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INTRODUCTION 
 

Aging is a major risk factor for most chronic diseases, 

including cancer, cardiovascular disease (CVD), type 2 

diabetes, and neurodegenerative diseases [1], all of 

which have become increasingly prevalent as the US 

population ages [2–4]. In 2015-2016, nearly 70% of 

adults aged 40-79 in the United States had used at least 

one prescription drug in the past 30 days to manage or 

prevent health conditions [5]. For those aged 60 and 
over, the most commonly used drug categories include 

antidiabetic medications, beta-blockers for high blood 

pressure and heart disease, and antilipidemics [5]. These 

medications, which are considered promising drug 

candidates for “anti-aging medicine” [6, 7], as well as 

nonsteroidal anti-inflammatory drugs (NSAIDs), play 

an important role in reducing aging-related pathology 

through reduction of inflammation in CVD. However, 

some of these drugs also have adverse effects on health 

[8–11]. 

 

DNA methylation (DNAm) is an epigenetic mechanism 

that modifies the expression of genes and may be 

influenced by environmental exposures, including diet 

[12], medication use [13], toxicants [14], lifestyle 

factors [15], and disease exposure across the human 
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ABSTRACT 
 

DNA methylation age acceleration, the discrepancy between epigenetic age and chronological age, is 
associated with mortality and chronic diseases, including diabetes, hypertension, and hyperlipidemia. In this 
study, we investigate whether medications commonly used to treat these diseases in 15 drug categories are 
associated with four epigenetic age acceleration measures: HorvathAge acceleration (HorvathAA), 
HannumAge acceleration (HannumAA), PhenoAge acceleration, and GrimAge acceleration (GrimAA) using 
cross-sectional (Phase 1, N=1,100) and longitudinal (Phases 1 and 2, N=266) data from African Americans in 
the Genetic Epidemiology Network of Arteriopathy (GENOA) study. In cross-sectional analyses, the use of 
calcium channel blockers was associated with 1.27 years lower HannumAA after adjusting for covariates 
including hypertension (p=0.001). Longitudinal analyses showed that, compared to those who never used 
antihypertensives, those who started to take antihypertensives after Phase 1 had a 0.97-year decrease in 
GrimAA (p=0.007). In addition, compared to those who never used NSAID analgesics, those who started to 
take them after Phase 1 had a 2.61-year increase in HorvathAA (p=0.0005). Our study demonstrates that 
three commonly used medications are associated with DNAm age acceleration in African Americans and 
sheds light on the potential epigenetic effects of pharmaceuticals on aging at the cellular level. 
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lifespan [16]. Several recently developed DNAm clocks 

using weighted averages of methylation levels at 

specific CpG sites have been trained on various metrics 

such as age, sex, aging-related clinical measurements, 

plasma proteins, and/or smoking [17–20]. The 

importance of DNAm age acceleration – the 

discrepancy between epigenetic age and chronological 

age – has been spotlighted because of its association 

with multiple aging-related chronic diseases and 

mortality risks [21, 22].  

 

The relationship between epigenetic age acceleration 

and demographic factors, lifestyle factors, and health-

related traits has been actively investigated to better 

understand how risk factors contribute to aging at the 

cellular level [21, 23, 24]. However, limited studies 

have evaluated the influence of commonly used 

pharmaceuticals on DNAm age acceleration. Since 

taking specific pharmaceuticals (e.g., antidiabetics, 

antihypertensives, or antilipidemic) reduces the severity 

or risk of developing aging-related diseases, it is 

possible that using these medications may also lead to 

decreases in DNAm age acceleration through 

deceleration of the biological aging process caused by 

relevant health conditions. On the other hand, recent 

evidence suggests that exposure to commonly used 

pharmaceuticals may also contribute to age-related 

chronic diseases, including CVD, cancer, neurological 

disorders, and diabetes, through epigenetic side effects 

[25, 26]. Thus, it is critical to comprehensively 

investigate how commonly used pharmaceuticals are 

associated with biological aging and examine which 

drugs may have preventive or adverse effects on DNAm 

age acceleration. 

 

Gao et al. [27] found that antihypertensive medication 

use increased a measure of DNAm age acceleration 

developed by Horvath et al. [18]. Antihypertensive 

medication use also increased the rate of change in 

this age acceleration measure over approximately 4 

years among older males of European ancestry from 

the Normative Aging Study (NAS) after adjusting for 

potential covariates, including hypertension. 

