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INTRODUCTION 
 

Alzheimer’s disease (AD) is the most common 

neurodegenerative illness and the leading cause of 

dementia in elderly people. Inflammation, insoluble 

protein deposition and neuronal cell loss are important 

features in the brains of AD patients [1]. At present, it is 

widely believed that maladaptive astrocytic activation 
constitutes a pathogenic mechanism of AD [2]. S100B, 

expressed primarily by astrocytes, is associated with the 

neuropathological hallmarks of AD; S100B also causes 

neuroinflammation and neurotoxicity [3, 4]. 
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ABSTRACT 
 

To examine the role of S100B in genetic susceptibility to Alzheimer’s disease (AD), we conducted a case-control 
study to analyze four polymorphism loci (rs2839364, rs1051169, rs2300403, and rs9722) of the S100B gene and 
AD risk. We found an independent increased risk of AD in ApoE ε4(-) subjects carrying the rs9722 AA-genotype 
(OR = 2.622, 95% CI = 1.399–4.915, P = 0.003). Further investigation revealed the serum S100B levels to be 
lower in rs9722 GG carriers than in rs9722 AA carriers (P = 0.003). We identified three miRNAs (miR-340-3p, 
miR-593-3p, miR-6827-3p) in which the seed match region covered locus rs9722. Luciferase assays indicated 
that the rs9722 G allele has a higher binding affinity to miR-6827-3p than the rs9722 A allele, leading to a 
significantly decreased fluorescence intensity. Subsequent western blot analysis showed that the S100B protein 
level of SH-SY5Y cells, which carry the rs9722 G allele, decreased significantly following miR-6827-3p 
stimulation (P = 0.009). The present study suggests that the rs9722 polymorphism may upregulate the 
expression of S100B by altering the miRNA binding capacity and may thus increase the AD risk. This finding 
would be of great help for the early diagnosis of AD. 
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S100B belongs to the large family of S100 proteins, 

which are EF-hand calcium-binding proteins that exert 

both intracellular and extracellular effects on a variety of 

cellular processes [5–7]. Intracellularly, S100B 

modulates microtubule assembly and regulates the cell 

cycle. Extracellularly, the action of S100B is strongly 

dependent on its concentration [8]. Extracellular S100B 

shows a neuroprotective effect at the nanomolar level. 

However, at micromolar levels, extracellular S100B can 

stimulate the receptor for advanced glycation end 

products (RAGE) in neurons, leading to an over-

production of reactive oxygen species and, ultimately, 

resulting in apoptosis [9, 10] and upregulation of several 

proinflammatory cytokines [11]. At high concentrations, 

S100B also upregulates nitric oxide (NO) synthase, and 

stimulates NO release by microglia through synergy with 

bacterial endotoxin and IFN-γ, thereby participating in 

microglia activation [12].  

 

In addition to its functional relevance, the human S100B 

gene is located on chromosome 21q22.3 [13] within or 

near risk regions for familial late-onset AD. To date, 

several single nucleotide polymorphisms (SNPs) of the 

S100B gene—particularly rs9722 and rs1051169—have 

been shown to affect the S100B protein level. Recently, 

Hohoff suggested the important role of S100B 

polymorphisms in S100B serum concentrations and 

S100B mRNA expression [14]. Moreover, S100B SNPs 

are significantly associated with several neuro-

pathological and psychiatric disorders, such as 

Parkinson's disease [15, 16], depressive disorder [17], 

schizophrenia [18, 19], stroke [20] and dementia [21]. 

However, very few investigations of connecting S100B 

polymorphisms with AD risk have been performed, 

especially in the Chinese Han population. Thus, herein, 

we conducted a case-control study in that population to 

examine the potential role of S100B polymorphisms in 

AD risk.  

 

An increasing number of experimental studies and 

clinical examinations have reported elevated levels of 

S100B in the brains or cerebrospinal fluid of AD 

patients [22–25], which implies that S100B is closely 

tied to the pathogenesis of AD. Additional supporting 

evidence comes from a recent study that used double 

transgenic mice that overexpressed S100B and carried 

the APP mutation (Tg2576/S100B), which promotes 

brain inflammation characterized as astrogliosis and 

microgliosis and enhances Aβ generation [3]. Further, 

many previous animal studies have demonstrated that 

S100B dysregulation can alter Aβ deposits, plaques, 

and gliosis [3, 26, 27]. Owing to such evidence, S100B 

may act as an unconventional cytokine, playing a role 
in the pathophysiology of AD; S100B is therefore a 

plausible biological candidate as a susceptibility gene 

for AD.  

