzed 

against normal samples. The absolute value thresholds 

of the log2 fold changes (logFC) > 0.5 and adjusted P 

value < 0.0001 were adopted for EMT-related genes. A 

volcanic map and heat map were constructed to 

illustrate the EMT genes that were differentially 

expressed between cancer tissues and normal tissues. 

 

Establishment of a prognostic gene signature and 

internal verification 

 

Univariate Cox regression analysis was performed to 

screen the EMT genes related to prognosis. A P-value < 

0.05 was considered to indicate statistical significance. 

Next, the least absolute shrinkage and selection operator 

(lasso) regression model was performed to minimize 

over-fitting and identify the most significant survival-

associated differentially expressed EMT-related  

genes in HCC. Stepwise multivariate Cox regression 

analysis was performed after testing for collinearity to 

establish the EMT-derived risk signature in HCC. The 

risk score was calculated by the following formula 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://icgc.org/
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based on a combination of the Cox coefficient and gene 

expression [19]: 

 

1

*
K

i

Risk score i Expi
=

= , 

 

where k, βi, and Expi represent the number of signature 

genes, the coefficient index, and the gene expression 

level, respectively. 

 

To verify the single-gene prognostic value of the 

model’s corresponding EMT-related genes, patients 

were divided into high- and low-expression groups 

based on the gene expression level as determined by the 

surv_cutpoint function in the “survminer” package. The 

time-dependent prognostic value of the gene signature, 

together with pathologic TNM staging, age, tumor 

grade or tumor stage was investigated by the Kaplan–

Meier (KM) method, and the log-rank test was used to 

compare the survival difference between the high- and 

low-expression groups. The patients were sorted by risk 

score, and the risk score distribution and survival status 

for each patient, as well as the heat map of the risk-

associated gene expression levels were determined. 

 

To detect the significance of EMT in HCC diagnosis, the 

independent subsets were randomly categorized into a 

training set and an internal validation set using the “caret” 

package. Receiver operating characteristic (ROC) analysis 

was performed with independent subsets of the TCGA-

LIHC samples, and the area under the ROC curve (AUC) 

was calculated. The predictive value of the prognostic 

gene signature was further studied in the test cohort and 

later verified in the ICGC Japanese HCC cohort. 

 

Protein expression and gene mutation analysis of the 

prognostic gene signature 

 

The protein expression levels of the prognosis-related 

genes in normal tissue and HCC tissue were retrieved 

from the Human Protein Atlas database, and the data 

were visualized in immunohistochemistry staining 

images (http://www.proteinatlas.org). The mutation 

types of the risk-related genes were explored using the 

“TCGAmutations” package. 

 

Independent prognostic role of the gene signature in 

TCGA 

 

The risk score of each HCC sample and the 

corresponding clinical factors (including age, sex, tumor 

grade, tumor stage, and pathologic TNM staging) were 
subjected to univariate and multivariate Cox regression 

analyses. Univariate and multivariate Cox regression 

analysis were performed to investigate whether the 

prognostic gene signature or the individual genes could 

be independent prognostic indicators after combing the 

clinical parameters. P-values < 0.05 indicated statistical 

significance. 

 

Identification of candidate methylation prognostic 

indicators from the signature-related genes 

 

Methylation sites in the signature-related genes were 

collected from the methylation annotation file. Overall, 

379 tumor samples and 50 normal samples with 340 

DNA methylation sites were analyzed. The methylation 

value of each methylation site in liver cancer tissues and 

normal tissues is displayed in a scatter diagram 

according to the arrangement of methylation sites. The 

methylation data of tumor tissue matched with patient 

full survival information were used to assess the 

association between DNA methylation levels and the 

overall survival (OS) by univariate Cox regression 

analysis. Besides, the DNA methylation status of 

signature-related genes and their expression levels, 

clinical information, and survival status were also 

investigated using MEX.PRESS (http://mexpress.be). 

 

Building and validating a predictive nomogram 

 

By employing “survival,” “foreign,” and “rms” packages, 

a nomogram consisting of relevant clinical parameters 

and independent prognostic factors, based on previous 

independent prognostic factor screening, was used to 

predict the probability of 1-, 3-, and 5-year OS in patients 

with HCC. The nomogram performance was evaluated 

by Harrell’s concordance index (C-index) [20]. A time-

dependent ROC curve and the calibration curve were also 

plotted to estimate the accuracy of the observed rates 

compared to the nomogram’s predicted survival for the 1-

, 3-, and 5-year OS categories. Moreover, the clinical 

application prospects of the 10-gene signature were 

determined by decision curve analysis (DCA) [21]. 

