
 

www.aging-us.com 15044 AGING 

INTRODUCTION 
 

Population aging is occurring throughout the world. In 

the 21st century, Europe will continue to have the 

world's oldest population, and by 2030, nearly a quarter 

of Europeans will reach 65 years old or over [1]. 

Aging as a complex phenomenon is the progressive and 

inevitable process of bodily deterioration in growing 

elderly population [2]. Skeletal muscle, which is one of 

the major organs responsible for body movements and 

metabolism is one of the earliest tissues to be affected 

by aging [3]. Skeletal muscle abnormalities are 

responsible for tissue homeostasis, functional 

impairment, loss of mass, sarcopenia and disability in 

the elderly [4, 5]. About 0.5% - 1% of muscle mass loss 

is lost every year in people over 30 years of age, and the 

rate of decline is rapidly increasing after 65 years old 

[6]. It is estimated that the incidence of sarcopenia in 60 

year or above age group is 5% - 13%, and that in 80 

year or above age group increased to 50% [7]. A better 

understanding of molecular modulation mechanism in 

skeletal muscle aging is imperative to ameliorate the 

problem in a rapidly aging population. 

 

Along with the aging process, skeletal muscle mass and 

strength gradually decline [8], which might further 

result in muscle atrophy. Increased protein degradation 

and decreased protein synthesis along with loss of 

innervation of aging myofibers occurred in aging 

humans [9]. Aging process is driven by changes in 
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ABSTRACT 
 

This study aimed to identify long non-coding RNAs (lncRNAs) involving in the skeletal muscle aging process. 
Skeletal muscle samples from old and young subjects were collected for lncRNA-sequencing. Differentially 
expressed genes (DEGs) and DElncRNAs between young and old groups were identified and a co-expression 
network was built. Further, a dexamethasone-induced muscle atrophy cell model was established to 
characterize the function of a critical lncRNA. A total of 424 DEGs, including 271 upregulated genes and 153 
downregulated genes as well as 152 DElncRNAs including 76 up-regulated and 76 down-regulated lncRNAs 
were obtained. Functional analysis demonstrated that the DEGs were significantly related to immune 
response. Coexpression network demonstrated lncRNA AC004797.1, PRKG1-AS1 and GRPC5D-AS1 were 
crucial lncRNAs. Their expressions were further validated by qRT-PCR in human skeletal muscle and the 
muscle atrophy cell model. Further in vitro analysis suggested that knock-down of PRKG1-AS1 could 
significantly increase cell viability and decrease cell apoptosis. qRT-PCR and western blot analyses 
demonstrated that knock-down of PRKG1-AS1 could increase the expression of MyoD, MyoG and Mef2c. This 
study demonstrated that lncRNAs of GPRC5D-AS1, AC004797.1 and PRKG1-AS1 might involve the aging-
associated disease processes. 
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expression of a large number of genes. A variety of 

noncoding RNAs (ncRNAs), both short ncRNAs 

(mainly microRNAs, miRNAs) and long ncRNAs 

(lncRNAs) are reported to regulate gene expression at 

the post-transcriptional level. Our previous report 

indicated that two candidate miRNAs (miR-19a and 

miR-34a) might play regulatory roles in the aging 

process of skeletal muscles [10]. Currently, the 

regulatory mechanisms of lncRNAs with known or 

unknown function were reported in aging mammals  

[11, 12]. A recent study reviewed the lncRNAs 

associating with age-related muscle pathology and 

suggested that lncRNAs affect aging-impaired 

proliferative and immune responses as well as modulate 

age-related neurodegeneration [13]. They suggested that 

lncRNAs might be promising therapeutic targets for 

diseases related with aging, such as hypertension, 

diabetes, Alzheimer's disease, Parkinson's disease and 

cancer [13]. The regulatory mechanisms of some 

lncRNAs have also been reported. Neppl et al. reported 

that lncRNA Chronos is an aging-induced lncRNA, 

which could induce myofiber atrophy when 

overexpressed [14]. LncRNA H19 may participate in 

skeletal muscle regeneration via interacting with let-7 

[15, 16]. Muscle-specific linc-MD1 could be interacted 

with HuR to function in muscle regeneration [17, 18]. 

LncRNA Dum activates myogenesis via silencing a 

repressor of myogenesis (DPPA2, developmental 

pluripotency-associated 2) [19], and lncRNA MALAT1, 

which is associated with proliferation of myoblasts and 

endothelial cells, may be a regulator of myogenesis 

during muscle aging [20, 21]. LncDLEU2 might inhibit 

muscle differentiation and regeneration by acting as a 

miR-18a sponge to regulate SEPP1 [22]. The 

comprehensive transcriptional landscape of lncRNAs 

associated with skeletal muscle aging was fewly 

investigated. Chen et al. performed high throughput 

RNA sequencing on skeletal muscles in different age 

conditions and identified 5 differentially expressed 

lncRNAs (DElncRNAs) related with skeletal muscle 

aging [23]. However, the expression levels of them 

were not further validated, nor the molecular 

mechanism was explored. 