MicroRNAs (miRNAs) are a class of single-stranded 

RNA molecules responsible for post-transcriptional gene 

silencing, usually by binding to the 3′ untranslated region 

(3′-UTR) of target genes that play critical roles in the 

regulation of target gene expression [28]. Recent studies 

have found that approximately 70% of experimentally 

detectable miRNAs are expressed in the brain, and some 

studies suggest that miRNAs are intimately involved in 

synaptic function and specific signals during memory 

formation. Increasing evidence implies the possible 

involvement of miRNAs in AD [29–32]. Using genome-

wide profiling, Chang (2017) found five differently 

expressed genes (DEGs) regulated by four differently 

expressed miRNAs (DEmiRNAs) in AD. Swarbrick 

(2019) reported on 10 miRNAs that could be deregulated 

early in the peripheral blood of Alzheimer’s patients, 

nearly 20 years before the onset of clinical symptoms 

[33]. These miRNAs could serve as specific AD 

biomarkers, which may provide the basis for a novel, 

effective diagnostic approach and new targets for 

pharmaceutical development.  

 

Limited studies have focused on the miRNAs that 

regulate the S100B level. Chen (2018) showed that 

S100B genes are the targets of miR-330-3p, and lncRNA 

X-inactive specific transcript (XIST) promotes S100B 

expression by harboring complementary binding sites 

with miR-330-3p, eventually preventing cardiac 

hypertrophy [34]. Using a cerebral palsy rat model, Wen 

(2020) discovered that the overexpression of miR-135b 

can downregulate S100B, which helps to inactivate the 

signal transducer and activator of transcription-3 

(STAT3) pathway, and promotes neural stem cell (NSC) 

differentiation and proliferation but inhibits NSC 

apoptosis [35]. Recently, Chen (2020) reported that 

plasma miR-340-3p and S100B levels differ significantly 

among various rs9722 genotypes and that the S100B 

rs9722 locus SNP is associated with the risk of chronic 

heart failure. This finding signals that miR-340-3p may 

play different roles in regulating the S100B level among 

different S100B rs9722 genotypes [36].  
 

In this study, we analyzed the plasma S100B levels in 

AD patients with different S100B genotypes. To explore 

in detail how SNPs are related to AD, we determined 

whether the SNPs in the 3′-UTR of the S100B gene 

could affect the S100B level by altering the 

combination of miRNAs and S100B mRNAs. 

 

RESULTS 
 

Distributions of the genotype and allele frequencies 

of S100B polymorphisms 
 

In total, we recruited 280 AD patients and 400 healthy 

control individuals. Using the SNaPshot method, we 
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chose and genotyped the four most reported 

phenotypically relevant SNPs of the S100B gene 

(rs2839364 in the promoter region, rs1051169 in the 

second exon, rs2300403 in the second intron and rs9722 

in the 3′UTR of the S100B gene) (Figure 1).  

 

Table 1 summarizes the genotypes and allele 

frequencies of the four polymorphisms. We did not 

observe deviations from Hardy–Weinberg equilibrium 

(HWE) for the candidate polymorphisms in the control 

group. We noted significant differences in the 

genotype frequencies of rs9722 between the AD 

patients and the controls (OR = 2.029, 95% CI = 

1.243–3.311, P = 0.005). Likewise, we observed 

significant differences in the allele distributions of 

rs9722 between the AD patients and the controls (OR 

= 1.342, 95% CI = 1.085–1.661, P = 0.008). The 

mutant alleles (rs9722 T) were more frequent in the 

AD population than in the control population. 

However, no significant differences in the allele 

distributions of rs1051169 between the AD patients 

and the controls was observed. In addition, neither the 

genotype nor allele frequency displayed significant 

differences between the AD patients and the controls 

for the rs2839364 and rs2300403 polymorphisms.  