 

Identification of the relationship between the risk 

score and the immune landscape 

 

A single simple gene set enrichment analysis (ssGSEA) 

method was performed using the “GSVA” package to 

clarify the relationship between the risk score and the 

immune landscape. The enrichment analysis depended on 

the gene sets for 28 types of specifically labeled tumor 

immune-infiltrating cells (TIICs) [22]. Corresponding 

scores to reflect the infiltration abundance of each single 

TIIC sample were collected through the enrichment 

analysis, and the enrichment scores of the high- and low-

risk groups were analyzed. Additionally, the correlation 
was calculated between the risk score and the  

immune landscape using the “ggstatsplot” package 

(https://github.com/Indrajeet.Patil/ggstatsplot/issues). The 

http://www.proteinatlas.org/
http://mexpress.be/
https://github.com/Indrajeet.Patil/ggstatsplot/issues
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cut-off of the P-values obtained by an independent 

samples t-test was P < 0.05. 

 

Protein-protein interaction network 

 

We next sought to evaluate the functional enrichment of 

the ten risk-related genes and to better understand the 

efficacy of the risk model. To this end, we collected the 

proteins that had been confirmed to interact directly or 

indirectly with the ten risk genes obtained using the 

Search Tool for the Retrieval of Interacting Genes 

(STRING) database [23]. The protein interaction 

networks were constructed with a confidence > 0.4 as 

the cut-off. 

 

Functional enrichment analysis 

 

Functional enrichment analysis was performed using the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

and Gene Ontology (GO) analyses to explore the 

biological function of the HCC-specific EMT genes or 

the protein-protein interaction network-related genes. 

The “clusterProfiler” package in R software was used to 

determine the cellular component, the molecular 

function, and the biological process for GO analysis, 

and pathway analysis in KEGG [24]. The histograms 

for the results of functional enrichment analysis were 

acquired by the “GO plot” R package. An adjusted P < 

0.001 was used as the threshold. 

 

Statistical analysis 
 

R software 3.6.3 (http://www.Rproject.org) was used for 

statistical analyses (Vienna, Austria). The “Deseq2 R” 

package was used to nominalize the data, identify 

differentially expressed genes, and to perform principal 

component analysis. The “ggplot2” was used to plot the 

heat map, volcano plot, boxplot, and scatter plot. The 

“My.stepwise,” “survival,” and “survminer” packages 

were used for Cox regression and Kaplan–Meier survival 

analyses. Lasso regression, ROC curve, DCA, and C-

index were performed in “glmnet,” ”timeROC,” “rmda,” 

and “survcomp” packages. Nomogram and corresponding 

calibration curves were performed using the “rms” 

package. All of the other packages used are mentioned 

above. Qualitative variables were analyzed by χ2 test or 

Fisher’s exact test. Quantitative variables were analyzed 

by t-test or nonparametric Wilcoxon rank-sum test. 

 

RESULTS 
 

Identification of HCC-specific EMT genes and their 

functional enrichment 
 

The differential analysis of the sequencing data, 

including 50 normal samples and 374 tumor samples, 

showed that 2,547 genes among the total 47,781 

annotated genes were significantly abnormally 

expressed (with a cut-off of absolute log2FC > 2 and P 

< 0.0001). These dysregulated genes included 64 EMT-

related genes, which were significantly differentially 

expressed in HCC tissues and normal tissues. A heat 

map for the expression profile of the 270 differently 

expressed EMT-related genes with absolute log2FC > 1 

and P < 0.0001 cut-offs are shown in Figure 1A. 

Abnormally expressed changes in EMT-related genes 

are displayed in the volcano plot, and the majority of 

genes were upregulated (Figure 1B). 

 

According to the functional enrichment analysis, the 

270 EMT genes were mainly enriched in 634 GO terms 

and 68 KEGG pathways (P < 0.001). These results 

indicated that most of the EMT genes participated in 

biological processes. The top molecular functions of 

these 270 HCC-specific EMT genes included protein, 

RNA, and DNA binding, and enzyme activity, such as 

DNA-binding transcription activator activity, RNA 

polymerase II-specific co-receptor binding, and 

transmembrane receptor protein kinase activity (Figure 

1E). In terms of biological processes, the majority of 

these genes were involved in epithelial cell 

proliferation (Figure 1C). These genes are the main cell 

component of the collagen-containing extracellular 

matrix (Figure 1D). 

 

The KEGG analysis suggested that these HCC-specific 

EMT genes were mainly involved in pathways 

associated with cancer, phosphatidylinositol-3-kinase 

(PI3K)/Akt signaling, focal adhesion, regulation of stem 

cell pluripotency, IL-17 signaling, transcriptional 

misregulation in cancer, Wnt signaling, and TNF 

signaling (Figure 1F). 