 

To better understand the biological roles of lncRNAs in 

conditions of skeletal muscle aging, we performed 

lncRNA sequencing on skeletal muscle samples from 

old and young subjects. The lncRNA expression data 

were integrated with differentially expressed mRNA 

(DEGs) data to identify skeletal muscle aging-related 

lncRNAs and genes. Further, a dexamethasone-

induced muscle atrophy cell model was established to 

characterize the function of a critical lncRNA. In 
summary, the predicted lncRNAs and genes involving 

in the potential mechanisms of muscle aging can be 

utilized in further studies of preventing muscle aging. 

RESULTS 
 

Overview of RNA-sequencing and identification of 

mRNA and lncRNAs in old group 

 

The RNA-Sequencing data from 6 subjects were 

analyzed and a total of 583,406,044 raw reads were 

obtained. After quality control, 582,678,196 clean reads 

were left. The base average error rate of clean reads was 

0.024%, and the average Q20 and Q30 values were 

98.48 and 95.24%, respectively. The average GC 

content was 47.9% (Table 1). 

 

A total of 424 DEGs were identified, including 271 up-

regulated and 153 down-regulated genes (Figure 1A, 

Supplementary Table 1). In addition, 152 DElncRNAs 

including 76 up-regulated and 76 down-regulated genes 

were obtained (Figure 1B and Supplementary Table 2).  

 

Functional enrichment analyses of DEGs 

 

Based on the threshold of FDR < 0.05, we obtained 772 

GO terms for the DEGs. The top significant GO terms 

were related with immune response, such as “immune 

system process” (gene count: 133; FDR = 0) and 

“regulation of immune system process” (gene count: 84; 

FDR = 0) and “immune response” (gene count: 94; 

FDR = 0) (Figure 2, Supplementary Table 3). 

Simultaneously, we obtained 15 significant KEGG 

pathways for the DEGs, including “Complement and 

coagulation cascades” (gene count = 21, FDR = 0), 

“Phagosome” (gene count = 15; FDR =0.0016), and 

hematopoietic cell lineage (gene count = 11; FDR = 

0.0037) (Figure 3 and Supplementary Table 4). 

 

Co-expression network of DElncRNAs and DEGs 

 

Based on the Pearson correlation coefficient > 0.9, a co-

expression network containing 7 DElncRNAs, 33 DEGs 

and 51 edges was built (Figure 4). Five upregulated 

lncRNAs, including AC004797.1 (degree = 17), 

PRKG1-AS1 (Protein kinase CGMP-dependent 1-

antisense 1; degree = 16), MAPT-AS1 (microtubule 

associated protein tau –antisense 1; degree = 7), 

AC012254.3 (degree = 4) and CASC19 (degree = 3) 

and two downregulated lncRNAs, including 

AC022148.1 (degree = 2) and AC103740.1 (degree = 2) 

were included in this network. The DEGs of ITK (IL2 

inducible T cell kinase) and DSC2 (desmocollin 2) 

could be positively regulated by the lncRNAs 

AC004797.1 and PRKG1-AS1.  

 

Validation of key genes by qRT-PCR 

 

To further validate the reliability of RNA sequencing, 

we performed qRT-PCR on five DEGs, including  
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Table 1. Summary of sequencing quality. 

Samples  Raw reads Clean reads Clean bases (bp) Error% Q20% Q30% GC% 

Old 1 88089696 87982698 12619031100 0.0242 98.33 95 49.11 

Old 2 90157914 90082856 12818911171 0.0237 98.58 95.46 48.34 

Old 3 116152404 115990710 16621722517 0.0236 98.62 95.54 47.85 

Young 1 89679340 89476230 12716644800 0.024 98.4 95.16 46.73 

Young 2 102798714 102703152 14984574299 0.0237 98.6 95.48 47.39 

Young 3 96527976 96442550 13850012035 0.0243 98.35 94.78 47.98 

Summary  583406044 582678196 83610895922     

 

SERPINE1 (Serpin family E member 1), OPRD1 

(Opioid receptor delta 1), ITK, TXNRD1 (Thioredoxin 

reductase 1) and TDGF1 (Teratocarcinoma-derived 

growth factor 1), as well as five DElncRNAs, 

including CASC19, AC103740.1, AC004797.1, 

PRKG1-AS1 and GPRC5D (G protein-coupled 

receptor class c group 5 member D)-AS1. The RNA 

sequencing data showed that ITK, TXNRD1, CASC19, 

AC004797.1, and PRKG1-AS1 were upregulated, 

while SERPINE1, OPRD1, TDGF1, AC103740.1 and 

GPRC5D-AS1 were downregulated in the muscle of 

old group. As shown in Figure 5, the qRT-PCR results 

of ITK, TXNRD1, AC004797.1, PRKG1-AS1, 

SERPINE1, OPRD1, TDGF1, and GPRC5D-AS1 

were in line with the RNA sequencing data, while no 

significant difference on CASC19 and AC103740.1 

were detected between muscle of young and old group 

by qRT-PCR. 