 

Stratified analyses 

 

We also carried out stratified analyses according to the 

ApoE ε4 allele. An increased risk of AD was more 

evident among ApoE ε4(-) subjects carrying the rs9722 

AA-genotype (OR = 2.622, 95% CI = 1.399–4.915, P 

= 0.003). Likewise, the allele distributions of rs9722 

between the AD patients and the controls was 

significantly different in the ApoE ε4(-) subjects (OR = 

1.393, 95% CI = 1.072–1.808, P = 0.013). 

Nevertheless, we did not find any association between 

the different genotypes of rs1051169 and AD risk after 

performing stratified analyses based on the ApoE ε4 

allele. In addition, we did not observe more apparent 

associations between rs2839364 or rs2300403 and AD 

risk among the subgroups via the ApoE ε4 allele 

(Table 1).  

Haplotype association analyses 

 

We performed haplotype association analyses of the 

four polymorphic loci. We identified and evaluated the 

haplotypes of the four SNPs. We found four main 

haplotypes; the C-G-A-G haplotype (in the order of 

rs2839364, rs1051169, rs2300403 and rs9722) was the 

most prevalent in both the AD population and the 

controls. Assigning the most common haplotype C-G-

A-G as the reference, the haplotype C-C-G-A showed 

significant differences between the AD patients and the 

controls (OR = 1.605, 95% CI = 1.189–2.165, P = 

0.002). We did not find any more significant differences 

between the AD patients and the controls for the other 

two main haplotypes (Table 2). 

 

Serum S100B levels analyses 

 

Since AD is closely linked to the in vivo S100B level, 

we compared the serum S100B levels in the AD 

patients and the healthy controls. The data revealed the 

average serum S100B level in AD patients to be 

significantly higher than that in the controls (P = 0.036) 

(Figure 2A). We also investigated the association 

between the S100B polymorphisms and the serum 

S100B levels. As shown in Figure 2B, the serum S100B 

levels were significantly upregulated in the rs9722 AA 

genotype compared to the rs9722 GG genotype in the 

AD patients (P = 0.003). Similarly, the serum S100B 

levels were significantly upregulated in the rs1051169 

CC genotype compared to the rs1051169 GG genotype 

in the AD patients (P < 0.001). We did not observe any 

significant differences between patients carrying the 

mutated genotypes and wild-type genotypes of the 

rs2839364 and rs2300403 polymorphisms. 

 

Luciferase assay detection 

 

After using online software prediction, we identified 

three miRNAs (miR-340-3p, miR-593-3p, and miR-

6827-3p) in which the seed match region covered 

locus rs9722 (Figure 3A). A subsequent luciferase 

assay indicated that miR-340-3p and miR-6827-3p 

 

 
 

Figure 1. Position distribution of the SNPs in the S100B gene. 
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Table 1. Genotype and allele frequency distributions of the S100B SNPs in the AD patients and healthy controls. 

SNPs genotype AD control p OR (95% CI) allele AD control p OR (95% CI) 

rs2839364 CC 283 291        

 CT 91 90 0.865 1.040 (0.745–1.451) C 657 672   

 TT 25 19 0.352 1.353 (0.729–2.513) T 141 128 0.385 1.126 (0.867–1.464) 

ApoE ε4(−) CC 175 235        

 CT 59 77 0.920 1.029 (0.695–1.522) C 409 547   

 TT 20 13 0.067 2.066 (1.055–4.273) T 99 103 0.119 1.285 (0.949–1.742) 

ApoE ε4(+) CC 108 56        

 CT 32 13 0.593 1.277 (0.621–2.625) C 248 125   

 TT 5 6 0.200 0.432 (0.126–1.477) T 42 25 0.577 0.847 (0.494–1.453) 

rs1051169 GG 166 179        

 GC 158 168 0.938 1.021 (0.754–1.381) G 490 526   

 CC 75 53 0.049 1.526 (1.012–2.300) C 313 274 0.063 1.215 (0.992–1.489) 

ApoE ε4(−) GG 97 144        

 GC 104 139 0.581 1.111 (0.774–1.595) G 298 427   

 CC 42 42 0.126 1.485 (0.901–2.446) C 188 223 0.135 1.208 (0.946–1.542) 