 

Establishment and internal validation of the ten 

prognostic genes in TCGA-LIHC 

 

Excluding samples with incomplete OS data or clinical 

stages, 346 TCGA-LIHC patients with a follow-up 

time of more than 30 days were included for 

subsequent analysis. In total, 106 genes associated with 

HCC OS in the TCGA-LIHC cohort were screened 

using univariate Cox regression analysis and different 

expression results. 

 

Through lasso Cox regression, we further narrowed the 

number of genes associated with OS to 22 

(Supplementary Figure 1). Subsequently, an optimal 

prognostic signature based on ten EMT-related genes 

was identified by stepwise Cox analysis. The identified 
genes included tuberous sclerosis 2 (TSC2), actin alpha 

2 (ACTA2), solute carrier family 2 member 1 (SLC2A1), 

placental growth factor (PGF), mycn proto-oncogene 

http://www.rproject.org/
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(MYCN), phosphoinositide-3-kinase regulatory subunit 

1 (PIK3R1), eomesodermin (EOMES), brain-derived 

neurotrophic factor (BDNF), zinc finger protein 746 

(ZNF746), and transcription factor Dp family member 3 

(TFDP3). The expression of all ten risk genes in HCC 

was dysregulated (absolute logFC > 0.5, P < 0.0001), 

and only PIK3R1 and EOMES were downregulated. The 

relative gene expression levels of the ten prognostic 

genes after the sample ordered by risk score are shown 

in the heat map (Figure 2D). The patients were then 

stratified into low- and high-risk groups at the best 

separation cut-off of the risk score, and the risk score 

distribution of each patient is shown in Figure 2A. The 

survival of patients in the two groups was significantly 

different. The mean survival time of the high-risk 

patients was significantly shorter, and the vital status of 

death accounted for a larger proportion than that of low-

risk patients (Figure 2B). Kaplan–Meier survival curve 

analysis revealed that the prognoses of patients in the 

high-risk group were significantly worse than those of 

patients in the low-risk group (Figure 2C). Kaplan–

Meier survival curve analysis also showed that the 

expression of the ten genes, except BDNF, could 

distinguish the survival probability of patients with 

HCC (Supplementary Figure 2). A total of 346 patients 

were randomly divided into a training group (n = 200 

cases) and a validation group (n = 146 cases). The 

AUCs for 1-, 3, and 5-year OS in the training group 

were 0.858, 0.846, and 0.824, respectively (Figure 2E). 

The AUCs for 1-, 3-, and 5-year OS in the validation 

group were 0.755, 0.714, and 0.757, respectively 

(Figure 2F). The AUCs for 1-, 3-, and 5-year OS in the 

overall sample were 0.824, 0.798, and 0.800, 

respectively (Figure 2G). 

 

 
 

Figure 1. Differently expressed EMT related genes between normal and HCC tissues. (A) Heatmap of 270 differently expressed 

EMT related genes in TCGA-LIHC. The color from blue to red represents low expression to high expression. (B) Volcano plot of EMT related 
genes: blue indicates down and upregulated genes. Changes of the risk genes are identified by names. (C–E) Dot plots represents biological 
process, cellular component and molecular function of Gene ontology analysis based on 270 HCC dysregulated EMT related genes 
respectively. (F) KEGG pathway analysis of differently expressed EMT related genes. EMT, Epithelial cell transformation; HCC, hepatocellular 
carcinoma; TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure 2. Construction of a 10 gene based EMT-related prognostic signature for HCC in TCGA-LIHC cohort. (A) The risk score 
distribution of HCC patients in TCGA-LIHC cohorts. (B) Duration and survival status of HCC patients. (C) Kaplan-Meier analysis of ten-gene 
signature in TCGA-LIHC cohort. (D) Heatmaps of the ten gene signature relative expression. (E) Time-dependent ROC analysis of ten-gene 
signature in training set. (F) Time-dependent ROC analysis of ten-gene signature in testing set. (G) Time-dependent ROC analysis of ten-gene 
signature in total cohort. HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic curve.  
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External validation of the gene signature in the 

ICGC cohort 

 

To validate the outcome model based on the ten EMT-

related genes, 243 Japanese patients with HCC from the 

ICGC cohort were used for the external validation. The 

patients were divided into high- and low-risk groups by 

the optimal risk score cut-off, and the low-risk group 

had a better prognosis than the high-risk group (Figure 

3A). The OS of high-risk patients was significantly 

worse than that of low-risk patients (Figure 3B). 