However, the sample size was relatively small 

(N=546) and included only male subjects, and the 

follow-up duration may not have been long enough to 

adequately capture the preventive effects of 

antihypertensive medication on DNAm age 

acceleration. Given that the aging process may differ 

by sex and race/ethnicity [28, 29], studies are needed 

to comprehensively evaluate the effects of commonly 

used medications on DNAm age acceleration using 

multiple DNAm aging clocks in other populations. 
This is particularly important in African Americans, 

who have the highest burden of hypertension in the 

United States [30]. 

The aim of this study is to investigate the cross-

sectional and longitudinal associations between 

commonly used medications and four DNAm age 

acceleration measures in African Americans from the 

Genetic Epidemiology Network of Arteriopathy 

(GENOA) study. 

 

RESULTS 
 

Participant characteristics 

 

Phase 1 characteristics for GENOA participants are 

described in Table 1. Mean DNAm age estimates 

(ranging from 44.2 to 54.3 years) were lower than 

chronological age (mean = 57.0 years). DNAm age 

acceleration measures are also reported in Table 1 with 

PhenoAge acceleration (PhenoAA) being the highest 

(mean = 0.38 years) followed by HannumAge 

acceleration (HannumAA, mean = 0.15 years), 

HorvathAge acceleration (HorvathAA, mean = 0.14 

years), and GrimAge acceleration (GrimAA, mean = 

0.11 years). In the subset of the sample used for 

longitudinal analyses, the participants at Phase 2 were 

about 5.4 years older than at Phase 1 (mean age = 54.0 

years at Phase 1 and 59.4 years at Phase 2).  

 

Supplementary Table 1 shows medication use categorized 

by the first two digits of the Medi-Span Therapeutic 

Classification (MTC) code. Although diuretics, calcium 

channel blockers, and beta blockers are often prescribed 

as antihypertensive medications, they have different MTC 

codes than antihypertensives because they are used for 

other conditions as well. Drug categories with N < 30 

were excluded. For the three major drug categories 

(antihypertensives, antihyperlipidemic, and diabetes 

medications), sub-drug categories were also included. The 

number of participants taking each drug was highest for 

diuretics (N=377) followed by antihypertensives (N=321), 

calcium channel blockers (N=221), and diabetes 

medications (N=164). Supplementary Table 2 shows the 

p-value of the associations between medication 

categories. Diuretic medication use was associated with 

most of the other medication categories, especially with 

the use of other antihypertensive medications (significant 

P range: 4.7 x 10-11 – 0.03). Also, the use of renin-

angiotensin-aldosterone system (RAAS) inhibitors was 

associated with diabetes medication (P< 1 x 10-10). Both 

non-narcotic analgesic use and NSAID analgesic use were 

also significantly associated with several other medication 

use categories (significant P range: 9.6 x 10-10 – 0.03). 

 

Correlation among DNAm age estimators 

 

The correlations between chronological age and DNAm 

age estimated by the four epigenetic clocks are 

presented in Supplementary Figure 1. As expected, 
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Table 1. Descriptive statistics of study participants from the genetic epidemiology network of 
arteriopathy (GENOA). 

  Cross-Sectional (N=1,100) Longitudinal (N=266) 

  Phase 1 Phase 1 Phase 2 

Chronological age (years) 57.0 (10.5) 54.0 (9.8) 59.4 (9.4) 

HorvathAge (years) 53.9 (10.0) 51.2 (9.2) 55.1 (9.2) 

HannumAge (years) 47.7 (10.8) 44.3 (9.8) 49.1 10.0) 

PhenoAge (years) 44.2 (12.7) 40.2 (11.6) 44.7 (11.7) 

GrimAge (years) 54.3 (9.5) 52.0 (9.1) 55.4 (9.2) 

HorvathAA(years) 0.14 (5.1) -0.063 (5.1) -0.56 (5.5) 

HannumAA (years) 0.15 (4.8) -0.47 (4.7) -0.59 (5.3) 

PhenoAA (years) 0.38 (7.2) -0.53 (6.8) -1.46 (6.3) 

GrimAA (years) 0.11 (5.0) 0.23 (4.6) -0.58 (4.6) 

Female 781 (71.0%) 189 (71.0%)  

Smoking    

    Never 666 (60.6%) 160 (60.2%)  

    Former 255 (23.2%) 63 (23.7%)  

    Current 179 (16.3%) 43 (16.2%)  