ApoE ε4(+) GG 69 35        

 GC 54 29 0.878 0.945 (0.515–1.734) G 192 99   

 CC 33 11 0.336 1.522 (0.688–3.368) C 126 51 0.262 1.274 (0.849–1.911) 

rs2300403 AA 189 194        

 AG 156 168 0.764 0.953 (0.709–1.282) A 534 556   

 GG 52 37 0.128 1.443 (0.905–2.299) G 260 242 0.306 1.119 (0.905–1.383) 

ApoE ε4(−) AA 115 157        

 AG 98 144 0.720 0.929 (0.654–0.321) A 328 458   

 GG 30 24 0.099 1.706 (0.948–3.077) G 158 192 0.299 1.149 (0.891–1.481) 

ApoE ε4(+) AA 74 37        

 AG 58 24 0.639 1.208 (0.651–2.242) A 206 98   

 GG 22 13 0.687 0.846 (0.384–1.866) G 102 50 0.916 0.971 (0.641–1.471) 

rs9722 GG 182 209        

 GA 165 161 0.294 1.177 (0.877–1.580) G 529 579   

 AA 53 30 0.005 2.029 (1.243–3.311) A 271 221 0.008 1.342 (1.085–1.661) 

ApoE ε4(−) GG 111 169        

 GA 94 138 0.857 1.037 (0.727–1.479) G 316 468   

 AA 31 18 0.003 2.622 (1.399–4.915) A 156 166 0.013 1.393 (1.072–1.808) 

ApoE ε4(+) GG 71 40        

 GA 71 41 0.929 0.976 (0.565–1.684) G 213 121   

 AA 22 12 0.937 1.033 (0.463–2.306) A 93 65 0.320 0.813 (0.552–1.198) 

P values under 0.0167 were indicated in bold font. 

 
stimulation could significantly reduce the fluorescence 

intensity of 293T cells that contained the rs9722 G 

allele (rather than the rs9722 A/MUT allele) (Figure 3B). 

We did not observe any significant decrease in 

fluorescence intensity following stimulation by miR-

593 (Figure 3C, 3D).  
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Table 2. Haplotype frequencies of the S100B SNPs in the AD patients and controls.  

Haplotypes Control (freq) AD (freq) P OR 95% CI 

C-G-A-G 485.31 (0.607) 421.79 (0.527) 1 − 

C-C-A-G 121.94 (0.152) 125.88 (0.157) 0.251 1.188 (0.896–1.1.572) 

C-C-G-A 91.02 (0.114) 127.36 (0.159) 0.002 1.605 (1.189–2.165) 

C-G-G-A 89.14 (0.111) 75.31 (0.094) 0.865 0.968 (0.693–1.351) 

Haplotypes consisted of S100B SNPs rs2839364, rs1051169, rs2300403 and rs9722. 

 

Western blot detection 

 

The subsequent western blot data showed that miR-

6827-3p could significantly reduce the S100B level of 

the SH-SY5Y cells containing the rs9722 G allele 

(P = 0.009). We did not observe a significant difference, 

although the S100B level decreased following 

stimulation by miR-340-3p. Likewise, we did not detect 

a significant difference in the S100B protein level 

following stimulation by miR-593-3p (Figure 4). 

 

DISCUSSION 
 

Some studies have verified that S100B may contribute 

to the pathogenesis of AD, revealing that S100B 

persists in the extracellular space and upregulates 

chronically activate RAGE in astrocytes or microglia, 

thereby amplifying the inflammatory response [37–39]. 

Extracellular S100B promotes RAGE-dependent 

hyperphosphorylation of tau protein and the 

development of neurofibrillary tangles (NFTs) [40]. 

Moreover, a large number of clinical studies have 

demonstrated that the S100B levels are elevated in the 

CSF and/or serum of patients with various neuro-

psychiatric diseases, including schizophrenia [41, 42], 

bipolar disorder [43], ischemic stroke [20], multiple 

sclerosis [44] and AD [22, 24]. We found the serum 

S100B level of AD patients to be significantly higher 

than that of healthy controls (Figure 2A). Increasing 

S100B levels in the brain can accelerate cerebral 

amyloidosis, possibly by promoting the cleavage of 

APP to Aβ [4, 45]. Additionally, S100B may promote 

the conversion of diffuse, non-fibrillar Aβ deposits into 

neuritic Aβ plaques, thus exacerbating the progression 

of AD pathology [4]. 