Kaplan–Meier survival curve analysis showed a 

significant difference in the OS between the two groups 

(P < 0.0001) (Figure 3C). A heat map of the 10-gene 

signature is shown in Figure 3D. The AUCs for 1-, 3-, 

and 5-year OS predictions for risk score were 0.688, 

0.674, and 0.876, respectively (Figure 3E). The AUCs 

for 1-, 3-, and 5-year OS predictions for based on tumor 

stage were 0.813, 0.638, and 0.678, respectively (Figure 

3F). The AUCs improved when combined with the 

stage, age, and 10-gene signature, with values of 0.844, 

0.711, and 0.916 for 1-, 3-, and 5-year OS, respectively 

(Figure 3G). 

 

Building and validating a predictive nomogram 

 

To better predict the prognosis of patients with HCC, a 

prognostic nomogram was constructed based on 323 

HCC patients with complete clinical information about 

risk score combing clinical factors (age, sex, stage, 

pathologic T) (Figure 4A). The AUCs of 1-, 3-, and 5-

year OS predictions were 0.822, 0.822, and 0.807, 

respectively (Figure 4C). The calibration plots showed 

that the nomogram was best for predicting 1-, 3-, and 5-

year OS in patients with HCC (Figure 4B). The C-index 

values of the nomogram were 0.812, 0.799, and 0.633 

respectively for 1-, 3-, and 5-year OS (P < 0.0001), 

suggesting that the performance of the nomogram was 

reliable (Figure 4D). DCA showed the nomogram 

performed better at the threshold probability (ranging 

from 2% to 50%) in Figure 4E. These results revealed 

that the prognostic nomogram was superior in 

predicting the 1-, 3-, and 5-year survival outcomes of 

patients with HCC. 

 

Comparison of predictive ability between risk score 

and clinical indicators 

 

The predictive ability of the risk score was compared 

with the following clinical indicators: age, sex, 

pathologic TNM staging, and HCC stage. Univariate 

Cox regression analysis showed that risk score, stage, 

and pathologic T and M stages were risk factors for 
poor prognosis (Figure 5A). Multivariate Cox 

regression analysis showed that only the risk score was 

an independent risk factor for poor prognosis of HCC 

(Figure 5B–5D). Both univariate and multivariate Cox 

regression analyses were statistically significant. These 

results suggested that the ten EMT-related gene-based 

signature was an independent prognostic indicator for 

HCC OS. Kaplan–Meier survival analysis showed that 

the gene signature could better predict the prognosis of 

patients with HCC compared with the commonly used 

TNM classification, AJCC stage, tumor grade, and age 

(Figure 6). The AUC of the risk score was significantly 

higher than those of other clinical factors for predicting 

1-, 3-, and 5-year OS in patients with HCC (Table 1). 

The risk score could not only distinguish between 

normal and tumor tissues, but could also show 

differences in tumor grade and HCC stage 

(Supplementary Figure 3). 

 

Genetic variation and protein expression of the 10-

gene signature 

 

The protein expression of the ten genes was explored in 

the Human Protein Profiles. The characteristic picture 

of seven genes is shown in Supplementary Figure 4C. 

BDNF had lower expression in hepatocytes and was not 

detected in tumor cells. PIK3R1 had lower expression in 

hepatocytes and medium expression in tumor cells. The 

others genes showed similar expression between 

hepatocytes and tumor cells. The protein expression of 
PGF, MYCN, and TFDP3 were not found in this 

database. 

 

Gene mutation analysis showed that 26 of the 363 

samples (7.16%) had mutations in six genes 

(Supplementary Figure 4A). Among these genes, the 

TSC2 gene is most susceptible to mutation, and its 

mutations include missense mutations, nonsense 

mutations, and frame shifts (Supplementary Figure 4B). 

Missense mutation was also the most common genetic 

alteration for PIK3R1, EOMES, MYCN, ZNF746, and 

BNDF. Owing to the limitation of the sample of 

mutations, no relevant survival analysis related to each 

mutated gene was performed. 

 

Prognostic-related gene methylation status of the 10-

gene signature 

 

Univariate Cox regression analysis demonstrated that 

six of ten genes owned 51 prognosis-related 

methylation sites. Among them, 22 sites played a 

beneficial role, and 29 played a harmful role (Figure 

7A–7F). We performed Kaplan–Meier analysis 

additionally in order to dialectically indicate the 

prognostic effect of these methylation sites. 