Establishment of a dexamethasone-induced muscle 

atrophy cell model 

 

To further investigate the roles of critical DElncRNAs, 

we established a muscle atrophy cell model by 

dexamethasone. The expression of myoblast 

determination protein 1 (MyoD), a skeletal muscle-

specific bHLH transcription factor, was gradually 

decreased in a dose-dependent manner. The expression 

of MyoD at 10 nM and 15 nM dexamethasone treatment 

groups was significantly different from that of control 

group (P < 0.001), indicating the muscle atrophy cell 

model was successfully established (Figure 6A). The 

expression levels of three DElncRNAs, including 

PRKG1-AS1, AC004797.1 and GPRC5D-AS1 were 

determined under dexamethasone treatment. As expect, 

the expression levels of PRKG1-AS1 and AC004797.1 

was increased in a dose-dependent manner, while

 

 
 

Figure 1. Volcano plot of differentially expressed genes (DEGs) (A) and differentially expressed lncRNAs (DElncRNAs) (B). The red dots 

represent upregulated genes or lncRNAs and blue dots represent downregulated genes or lncRNAs. 



 

www.aging-us.com 15047 AGING 

GPRC5D-AS1 was decreased in a dose-dependent 

manner (P < 0.05, Figure 6B). 

 

Knockdown of PRKG1-AS1 increased cell viability 

and decreased cell apoptosis  

 

We selected PRKG1-AS1 for further research. The 

expression of PRKG1-AS1 was knocked down by siRNA. 

qRT-PCR suggested that the expression of PRKG1-AS1 

in siRNA1, siRNA2 and siRNA3 was all decreased and 

the decrease of PRKG1-AS1 in siRNA3 group was the 

most significant (P < 0.01, Figure 7A). Therefore, we 

selected siRNA3 for further experiment. CCK-8 assay 

showed that knock-down of PRKG1-AS1 could 

significantly increase cell viability in a time-dependent 

manner (P < 0.05, Figure 7B). Besides, flow cytometry

 

 
 

Figure 2. Gene ontology enrichment analyses of DEGs. ‘Round’ represents biological process term and ‘tri-angle’ represents cell 

component term. 
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demonstrated that cell apoptosis was significantly 

decreased by knocking-down of PRKG1-AS1 compared 

with the model group (P < 0.01, Figure 7C, 7D).  

 

Knockdown of PRKG1-AS1 affected mRNA and 

protein expression of muscle regulatory factors 

 

In order to validate the effect of PKG1-AS1 at 

molecular level, we detected the mRNA and protein 

expression of muscle regulatory factors, including 

MyoD, MyoG, Myf2c and Myf5. As shown in Figure 8, 

these four factors were significantly decreased in the 

dexamethasone-induced muscle atrophy cell model (P < 

0.05). After transfection with si-PRKG1-AS1, their 

expression was significantly upregulated both at mRNA 

level (P < 0.05). Western blot analysis showed 

consistent results with qRT-PCR, except for myf5, 

which showed no significant difference among groups. 

 

 
 

Figure 3. KEGG enrichment analyses of DEGs. ‘Round’ represents cellular processes term, ‘tri-angle’ represents environmental 

information processing, ‘square’ represents human diseases, ‘plus sign’ represents metabolism term and ‘cross within square’ represents 
organismal systems term. 
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DISCUSSION 
 

Skeletal muscle is one of the earliest tissues being 

affected by aging. Therefore, investigating the 

molecular mechanism that governs aging-associated 

pathologies is imperative to ameliorate the problem in a 

rapidly aging population. This study performed lncRNA 

sequencing on skeletal muscle samples from old and

 

 
 

Figure 4. Co-expression network of DEGs and DElncRNAs. The red ellipse represent upregulated gene and the green ellipse 

represent downregulated gene. The yellow rhombus represents upregulated lncRNA and blue rhombus represents downregulated lncRNA. 
The lines between the genes and lncRNAs indicate that there is a co-expression relationship between the two. 

 

 
 

Figure 5. Validation of key DEGs and DElncRNAs by quantitative real-time polymerase chain reaction (qRT-PCR) in 
skeletal muscle of young group and old group. Difference between young group and old group was analyzed by students’ t test. * P < 

0.05, ** P < 0.01. 
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young subjects and analyzed the candidate genes and 

lncRNAs that involve skeletal muscle aging by 

integrating analysis on lncRNAs and mRNA profiles. 