Education    

    Less than high school 374 (34.0%) 80 (30.1%)  

    HS/GED 292 (26.6%) 71 (26.7%)  

    At least some college 434 (39.4%) 115 (43.2%)  

Continuous drinks/week 0.67 (2.7) 0.74 (2.8) 0.52 (1.7) 

Body Mass Index (kg/m2) 31.2 (6.5) 31.5 (6.7) 32.0 (6.8) 

Hypertension 776 (70.5%) 174 (65.4%) 203 (76.3%) 

Diabetes 216 (19.6%) 44 (16.5%) 69 (25.9%) 

Stroke 40 (3.7%) 9 (3.4%) 13 (4.9%) 

Coronary heart disease 47 (4.3%) 8 (3.0%) 13 (4.9%) 

Lipids    

    High-density lipoprotein (mg/dL) 55.2 (17.9) 55.5 (17.9) 58.0 (18.5) 

    Triglycerides (mg/dL) 147.6 (98.8) 150.3 (98.7) 117.8 (78.1) 

    Low-density lipoprotein (mg/dL) 120.1 (43.1) 118.7 (41.4) 118.8 (38.2) 

HorvathAA: DNAm HorvathAge acceleration; HannumAA: DNAm HannumAge acceleration; PhenoAA: DNAm 
PhenoAge acceleration; GrimAA: DNAm GrimAge acceleration; HS/GED: High School/General Education 
Development. 
Mean (SD) or N (%) is displayed.  
The sample size for PhenoAge and GrimAge was 1,099. 
 

chronological age was positively and significantly 

correlated with HorvathAge (Pearson correlation 

coefficient r = 0.86), HannumAge (r = 0.90), PhenoAge 

(r = 0.82), and GrimAge (r = 0.85). The Pearson 

correlation matrix of DNAm age acceleration, both 

before and after adjustment for white blood cell 

proportions, is shown in Supplementary Figure 2. The 

correlations range from 0.18 (GrimAA and HorvathAA) 

to 0.58 (HorvathAA and HannumAA). GrimAA was the 

least correlated with other AA measures. 
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Associations between medication use and DNAm age 

acceleration 

 

We first fit a single multivariable model with all drug 

categories (N=15) to examine the unique contribution of 

each medication to each DNAm age acceleration 

measure using cross-sectional data from Phase 1 

(N=1,100, Table 2). We were interested in associations 

that were significant at a nominal level (P<0.05) as well 

as at a Bonferroni-corrected significance threshold (P< 

.05/15 = 0.003). Model 1 adjusted for age and sex, and 

Model 2 also included body mass index (BMI), 

smoking, education, and alcohol consumption. Model 3 

additionally adjusted for white blood cell proportions. 

Calcium channel blockers were independently 

associated with a 1.16-year lower HannumAA at the 

Bonferroni-adjusted significance threshold after 

adjusting for sex, BMI, smoking, education, and alcohol 

consumption (P=0.001, Model 2). The association 

remained significant after further adjustment for white 

blood cell proportions (Model 3).  

 

Sensitivity analyses were performed to investigate 

whether the associations between medication use and 

DNAm age acceleration were independent of 

comorbidities. First, we repeated the multivariable 

models with all drug categories in the subgroup of 

participants with hypertension (N=779). The results 

from this analysis were not substantively different from 

the analysis in the full sample (Supplementary Table 3). 

The association between the use of calcium channel 

blockers and HannumAA was significant at the 

Bonferroni-corrected significance level in all models 

(Models 1-3). We further adjusted the multivariable 

models with all drug categories for the history of 

hypertension, stroke, coronary heart disease, and 

diabetes, as well as lipid levels to control for potential 

confounding effects (Table 3, Model 4). HannumAA 

was 1.27 years lower for those taking calcium channel 

blockers (P=0.001), and the association remained 

significant after further adjusting for white blood cell 

proportions at the Bonferroni-corrected significance 

level (P=0.0003 in Model 5). 

 

Interaction between medication use and sex on 

DNAm age acceleration  

 

We assessed whether the observed effect of medication 

use varied by sex by adding a medication-by-sex 

interaction term to the linear mixed models with one 

medication at a time (Supplementary Table 4). At a 

Bonferroni-corrected significance threshold (P=0.05/ 

15=0.003), we observed a significant interaction 
between the use of RAAS inhibitors and HorvathAA 

after adjusting for age, sex, education, smoking, alcohol 

consumption, BMI, and white blood cell proportions 

(P=0.0015). In the sex-stratified analysis, RAAS 

inhibitor use was associated with 2.67-year higher 

HorvathAA in males after adjusting for all covariates 

and white blood cell proportions (P=0.001), but this 

association was not significant in females (Figure 1). 