Supplementary Figure 5 demonstrates several 
representative Kaplan–Meier maps; four methylation 

sites in BDNF, two methylation sites in PIK3R1, and 

one methylation site in TSC2, ZNF746, and EOMES 
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Figure 3. Risk score analysis, Kaplan-Meier analysis and time-dependent ROC analysis of ten-gene signature in ICGC cohort. 
(A) Risk score analysis of ten-gene signature in ICGC cohort. (B) Distribution of risk score. (C) Kaplan-Meier analysis of ten-gene signature in 
ICGC cohort. (D) Heatmap of ten gene signature. (E) Time-dependent ROC analysis of ten-gene signature in total cohort. (F) Time-dependent 
ROC analysis of ten-gene signature in training set. (G) Time-dependent ROC analysis of ten-gene signature in testing set. ROC, receiver 
operating characteristic curve; ICGC, International Cancer Genome Consortium. 
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Figure 4. Nomogram predicting overall survival for HCC patients in TCGA cohorts. (A) A prognostic nomogram predicting 1-, 3-, and 
5- year OS of HCC. (B) Calibration plots of the nomogram. (C) Time-dependent ROC analysis of nomogram predicting 1-, 3-, and 5- year OS of 
HCC. (D) C-index of the nomogram. (E) Decision curve analysis of nomogram predicting 1-, 3-, and 5- year OS of HCC comparing the risk score, 
stage and Pathologic T. HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; OS, overall survival; ROC, receiver operating 
characteristic curve. 
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could be used to group the patients with HCC in high- 

and low-risk groups with significant differences in OS 

(Supplementary Figure 5). The methylation statistics of 

BDNF and PIK3R1 were significantly correlated with 

the OS of patients with HCC (Figure 7A, 7D). This was 

also confirmed by the methylation information from 

MEX.PRESS website (Figure 7G, 7H). 

Protein-protein interaction network construction 

and functional enrichment 

 

To further explore a well-documented protein-protein 

interaction (PPI) for the signature proteins, we 

established the protein-protein interaction network 

using the STRING database. The PPI network added 

 

 
 

Figure 5. Forrest plot of the univariate and multivariate Cox regression analysis in TCGA cohorts. (A) Forrest plot of the 

univariate Cox regression analysis OS of 10 gene signature and clinical factor. (B) Forrest plot of the multivariate Cox regression analysis OS of 
10 gene signature and clinical factor. (C) Forrest plot of the multivariate Cox regression analysis OS of risk score and clinical factor. (D) Forrest 
plot of the multivariate Cox regression analysis OS of 10 gene signature. Beta values representatives the coefficient index β for each gene. 
TCGA, The Cancer Genome Atlas; OS, overall survival. 
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another 70 proteins that had been verified to interact 

directly or indirectly with the ten genes identified in the 

current study. The PPI contained 80 nodes and 1,156 

edges, and the PPI enrichment P value was < 1.0e-16. 

The top ten genes that interacted with PGF, SCL2AC1, 

PIK3R1, and BDNF are listed in the four corners of the 

PPI network (Figure 8A). The network also contains 

some tumor driver genes such as EGFR, VEGFA, 

NGFR, and AKT1. GO functional enrichment results 

showed that these genes were enriched in molecular 

functions including 1-PI3K activity and PI3K activity 

(Figure 8C). The extrinsic membrane component, TOR 

complex, PI3K complex, TORC2 complex, and 

postsynaptic cytosol were the top cell component 

functions enriched (Figure 8D). Additionally, TOR 

signaling, neuron death, regulation of neuron death, and 

regulation of autophagy were the top biological 

processes enriched (Figure 8B). The 3-gene concept 

network of GO analysis showed that most of the genes 

in PPI networks were upregulated. KEGG pathway 

analysis showed that the PPI network of the ten genes 

was mainly enriched in the PI3K/Akt signaling 

pathway, mTOR signaling pathway, autophagy-animal 

pathway, longevity regulating pathway, Epidermal 

growth factor receptor (EGFR) tyrosine kinase inhibitor 

resistance pathway, and hypoxia inducible factor (HIF)-

1 signaling pathway (Figure 8E). 

 

Correlation between risk score and immune cell 

infiltration 

 

We analyzed the differences in tumor-infiltrating cells 

between the high- and low-risk groups. The amount of 

immune cell infiltration in low-risk patients was 

significantly higher than that in high-risk patients, and 

included cell types such as B cells, CD4+ T cells, 

macrophages, Th cells, and tumor-infiltrating 

lymphocytes (TILs). There were also significant 

differences in T-cell costimulation signaling and type I 

IFN signaling between the high- and low-risk groups 

(Figure 9A). Thus, the risk score can distinguish the 

type and distribution of immune cell infiltration because 

 

 
 

Figure 6. Kaplan-Meier survival analysis of the gene signature compared with clinical indicators. (A) T stage; (B) N stage; (C) M 

stage; (D) tumor grade; (E) AJCC stage; (F) Age. 
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Table 1. Comparison of predictive ability of risk score and clinical indicator. 