We identified 424 DEGs and 152 DElncRNAs that 

might be related with skeletal muscle aging. Functional 

analysis demonstrated the DEGs were significantly 

related to immune response. Further, qRT-PCR 

validated the lncRNA GPRC5D-AS1 and the genes 

SERPINE1, OPRD1, TDGF1 were significantly 

decreased, while lncRNAs of AC004797.1 and 

PRKG1-AS1, as well as genes TXNRD1 and ITK were 

increased during skeletal muscle aging process.  

 

Functional analysis demonstrated the DEGs were 

significantly related to immune response, such as 

“immune system process”, “regulation of immune 

system process” and “Complement and coagulation 

cascades”. Chronic inflammation induced organ damage 

is one of the major risk factors for age-related chronic 

diseases, such as Alzheimer's disease, atherosclerosis, 

diabetes, sarcopenia and cancer, and this is the result of 

a life-long active immune system [24]. Immune 

activation increases with age, including plasma C-

reactive protein, interleukin-6, and tumor necrosis factor 

receptor, involves in regulation of skeletal muscle 

protein balance and decrease of protein synthetic rates, 

including the myosin heavy chain (MHC) protein [25]. 

Dysregulation of lncRNAs have been reported to 

participate in regulating innate immune responses in 

aging process [26]. However, only limited lncRNAs,

 

 
 

Figure 6. Validation of MyoD (A) and key DElncRNAs (B) by qRT-PCR in a dexamethasone-induced muscle atrophy cell model. 

Different concentrations of dexamethasone (Dex, 5 mM, 10 mM and 15 mM) were added in human skeletal muscle myoblasts and incubated 
for 48 h. Difference among groups was analyzed by ANOVA with Dunnett’s multiple comparison test. * P < 0.05, ** P < 0.01, ***P < 0.001, 
compared with control group. 
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such as linc-MAF-4, have been identified previously in 

post-transcriptionally regulating CD4+T- cell subsets 

[27] and no direct or indirect evidence point to their 

involvement in aging. Our results found two 

inflammatory and immune-related genes, including ITK 

and OPRD1 were differentially expressed between 

young and old groups. ITK encodes interleukin 2-

inducible T cell kinase, which involves in adaptive

 

 
 

Figure 7. The effect of knock-down of PRKG1-AS1 on cell viability and cell apoptosis. (A) PRKG1-AS1 was knocked down by small 

interference RNA (siRNA) and the efficiency was detected by qRT-PCR. Difference among groups was analyzed by ANOVA with Bonferroni’s 
multiple comparison test. * P < 0.05, ** P < 0.01 compared with blank group; # P < 0.05, ## P < 0.01 compared with siNC (negative control) 
group. (B) Cell viability was tested by CCK-8 assay. Dexamethasone (15 mM) was added in human skeletal muscle myoblasts to establish 
atrophy cell model. Si-PRKG1-AS1 or siNC was transfected into human skeletal muscle myoblasts and incubated for 24 h, 48 h and 72 h. Cell 
viability was tested by CCK-8 assay. ** P < 0.01 compared with control group; # P < 0.05, ## P < 0.01 compared with model group; & P < 0.05, 
&& P < 0.01 compared with siNC group. (C) Cell apoptosis was tested by flow cytometry. Dexamethasone (15 mM) was added in human 
skeletal muscle myoblasts to establish atrophy cell model. Si-PRKG1-AS1 or siNC was transfected into human skeletal muscle myoblasts and 
incubated for 48 h. (D) Quantitative analysis of cell apoptosis. * P < 0.05, ** P < 0.01 compared with control group; # P < 0.05 compared with 
model group; && P < 0.01 compared with siNC group. 

 

 
 

Figure 8. The effect of knock-down of PRKG1-AS1 on muscle regulatory factors. (A) qRT-PCR analyzes gene expression of MyoD, 
MyoG, Myf2c and Myf5. Dexamethasone (15 mM) was added in human skeletal muscle myoblasts to establish atrophy cell model. Si-PRKG1-
AS1 or siNC was transfected into human skeletal muscle myoblasts and incubated for 48 h. * P < 0.05, ** P < 0.01 compared with control 
group; ## P < 0.01 compared with model group; & P < 0.05, && P < 0.01 compared with siNC group. (B) Protein expression of MyoD, MyoG, 
Myf2c and Myf5 detected by western blot. Dexamethasone (15 mM) was added in human skeletal muscle myoblasts to establish atrophy cell 
model. Si-PRKG1-AS1 or siNC was transfected into human skeletal muscle myoblasts and incubated for 48 h. 
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immune response and growth, signaling and function of 

myeloid-, mast-, B-cells and T-cell. ITK regulates IL-8, 

overproduction of which associated with oxidative 

stress via oxidative inactivation of the proteasome [28]. 