 

In this case-control study, we found the S100B SNP loci 

rs9722 to be associated with AD risk. We also 

examined the association of the serum S100B level with 

respect to the corresponding S100B polymorphisms in 

AD patients. The data revealed that the AA genotype of 

the rs9722, as well as the CC genotype of the rs1051169 

locus, are significantly more associated with higher 

serum S100B levels. This outcome confirmed the 

finding reported by Hohoff (2010) regarding the 

potential role of S100B SNPs in S100B serum 

concentrations in a healthy population [14]. In addition, 

the expression quantitative trait loci (eQTL) data of 

S100B in whole blood from the GTEx Portal showed 

that the serum S100B levels were significantly 

upregulated in the AA genotype compared to the GG 

genotype of the rs9722 locus. Likewise, the serum 

S100B levels were significantly upregulated in the CC 

genotype compared to the GG genotype of the 

 

 
 

Figure 2. Serum S100B levels among different groups. (A) Serum S100B levels between the AD patients and the controls. (B) Serum 

S100B levels among different genotypes in the AD patients (*P < 0.05). 



 

www.aging-us.com 13959 AGING 

rs1051169 locus (Supplementary Figure 1). This 

finding is in line with our results. The alleles of the 

two SNPs mentioned above, which were shown to 

influence S100B gene expression, became risk factors 

that were also indirectly confirmed by the haplotype 

analysis. Thus, the haplotype C-C-G-A contained both 

the rs1051169 C allele and the rs9722 A allele, 

indicating a significant association with AD risk 

(Table 2). 

 

Lambert (2007) found that the S100B polymorphism 

rs2300403 was correlated with low cognitive performance 

and dementia in elderly people, thereby underlining the 

importance of S100B in genetic susceptibility to AD [21]. 

 

 
 

Figure 3. Verification of the interaction between candidate miRNAs and the 3′-UTR of the S100B gene, which contains 
the rs9722 loci, using the luciferase assay. (A) The candidate miRNAs that can bind to the rs9722 locus in the 3 ′-UTR of the S100B 

gene. The red letters show the rs9722 locus. (B) Plasmids containing different genotypes and artificial mutations. The black frame 
indicates the rs9722 locus. (C) Detection of miRNA levels in the 293T cells after transfection. (D) Fluorescence intensity after 
transfection of the miRNAs and the plasmids containing the different rs9722 alleles or mutations ( *P < 0.05). 
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However, we did not detect any significant association 

of rs2300403 with AD in our study, probably because 

Lambert analyzed the S100B mRNA level, while we 

focused on the serum S100B protein level. Hence, we 

speculate that post-transcriptional regulation may play a 

role in the S100B translation process.  

 

The SNP rs9722 is located in the 3′-UTR of S100B 

(Figure 1); 3′-UTRs typically contain important 

regulatory elements, such as U-rich motifs, AU-rich 

elements, or microRNA target sites, which modulate 

gene expression and may also apply to rs9722 [46]. We 

examined the microRNA binding sites in the 3′-UTR of 

the S100B gene and identified three miRNAs (miR-593-

3p, miR-340-3p and miR-6827-3p) that bind precisely 

to the rs9722G allele (Figure 3A).  

 

The subsequent luciferase assay data verified that miR-

6827-3p can bind to the 3′-UTR of S100B mRNA 

(Figure 3D). In addition, the western blot assay signaled 

a significant decreasing S100B protein level in SH-

SY5Y cells containing rs9722 G after stimulation by 

miR-6827-3p (Figure 4). Therefore, we believe that 

miR-6827-3p can specifically bind to the 3′-UTR of 

S100B mRNA in individuals carrying the rs9722 G 

allele, which results in the degradation of S100B mRNA 

and a subsequently lower S100B protein level. The 

rs9722 A allele reduced the stability of miR-6827-3p in 

binding to the S100B mRNA, thereby preventing the 

S100B protein from decreasing, which may explain why 

the rs9722 A allele seems to be a risk factor for AD. 

 

We found that the GG genotype of the rs1051169 locus 

is also significantly related to the increased serum 

S100B level in AD patients. However, after stratified 

analyses based on the ApoE ε4 allele, we did not 

observe any significant genotypes/alleles frequencies 

differences between the AD patients and the controls of 

rs1051169 (Table 1). We speculate that the varying 

S100B levels between different rs1051169 genotypes 

may be due to a genetic linkage or other nongenetic 

influence factors. 