OS Age Sex TNM Pathologic T Grade Risk score 

1 year OS 0.509 0.508 0.712 0.721 0.494 0.833 

3 year OS 0.497 0.520 0.681 0.681 0.518 0.820 

5 year OS 0.573 0.516 0.645 0.662 0.558 0.814 

 

significant differences were found in the types of 

immune cell infiltration between patients with high- and 

low-risk scores (Figure 9B). The correlation analysis 

between the gene signature and different types of 

immune cell infiltration showed that the gene signature 

was negatively correlated with CD8+T cells, B cells, 

NK cells, TILs, and cytotoxic activity (P < 0.001), and 

positively correlated with macrophages (P = 0.001) 

(Figure 9C–9H). 

 

DISCUSSION 
 

EMT is a basic process of cell phenotypic 

transformation and plays an important role tumor 

metastasis [25]. However, no previous report has 

examined the application of EMT-related genes to 

predict the prognosis of HCC. In this study, ten EMT-

related genes were identified to predict the prognosis of 

HCC using bioinformatics analysis. Patients with HCC 

were divided into high- and low-risk groups according 

to the risk score, and the prognoses of patients in the 

high-risk group were found to be significantly worse 

than those of the low-risk group. Moreover, we found 

that the 1-, 3-, and 5-year OS of patients with HCC can 

be effectively predicted by the 10-gene signature. 

TCGA and ICGC liver cancer cohorts were used to 

perform internal and external validation. The 10-gene 

signature was an independent predictive factor and 

predicted the prognosis better than AJCC stage, tumor 

grade, and pathologic T, N, and M stages, all of which 

are commonly used. DCA and ROC curve analysis 

showed that the risk score of the 10-gene signature was 

significantly better than that of the clinical indicators. 

These results indicate that the risk score model has a 

strong effect in predicting the prognosis of patients with 

HCC. 
 

Previous studies have reported the prognostic role of 

different gene signatures for predicting the OS of HCC 

[11, 26–28]. Ouyang et al. [29] identified a 12-gene 

signature as a robust marker for HCC OS, and Jiang et 

al. established a glycolysis-related gene signature that 

could predict survival in patients with HCC [30]. 

Although these gene signatures have achieved a positive 

predictive effect, they did not predict long-term 

survival, such as 5-year survival for patients with HCC. 

In the present study, the AUC used this gene signatures 

were more than 80%, which was better than those of 

other genetic risk models reported in recent studies [11, 

26, 27]. The reason for this difference may be related to 

the different genes included; indeed, EMT-related genes 

are more likely to affect the long-term prognosis of 

patients with HCC. Furthermore, some patients with 

similar clinical-pathological features have different 

prognoses, which is likely to be due to the heterogeneity 

of HCC. The combined application of gene signature 

and clinical indicators might improve the identification 

of high-risk patients with HCC. In this study, the AUC 

for 5-year OS prediction was 0.916 when combining 

use stages, age, and the 10-gene signature. 

 

Boxplots showed that all ten risk genes were 

significantly increased. Multivariate regression analysis 

combing the clinical factors and ten genes showed that 

all ten genes, except SLC2A1, were all independent 

factors for predicting the prognosis of patients with 

HCC, while none of the clinical factors showed 

significant influence (P > 0.05). The Kaplan–Meier 

curves for the high and low-expression groups of the ten 

genes showed significant differences for all ten genes 

except BDNF. The PPI network contains some tumor 

driver genes such as EGFR, VEGFA, NGFR, and AKT1; 

these genes are molecular targets of therapy that are 

commonly used in the clinical setting. Among the top 

ten enriched pathways in KEGG analysis of the PPI 

network, the PI3K/Akt signaling pathway, mTOR 

signaling pathway, and HIF-1 signaling pathway were 

found to potentially participate in immune cell 

signaling, suggesting a potential relationship between 

the 10-gene signature and immunity. 

 

A recent study found that immune cell infiltration was 

related to EMT and tumor metastasis [31]. Foerster’s 

study [32] provided the first global characterization of 

the immune contexture of HCC, and found that it could 

accurately distinguish between patients with good and 

poor survival. As a result, potential prognostic immune-

related genes were screened, and a novel immune-based 

prognostic model of HCC was later established by 

Wang et al. [33, 34]. The 9-gene signature postulated by 

Wang et al. could reflect the status of the tumor immune 

microenvironment, and showed significant differences 

in the types of immune cell infiltration between patients 
in high- and low-risk groups. Moreover, multiple 

immune cell infiltration in low-risk patients was 

significantly higher than that in high-risk patients. The 
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Figure 7. Gene methylation analysis of the gene signature between the tumor and normal tissues. (A) beneficial and harmful 