However, there is little report on the role of ITK in 

skeleton muscle aging currently. In the co-expression 

network, ITK was found being positively regulated by 

AC004797.1 and PRKG1-AS1. GO enrichment analysis 

suggested ITK participated in “Cell activation”, 

“immune system process”, “regulation of immune 

system process”, “positive regulation of immune system 

process”, etc. This result suggested that AC004797.1 

and PRKG1-AS1 might participate in regulating 

immune response in skeletal muscle aging by targeting 

ITK. OPRD1 associated with opioid dependence is also 

involved in innate immune system [29]. GO enrichment 

analysis in our study suggested OPRD1 was enriched in 

terms of immune system process and response to stress. 

There was no direct report of the relationship between 

OPRD1 and muscle aging. However, lncRNA 

NONMMUT000384 which is differentially expressed in 

mice of different ages could be functional annotated by 

OPRD1 [30].  

 

Dexamethasone is a glucocorticoid that could affect the 

synthesis and degradation of muscle proteins [31]. 

Excess dexamethasone causes muscle atrophy by 

inhibiting protein synthesis of myogenic transcription 

factors, such as MyoD and promoting protein 

degradation, and therefore induces muscle atrophy [32]. 

Dexamethasone-induced muscle atrophy is an excellent 

model to mimic muscle atrophy investigation [33]. 

Along with aging process, skeletal muscle mass and 

strength decrease. This decrease is referred to as skeletal 

muscle atrophy. Therefore, we established a 

dexamethasone-induced muscle atrophy cell model to 

validate the dysregulated lncRNAs in aging process. 

Skeletal muscle differentiation is mediated by a number 

of transcription factors, including members in myogenic 

regulatory family (MRF) and those in myocyte 

enhancer 2 family (MEF2) [34]. The MRF family 

including MyoD, MyoG, Myf5 and MRF4, function in 

regulating gene transcription in muscle cells, cell 

growth cycle and differentiation [35]. MyoD is a 

skeletal muscle-specific bHLH transcription factor that 

participated in muscle differentiation and repair [36]. 

The expression of MyoD was gradually decreased in a 

dose-dependent manner, indicating the muscle atrophy 

cell model was successfully established. In vitro 

experiments demonstrated that knock-down of PRKG1-

AS1 could significantly increase cell viability and 

decrease cell apoptosis as well as increase the 

expression of muscle regulatory factors, including 
MyoD, MyoG and Mef2c. These results partly 

confirmed the role of PRKG1-AS1 in skeletal muscle 

aging. 

SERPINE1 which encodes a member of the serine 

proteinase inhibitor (serpin) superfamily were found 

involved in the KEGG pathways of “complement and 

coagulation cascades” and “p53 signaling pathway”, 

and GO terms of “defense response”, “inflammatory 

response” and “immune system process” in our study. 

SERPINE1 participates in fibrosis [37] and was 

identified as an antiangiogenic factor [38]. It is 

induced in response to elevated reactive oxygen 

species contributed by transforming growth factor-β1 

stimulation [39]. Khan et al. indicated that SERPINE1 

encodes plasminogen activator inhibitor-1 with a null 

mutation could protect against biological aging and 

play a role in metabolism in humans [40]. In addition, 

SERPINE1 was also identified by Shafiee et al. [41] 

and Ji et al. [42] in identifying of candidate genes in 

skeletal muscle with aging. No further studies were 

done in their studies; however, the expression of 

SERPINE1 could be increased by knockdown of 

SRGN, which may interact with secreted factors  

and regulate storage or secretion in human skeletal 

muscle [43]. 

 

In addition, our results showed that TXNRD1, which is 

one of the nitric oxide synthase (NOS) family enzymes 

and the reactive oxygen species clearance enzymes, was 

enriched in GO terms of “response to stress”. TXNRD1 
which is essential for cellular function, cell 

proliferation and antioxidant defense is decreased 

during aging [44], and mammalian aging may be partly 

as a result of cellular redox state [45]. Cytosolic 

TXNRD1 was found lowly expressed in old Nrf2-/- mice 

than those in young or old wild type controls. Besides, 

Nrf2 deficiency exacerbates age-related loss of skeletal 

muscle mass [46].   

 

There are currently no direct reports on TDGF1 and 

muscle aging. TDGF1 involves in differentiation of 

mesoderm [47], and it was found lowly expressed 

response to oxidative stress induced by paraquat [48]. 

The TDGF1 protein is one of the markers characterizing 

pluripotent human embryonic stem cells [49] which is 

promising for treating aging-associated diseases. Our 

study showed that TDGF1 was enriched into GO terms 

of “defense response”, “immune system process” and 

“positive regulation of response to stimulus”, and it  

was being positively regulated by the DElncRNA 

AC103740.1. 

 

In conclusion, we identified 424 DEGs and 152 

DElncRNAs that might be related with skeletal 

muscle aging, including SERPINE1, OPRD1, TDGF1, 

TXNRD1 and ITK as well as GPRC5D-AS1, 
AC004797.1 and PRKG1-AS1. We found the 

lncRNAs of AC004797.1 and PRKG1-AS1 might 

involve in skeletal muscle aging via, at least to some 
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extent, the immune-inflammatory pathways. Knock-

down of PRKG1-AS1 could significantly increase cell 

viability and decrease cell apoptosis. qRT-PCR and 

western blot analyses demonstrated that knock-down 

of PRKG1-AS1 could increase the expression of 

MyoD, MyoG and Mef2c. The lncRNAs and genes 

identified in this study might be promising candidates 

to limit aging-associated disease processes. 