 

Taking these pieces of evidence together, we can 

hypothesize that a possible intrinsic factor within the 

S100B gene may play a role in regulating S100B 

expression. Although S100B levels might be mediated 

by a possible feedback loop induced by the binding 

receptors of S100B (like RAGE), we observed 

indications that an intrinsic genetic factor could be 

partially involved in regulating S100B expression. The 

mechanism of AD is still unclear, but it may at least be 

partially explained by the increased S100B expression 

due to different S100B genotype carriers. 

 

 
 

Figure 4. Western blot analysis of the S100B levels in SH-SY5Y cells after transfection of the three different miRNAs. (A) We 

detected the S100B protein level using western blot analysis. (B) Densitometry analysis to determine the ratio of S100B to GAPDH. All data 
are the average of three measurements (*P < 0.05). 
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In addition, we observed an interesting phenomenon in 

which the distribution of the rs9722 genotype was quite 

different between our population and the German 

population. The genotype frequency of AA+AG in our 

healthy population was 47.8% (191/400), which is 

much higher than in the German population (18.4%, 

36/160) reported by Hohoff [14]. Given that the 

distribution of the S100B gene frequencies might vary 

among different ethnic groups, this discrepancy 

suggests that studies need to be performed with a larger 

ethnically diverse population to clarify whether the 

association is limited to the Chinese Han population or 

whether it could also apply to other ethnic groups. 

 

In sum, our study implies a significant association 

between the genotypes of S100B polymorphisms and 

increased incidence of AD in the Chinese Han 

population. Our findings highlight the rs9722 variant of 

S100B as an important risk factor for AD, which  

may act by regulating S100B expression. Further 

investigation revealed that different rs9722 genotypes 

may alter the combination of miR-6827-3p and S100B 

mRNA, which could subsequently decrease the S100B 

protein level. This is the first study to indicate an 

association between polymorphisms of the S100B gene 

and AD in an Asian cohort. In addition, our study 

signals the epigenetic regulation of S100B expression 

during the pathogenesis of AD. More research is 

necessary to substantiate these results and to shed light 

on the importance of interethnic differences affecting 

the outcomes of the complex nature of AD. 

 

MATERIALS AND METHODS 
 

Study subjects 

 

We recruited all participants from the First Affiliated 

Hospital of Harbin Medical University in North China. 

The patient group consisted of 280 individuals (mean 

age at onset: 69.68 ± 8.27 years; mean age: 71.86 ± 9.07 

years; 49.6% male). All patients met the criteria of the 

National Institute of Neurological and Communicative 

Disorders and Stroke as well as of the Alzheimer’s 

Disease and Related Disorders Association for probable 

AD. We excluded patients with a family history of 

dementia. The control group was composed of 400 

healthy individuals (mean age: 74.21 ± 8.33 years; 

51.5% male) recruited from individuals who underwent 

a regular health examination at the same hospital. The 

participants were confirmed to be healthy and 

neurologically normal using the Mini-Mental State 

Examination, the Revised Hasegawa Dementia Scale 

and general examinations. All participants were 

representative of the northern Chinese Han population 

living in North China, as defined by the geography of 

the Yellow River. Both groups were matched for 

geographic location, ethnicity, sex and age. We 

obtained informed consent either directly from the 

participants or their guardians. The Medical Ethical 

Committee of the Affiliated Hospital of Guangdong 

Medical University reviewed and approved of the 

study’s protocol. 

 

Sample collection and SNPs genotyping 

 
We took a 5-mL venous whole blood sample from each 

participant for DNA extraction and SNP genotyping 

(including rs2839364, rs1051169, rs2300403 and 

rs9722). We isolated genomic DNA from venous blood 

samples using the Blood Genomic DNA Extraction Kit 

(Tiangen, China). We genotyped polymorphisms of the 

samples using the ABI PRISM SNaPshot method 

(Applied Biosystems, Foster, CA). The assay conditions 

followed the manufacturer’s protocols. We genotyped 

10% of the samples in duplicate to verify the accuracy 

of the genotyping data. 