methylation sites in BDNF; (B) beneficial and harmful methylation sites in EOMES; (C) beneficial and harmful methylation sites in ZNF746 
gene; (D) beneficial and harmful methylation sites in PIK3R1gene; (E) beneficial and harmful methylation sites in TSC2 gene; (F) beneficial and 
harmful methylation sites in MYCN gene; (G) The methylation of BDNF gene significantly correlated with the OS of HCC patients; (H) The 
methylation of PIK3R1 gene significantly correlated with the OS of HCC patients. HCC, hepatocellular carcinoma; OS, overall survival; ROC, 
receiver operating characteristic curve. 
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Figure 8. Protein protein interaction network and functional enrichment of ten gene signature. (A) PPI network of the proteins 

that have been confirmed to interact directly or indirectly with the 10 risk genes from STRING database with confidence > 0.4 as cutoff. (B–D) 
Gene-concept network represents the results for biological process, molecular function and cellular component of Gene ontology analysis 
based on 80 protein-protein interaction network genes respectively. Each plot shows the enrichment entry with the largest number of genes, 
and the differences level of each in HCC against normal tissue is represented by the color from green to red. PPI, Protein protein interaction. 
(E) KEGG pathway analysis results for the 80 protein-protein interaction network genes. 
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gene signatures were negatively correlated with the 

infiltration of CD8 +T cells, B cells, NK cells, TILs, and 

were positively correlated with macrophage infiltration. 

These results suggested that the gene signature was 

closely related to immune cell infiltration and affected 

the prognosis of patients with HCC. 

 

TSC2 is a tumor suppressor, and mutations in TSC2 can 

lead to tuberous sclerosis complex. When in a complex 

with TSC1, TSC2 inhibits the growth factor-stimulated 

phosphorylation of S6K1 and EIF4EBP1 [35]. Caruso et 

al. reported that inactivating mutations in TSC2 were 

sensitive to the mTOR inhibitor in liver cancer cell lines 

[36]. The somatic mutation rate of TSC2 in this study 

was 3.58%. 

 

ACTA2 is considered a marker of myofibroblasts, and is 

one of six actin subtypes, including α-smooth muscle 

actin (SMA), and is involved in smooth muscle 

contraction. Liao et al.’s study showed that high 

 

 
 

Figure 9. Correlation analysis between risk score and immune cell infiltration. (A) The number of immune cell infiltration in 

patients with low-risk and high-risk group. (B) Heatmap to visualize the relative abundance of 28 infiltrating immune cell populations in the 
samples of HCC patients after risk score ordered for low to high. (C–H) The ggscatterstats plots of the significant correlation between risk 
score and different immune cells infiltration status. 
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expression of α-SMA was positively associated with a 

malignant phenotype and poor prognosis in HCC clinical 

samples. SLC2A1 (also GLUT1) is a type of glucose 

transporter that is upregulated in many tumors, and plays 

an important role in maintaining the growth and 

reproduction of cancer cells [37]. Sun et al.’s study 

found that GLUT1 expression in tumor tissues was 

significantly higher than that in adjacent non-tumor 

tissues. Moreover, patients with high expression of 

GLUT1 had a poor OS and recurrence-free survival [38]. 

 
PGF is a type of cell growth regulator that mainly 

regulates the response of cells to injury, and maintains 

the consistency of cell growth, differentiation, and 

apoptosis. Vandewynckel’s reports showed that the 

inhibition of PGF exerts antitumor effects and induces 

vessel normalization [39]. PGF inhibition attenuates 

PERK activation, likely by tempering hypoxia in HCC 

via vessel normalization. 

 
MYCN is a member of the Myc family, and its 

amplification has been reported in numerous tumors. 

Qin’s study showed that silencing of MYCN repressed 

cell proliferation and induced cell death in HCC cells 

[40]. Furthermore, a positive correlation was found 

between MYCN expression and recurrence of de novo 

HCC. Lipid desaturation-mediated ER stress signaling 

regulates MYCN gene expression in HCC cells. 

 
PIK3R1 is one of the regulatory subunits of PI3K, and 

plays an important role in cell growth and apoptosis 

[41]. Ai et al.’s study found that PIK3R1 was highly 

expressed in HCC tissues compared with normal tissues 

[42]; this result was consistent with our analysis from 

the HPA data. In the current study, both beneficial and 

harmful methylation sites were found in PIK3R1; two 

methylation sites in PIK3R1 could predict the OS of 

HCC patients. 