 

MATERIALS AND METHODS 
 

Ethics statement 

 

The study was performed according to protocols approved 

by the Ethics Committee of First Hospital of Jilin 

University (Changchun, China). Written informed consent 

for participating in this study has been received from all 

subjects. 

 

Sample collection 

 

The old and young skeletal muscle from 6 subjects (age, 

17–81 years) was collected during surgery (3 samples in 

each group), and stored at -80° C. The baseline 

characteristics of the subjects are shown in Table 2. The 

inclusion criteria for enrollment were as follows: 1) not 

participated in exercise training before 1 week of the 

surgery; 2) without any disease directly affecting 

skeletal muscle tissue morphology and/or function; 3) 

overall healthy. Total RNA was isolated from each 

individual sample with TRIzol reagent (Invitrogen, 

USA). The concentration and purity of total RNA 

were measured by Nanodrop2000 (Thermo Fisher, 

Waltham, MA, USA), and the integrity was detected 

using agarose gel electrophoresis.  

 

Library preparation for sequencing 

 

Five μg RNA per sample was cleared for rRNA by 

beads Ribo-Zero Magnetic Kit (EpiCentre, Madison, 

WI, USA). The mRNA was randomly fragmented and 

single-strand cDNA was synthesized using random 

hexamer primer, the second strand cDNA synthesis was 

subsequently performed, and dTTP were replaced by 

dUTP. Then Illumina adaptor sequences were ligated to 

the end-repaired DNA fragments. The libraries were 

sequenced using the Hiseq2000 Truseq SBS Kit v3-HS 

(200 cycles). 

 

Quality control analysis of original sequencing data 

 

Raw reads of fastq format were cleaned to remove 

empty reads, adapter sequences and fragments smaller 

than 25 bp, non-unique oligonucleotide (AGCT) reads 

at the 5' end, reads with over 10% N sequences, and 

low quality reads, in which the number of bases with a 

quality value Q ≤ 10 was > 50%. In addition, Q20%, 

Q30% and GC% of the clean data were calculated. 

 

Sequence alignment to reference genome and library 

quality assessment 

 

Reads were mapped with Tophat (v2.0.9) to the human 

genome sequence (Ensemble GRCh38), and the Mapped 

Reads were analyzed with hisat2 (v 2.1.0, https:// 

ccb.jhu.edu/software/hisat2/index.shtml). In addition, the 

sequence duplication, the non-uniform read distribution, 

the saturation for gene expression, the discreteness of 

insert sequence was evaluated with RSeQC (v2.6.4, 

http://rseqc.sourceforge.net/).  

 

Evaluation of mRNA expression  

 

The Stringtie v1.3.3 package (http://ccb.jhu.edu/ 

software/stringtie/) normally used to process read 

alignments and the reference annotation was applied to 

estimate gene expression level per million 

mapped reads (FPKM) score.  

 

Pearson's Correlation Coefficient (r2) used as an 

indicator of correlations between two independent 

biological replicates was calculated by plot_cor_exp 

(v1.1.0). The closer r2 is to 1, the stronger the 

correlation between the two replicate samples. 

 

Analysis of DEGs 

 

In the process of DEGs detection by edger (v3.24, 

http://www.bioconductor.org/packages/release/bioc/htm

l/edgeR.html), |log2FC (fold change)| >1 and p value < 

0.05 were used as screening criteria, and multi-

test adjustment method (False Discovery Rate, FDR) 

was used to correct the p values. The clustering analysis 

of expression patterns was performed on DEGs using 

the distance calculation algorithm by plot_cluster_exp 

v1.1.0. 

 

Gene ontology (GO) analysis of DEGs 

 

GO (Gene Ontology, http://www.geneontology.org/) 

database was used to classify genes according to the 

biological processes, cellular components and molecular 

functions. The p value was corrected by Bonferroni, 

Holm, Sidak and FDR approach. When the corrected p-

value (FDR) < 0.05, it is considered that there is a 

significant enrichment of this GO function. 

 

KEGG pathway annotation of DEGs 

 
To determine the most important biochemical metabolic 

pathways and signal transduction pathways involved in 

DEGs, the kegg_enrichment v2.1.0 was used with the 

https://ccb.jhu.edu/software/hisat2/index.shtml
https://ccb.jhu.edu/software/hisat2/index.shtml
http://rseqc.sourceforge.net/
http://ccb.jhu.edu/software/stringtie/
http://ccb.jhu.edu/software/stringtie/
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
http://www.geneontology.org/
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Fisher's exact test. In order to control the false positive 

rate, the Benjamini–Hochberg (BH) procedure was used 

for multiple tests. KEGG pathway with corrected p 

value < 0.05 was defined as significantly enriched. 