 

Cell lines acquisition and culture 

 

We obtained the 293T and SH-SY5Y cell lines from 

ATCC (Manassas, VA, USA). We cultured cells in the 

DMEM, to which we added 10% FBS (Gibco, USA) at 

37°C, and supplemented it with 5% CO2 using the 

Thermo HERAcell 150i incubator (Thermo, USA). 

 

Luciferase assay 

 

All the miRNAs that could bind to the SNP loci in the 

3′UTR of the S100B gene were predicted using the online 

software Targetscan (http://www.targetscan.org/vert_71/). 

Moreover, we employed the luciferase assay to evaluate 

the targeted binding relationship between the candidate 

miRNAs and the different SNP genotypes. We amplified 

the 3′UTR region sequences covering the SNP locus 

through specific PCR. We obtained the amplicons 

containing the different alleles from different homozygote 

individuals carrying different SNP genotypes. Then, we 

cloned the amplicons into the psi-CHECK2 vector 

(Promega, USA) and transfected them into 293T cells 

using lipofectamine3000 (Life Technology, USA). 

Additionally, we cotransferred the miRNA negative 

control and mimics (RiboBio, China) into 293T cells. 

After 48 hours of culture, we harvested the cells and 

subjected them to the luciferase activity tests of both firefly 

and renilla using the Dual-Luciferase Reporter Assay 

System (Promega, USA). 

 

Transfection and western blot 

 

We constructed overexpressed plasmids containing 

different rs9722 genotypes and transfected them into 

SH-SY5Y cells using Lipofectamine™ 3000 

http://www.targetscan.org/vert_71/
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Transfection Reagent (Invitrogen™, USA) according to 

the recommended protocol. We detected the S100B 

protein levels of SH-SY5Y cells with different genotypes 

using the western blot method following stimulation by 

the candidate miRNA mimics 48 hours later.  

 

RNA extraction and real-time quantitative PCR 
 

We extracted total RNA using Trizol Regent 

(Invitrogen, USA) according to the recommended 

protocol. We detected the relative transcription levels of 

the gene/miRNAs through real-time quantitative PCR 

(qPCR) analysis. We adopted the 2-ΔΔCT method and 

selected GAPDH and U6 as internal reference for genes 

and miRNAs, respectively. All the primers were 

summarized in the Supplementary Table 1. 

 

ELISA assay and S100B level detection 
 

We used an enzyme immunoassay quantitative 

measurement, an ELISA Kit (KA0037, Abnova), for 

S100B to determine the serum S100B levels in 90 

randomly selected venous blood samples. We also 

examined the eQTL data with the different genotypes of 

the four candidate SNPs in whole blood, and we 

obtained the eQTL data from the GTEx Portal 

(https://gtexportal.org/home/). 

 

Statistical analysis 

 

We performed all analyses using SPSS version 19.0 

(IBM, NY, USA). We counted and estimated the 

genotype and allele frequency distributions in the 

groups using the chi-square or Fisher’s exact test, and 

results were adjusted for multiple comparisons by 

Bonferroni correction. We assessed deviations of the 

genotype or allele frequency using HWE. We calculated 

the odds ratio (OR) and the 95% confidence interval 

(CI) to establish the correlation between the S100B 

genotype and AD. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. eQTL data with different genotypes of the S100B SNPs in whole blood. The data come from the 
GTEx Portal (https://gtexportal.org/home/). 
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Supplementary Table 
 

Supplementary Table 1. Real-time quantitative PCR primers used in this study. 

 

primers sequences Amplicon length 

U6-RT GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGG
ATACGACCAAATATGGAAC 

94 U6-F CTCGCTTCGGCAGCACA 

U6-R AACGCTTCACGAATTTGCGT 

hsa-miR-340-3p-RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGG
ATACGACCgctataaa 

64 
hsa-miR-340-3p-F1 ATGGTTCGTGGGTCCGTCTCAG 

Com R GTGCAGGGTCCGAGGT 

hsa-miR-593-3p-RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGG
ATACGACCagaaaccc 

62 
hsa-miR-593-3p-F1 ATGGTTCGTGGGTGTCTCTGC 

Com R GTGCAGGGTCCGAGGT 

hsa-miR-6827-3p-RT1 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGG
ATACGACCctggggaa 

65 hsa-miR-6827-3p-F1 ATGGTTCGTGGGACCGTCTCTTC 

Com R GTGCAGGGTCCGAGGT 