 
EOMES is an important transcriptional regulator of type 

I effector T cells, and plays key roles in the regulation 

of the tumor immune response. Ma et al.’s report 

showed that PD1hi CD8+ T cells were significantly 

enriched in tumor tissues compared to non-tumor liver 

tissues. Furthermore, PD1hi CD8+ T cells highly 

expressed transcription factors such as EOMES [43]. 

BDNF is a brain-derived neurotrophic factor that plays 

an important role in the growth, differentiation, and 

regeneration of various neurons. Lam et al.’s study 

suggested that the BDNF/TrkB system was crucial for 

tumor angiogenesis and growth, and may be a potential 

target for antiangiogenic therapy in HCC [44]. The 

current study found both beneficial and harmful 
methylation sites in BDNF; four methylation sites in 

BDNF could predict the OS of HCC patients. TFDP3 is 

a new transcription regulator of E2F, which can inhibit 

the binding and transcriptional activity of E2F with 

DNA. Jiao et al.’s study indicated that the E2F/TFDP3 

complex was involved in cell cycle regulation [45]. 
 

ZNF746 is a transcription inhibitor that regulates 

neuronal death by inhibiting the transcription of 

peroxisome proliferator-activated receptor gamma 

coactivator-1 α. Kim’s reports showed that inhibition of 

ZNF746 can inhibit the invasion and metastasis of non-

small cell lung cancer cells [46]. 
 

The abovementioned studies show the cancer-related 

functions of the ten genes identified in the current study, 

and may provide some clues about the feasibility of 

these genes as prognostic indicators for HCC. However, 

the specific mechanism requires further study to verify 

our findings and the underlying mechanisms. 
 

Two databases were used to validate the genetic risk 

model, and consistent results were obtained. However, 

the limitations of this study are as follows: (1) The study 

relies on the use of a public database and lacks molecular 

experiments of related genes; (2) the role of the ten genes 

at the protein expression level in the pathogenesis of 

HCC requires further investigation; and (3) the accuracy 

of this gene signature for prediction of prognosis in HCC 

needs to be verified in future clinical studies. 
 

In conclusion, a prognosis prediction model of an EMT-

related gene signature for HCC was established through 

bioinformatics analysis. This gene signature could 

effectively predict the OS rate of patients with HCC, and 

thereby provides a new molecular model for guiding the 

individualized diagnosis and treatment of HCC. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Lasso Cox regression analysis of the OS-related genes. Cross-validation plot (A) and coefficient against the 
log-lambda value plot (B) for LASSO. 
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Supplementary Figure 2. Kaplan-Meier survival curve analysis of the 10 genes. (A–J) Kaplan-Meier survival curve analysis of ACTA2, 

BDNF, EOMES, MYCN, PGF, SLC2A1, TSC2, ZNF746, TFDP3, and PIK3R1 on HCC patients derived from TCGA LIHC sequencing data respectively. 
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Supplementary Figure 3. The risk score distinguish between normal and tumor tissues, tumor grade and HCC stage. (A) 
Risk score distribution in TCGA-LIHC tumor and normal tissues. (B–F) Violin plot comparing the levels and distributions of risk score in 
different Pathologic N, Pathologic M, Pathologic T, tumor grade, and tumor stage. 
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Supplementary Figure 4. Gene mutation analysis of 6 EMT related genes. Gene mutation and protein immunohistochemistry 

analysis of EMT risk related genes in HCC patients. (A) Somatic mutation information of 6 EMT related genes analyzed by “TCGA mutations” 
package. (B) Specific somatic mutation sites distribution of TSC2 in HCC patients analyzed by “TCGA mutations” package. (C) 
Immunohistochemistry staining images of ACTA2, BDNF, EOMES, PIK3R1, SLC2A1, TSC2, ZNF746 in HCC tumor tissues and normal tissues 
from the Human Protein Atlas database. 
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Supplementary Figure 5. KM survival analysis of methylation sites in BDNF, PIK3R1, TSC2, ZNF746 and EOMES gene. (A–D) 
Kaplan-Meier survival curve analysis of four significant OS related BDNF methylation sites derived from TCGA-LIHC DNA methylation data 
respectively. (E, F) Kaplan-Meier survival curve analysis of two significant OS related PIK3R1, methylation sites derived from TCGA-LIHC 
DNA methylation data respectively. (G) Kaplan-Meier survival curve analysis of one significant OS related TSC2 methylation sites derived 
from TCGA-LIHC DNA methylation data. (H) Kaplan-Meier survival curve analysis of one significant OS related ZNF746 methylation sites 
derived from TCGA-LIHC DNA methylation data. (I) Kaplan-Meier survival curve analysis of one significant OS related EOMES methylation 
sites derived from TCGA-LIHC DNA methylation data. 