 

Identification of DElncRNAs 

 

The lncRNA expression level of FPKM score was 

calculated by Stringtie based on the gene annotation 

information of the lncRNA. In addition, the Pearson's r2 

score between samples was calculated by plot_cor_exp. 

DElncRNAs with |log2FC (fold change)| > 1 and p 

value < 0.05 were screened, and the FDR controlled 

multi-test correction based on BH method was used to 

correct p values. The clustering analysis of expression 

patterns was performed on DElncRNAs using the 

distance calculation algorithm by plot_cluster_exp 

v1.1.0. 

 

DELncRNA-DEGs co-expression association analysis 

 

Gene co-expression analysis could reveal the 

mechanism of transcriptional regulation. The interaction 

relationship was clarified via analyzing the PCC 

between DEGs and DElncRNAs in different samples. 

The interactions with PCC > 0.9 were filtered to 

construct a co-expression network using cytoscape 

software version 3.7.1. 

 

Cell culture and treatment 

 

Human skeletal muscle myoblasts were purchased from 

LONZA Pharma and Biotech (Tokyo, Japan) and were 

cultured in DMEM containing 1% penicillin/streptomycin 

and 10% fetal bovine serum (Thermo Fisher Scientific, 

Waltham, MA, USA) at 37° C and 5% CO2. The medium 

was changed to high-glucose DMEM supplemented with 

2% horse serum, 2% glutamine and 1% 

penicillin/streptomycin to induce myotubes. The medium 

was replaced every 48 h. On the fourth day after 

incubation with high-glucose DMEM, different 

concentrations of dexamethasone (Dex, 5 mM, 10 mM 

and 15 mM) were added and incubated for another 48 h. 

The expression of MyoD was determined by qRT-PCR to 

confirm the success of model establishment. 

 

Cell transfection 

 

Skeletal muscle myoblasts were divided into four 

groups: control group (cells without treatment), model 

group (cells treated with Dex), si-NC (negative control) 

group (cells treated with Dex and transfected with 

negative control siRNA) and si-PRKG1-AS1 group 
(cells treated with Dex and transfected with siRNA-

PRKG1-AS1). Si-NC and si-PRKG1-AS1 were 

synthesized by Guangzhou Ribobio biotechnology 

Co., Ltd (Guangdong, China). Skeletal muscle 

myoblasts were seeded into 24-well plate (1 × 105/well). 

Si-NC (20 pM) or si-PRKG1-AS1 (20 pM) were 

transfected into cells at 70% confluence by 1 μL 

Lipofectamine 2000 (Thermo Fisher). 

 

Cell counting kit- 8 (CCK-8) assay  

 

Skeletal muscle myoblasts were seeded on 96-well 

plate. 10 μ1 10% CCK-8 reagent was added to each 

well and incubated in the dark for 2 h. The absorbance 

at 450 nm was determined by a microplate reader 

(MK3, Thermo fisher). 

 

Flow cytometry analysis 

 

Cell apoptosis was determined by flow cytometry 

(FACSCalibur, BD, San Jose, CA, USA) as described in 

previous study [50]. Cell apoptosis was determined by 

an Annexin V-FITC/Propidium Iodide (PI) apoptosis kit 

(BD, USA). Briefly, skeletal muscle myoblasts at 48 h 

post-transfection were centrifuged at 200 ×g for 5 min 

and re-suspended in 1× Binding buffer. Cell suspension 

(100 μL) was transferred into test tube, then FITC-

Annexin V (5 μL) and PI (5 μL) were added and 

incubated at room temperature (25° C) for 15 min in 

dark. Cell apoptosis was tested on flow cytometry 

within 1h. 

 

qRT-PCR analysis for DElncRNA and DEGs  

 

Tissue samples (50 mg) or skeletal muscle myoblasts of 

each group were extracted for total RNA by TRIzol 

reagent according to the manufacturer's instructions 

(TaKaRa, Dalian, China, Product code: 9109). Then 
reverse transcription reaction was performed for cDNA 

synthesis with PrimeScript™RT Master Mix (Perfect 

Real Time) (TaKaRa, Product code: RR036A). qRT-

PCR was conducted to amplify genes using the 

following conditions: 50.0° C for 3min, 95.0° C for 3min, 

followed by 40 cycles of denaturation at 95.0° C for 10s 

and annealing-extension at 60.0° C for 30s. After 

reaction, the melting curve was evaluated by heating 

from 60° C to 95° C with 0.5° C for 10s increments. The 

primer sequences were shown in Table 3. 

 

Western blot  

 

Skeletal muscle myoblasts at 48 h post-transfection were 

added with RIPA lysis (Beyotime, Shanghai, China) to 

isolate total protein. Protein concentration was 

determined by BCA method (Thermo Fisher, USA), 

followed by separated on SDS-PAGE. Then, protein was 
transferred on to PVDF membrane (Millipore, USA), 

blocked with 5% skim milk and incubated with  

primary antibodies of anti-MyoD (Cal. No. 18943-1- AP, 
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Table 2. Baseline characteristics of young and older patients. 

Characteristics Young adults (n = 3) Older adults (n = 3) P value 

Age, y 33.00 ± 8.72 79.33 ± 0.58 < 0.001 

Gender   0.37 

   Male 2 2  

   Female 1 1  

Height, cm 168.70 ± 14.57 158.30±14.43 0.43 

Weight, kg 68.00 ± 10.58 61.53 ± 18.02 0.62 

 

Table 3. The primer sequences for mRNAs and long non-coding 
RNAs (lncRNAs). 

Primers  Sequence (5’-3) 

SERPINE1-hF AGTGGACTTTTCAGAGGTGGA 

SERPINE1-hR GCCGTTGAAGTAGAGGGCATT 

OPRD1-hF CGTCCGGTACACTAAGATGAAGA 

OPRD1-hR GCCACGTCTCCATCAGGTA 

ITK-hF GAAGATCGTCATGGGAAGAAGC 

ITK-hR CGGGTATTTATAGTGGCATGGG 

TXNRD1-hF ATATGGCAAGAAGGTGATGGTCC 

TXNRD1-hR GGGCTTGTCCTAACAAAGCTG 

TDGF1-hF CCCTCCTTCTACGGACGGAA 

TDGF1-hR CAGGGAACACTTCTTGGGCAG 

CASC19-hF CCTGGGTTAGAACCCTGCTG 

CASC19-hR TGGACAGCACCTTGAATGCT 

AC103740.1-hF GTTATGTGGCTTGCTGGTA 

AC103740.1-hR CTGGTCCTGAGTCACTTTGT 

AC004797.1-hF CTTGGCTTCGTTAGTGC 

AC004797.1-hR CTACTTCCTCCTCCTGTC 

PRKG1-AS1-hF CCTCCCTTGCTTAGTCGCTC 

PRKG1-AS1-hR TCTGCTATAACGCTCGCTGG 

GPRC5D-AS1-hF GCTGTGTGAGAACTCCGTGT 

GPRC5D-AS1-hR ACTATCAAAGGCAGGTCGGTG 

GAPDH-hF TGACAACTTTGGTATCGTGGAAGG 

GAPDH-hR AGGCAGGGATGATGTTCTGGAGAG 

MIR1-1HG-AS1-hF CCGTAAGACAACTCAGCATTAG 

MIR1-1HG-AS1-hR GGTTCTTGGACTGGGACGT 

LINP1-hF ATAATGTCCTCTACGTGCCG 

LINP1-hR CCCTCCTCCTTTCTTTGTG 

MyoD-hF CGCCATCCGCTATATCGAGG 

MyoD-hR CTGTAGTCCATCATGCCGTCG 

MyoG-hF GGGGAAAACTACCTGCCTGTC 

MyoG-hR AGGCGCTCGATGTACTGGAT 

Mef2c-hF GAACGTAACAGACAGGTGACAT 

Mef2c-hR CGGCTCGTTGTACTCCGTG 

Myf5-hF AACCCTCAAGAGGTGTACCAC 

Myf5-hR AGGACTGTTACATTCGGGCAT 
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Proteintech, Rosemont, IL, USA; 1:1000), anti-MyoG 

(Cal. No. ab77232, Abcam, Cambridge, MA, USA; 

1:1000), anti-Mef2c (Cal. No. 10056-1-AP, Proteintech, 

Rosemont, IL, USA; 1:1000), anti-Myf5 (Cal. No. 

ab125078, Abcam, Cambridge, MA, USA; 1:1000) and 

anti-GAPDH (Cal. No. 10494-1-AP, Proteintech, 

Rosemont, IL, USA; 1:1000) overnight at 4° C. On the 

second day, horseradish Peroxidase conjugated goat 

anti-rabbit IgG (H+L) (Cal. No. 111-035-003, Jackson 

ImmunoResearch, West Grove, PA) was added and 

incubated at 37° C for 2h. Chemiluminescence was 

developed by ECL system (Millipore, USA). 

 

Statistical analysis 

 

All experiments were repeated for three times. 

Experimental data were expressed as mean ± standard 

deviation (SD) and were processed in Graphpad prism 

5(Graphpad Software, San Diego, CA, USA). P < 0.05 

represented statistical significance. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. The list of differentially expressed genes. 

 

Supplementary Table 2. The list of differentially expressed lncRNAs. 

 

Supplementary Table 3. The gene ontology terms enriched by differentially expressed genes. 

 

Supplementary Table 4. The KEGG terms enriched by differentially expressed genes. 

 