We also included all other drug categories in the model 

to adjust for potential confounding effects, and the 

interaction remained significant (P=0.0009). 

 

Association between statin use and grimage 

components 

 

Statin use was nominally associated with higher 

GrimAA in Models 1, 2, and 4. Since GrimAge is 

comprised of DNAm surrogates for seven proteins and 

smoking pack-years, we further assessed the association 

of statin use with each GrimAge component to identify 

the one(s) that may be driving the observed association. 

As shown in Supplementary Table 5, statin use  

was positively associated with DNAmADM, 

DNAmCystatinC, and DNAmTIMP1 after controlling 

for age, sex, education, smoking, alcohol consumption, 

and BMI at a nominal P-value threshold of 0.05. No 

associations were significant after Bonferroni correction 

for the number of GrimAge components (N=8). All 

nominally significant associations were attenuated after 

further adjusting for white blood cell proportions, 

suggesting that the effect of statins on GrimAge 

components may be partly due to changes in blood cell 

composition. 

 

Association between medication use and longitudinal 

change in DNAm age acceleration 

 

We examined whether medication use influenced the 

change in DNAm age acceleration from Phase 1 to 

Phase 2 in a subset of participants whose methylation 

measurements were collected at both Phases (N=266) 

using multivariable models. We only included drug 

categories with N ≥ 30 at both Phases 1 and 2 (diuretics, 

calcium channel blockers, antihypertensives, diabetes 

medications, and NSAID analgesics). We evaluated the 

longitudinal association between medication use and 

change in DNAm age acceleration after categorizing 

medication use as "never used," "continued," "stopped," 

and "started."  

 

The associations that were significant after Bonferroni 

correction in the longitudinal models for the change  

in medication use between Phase 1 and Phase 2 are 

shown in Table 4. The full results are presented in 

Supplementary Table 6. Compared to those who never 

used antihypertensives, those who started to take them 
after Phase 1 had a 0.97-year decrease in GrimAA 

(P=0.006 in Model 6, Table 4), and the association 

remained significant after further adjusting for 
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Table 2. Association of DNA methylation age acceleration with drug categories using multivariable models. 

 
HorvathAA (N=1,100)  HannumAA (N=1,100) 

Model 1 Model 2 Model 3  Model 1 Model 2 Model 3 

Beta P-value Beta P-value Beta P-value  Beta P-value Beta P-value Beta P-value 

Diuretics 0.37 0.281 0.36 0.311 0.31 0.354  0.32 0.313 0.31 0.335 0.24 0.425 

Calcium channel blockers -0.83 0.030 -0.86 0.025 -0.82 0.027  -1.00 0.005 -1.16 0.001* -1.12 0.001* 

Beta blockers 0.02 0.974 0.01 0.985 -0.02 0.971  -0.92 0.047 -0.90 0.052 -0.95 0.028 

Alpha blockers -1.20 0.073 -1.10 0.099 -0.95 0.139  -0.11 0.862 -0.07 0.913 0.16 0.776 

Sympatholytics 0.002 0.998 -0.13 0.850 -0.26 0.697  0.18 0.775 -0.06 0.920 -0.30 0.618 

RAAS inhibitors 0.48 0.236 0.38 0.347 0.31 0.429  0.10 0.794 0.03 0.939 -0.05 0.877 

Statins -0.003 0.997 0.13 0.860 0.14 0.843  0.04 0.953 0.23 0.733 0.30 0.636 

Sulfonylureas 1.23 0.035 1.18 0.044 1.15 0.041  0.55 0.304 0.47 0.389 0.53 0.301 

Insulins 1.24 0.040 1.04 0.085 0.93 0.110  1.42 0.012 1.38 0.014 1.10 0.038 

Non-narcotic analgesics -0.17 0.725 -0.37 0.440 0.10 0.823  -0.48 0.277 -0.53 0.232 0.01 0.972 

NSAID analgesics -0.83 0.079 -0.92 0.050 -1.04 0.022  -0.70 0.105 -0.68 0.117 -0.78 0.056 

Antidepressants 0.68 0.312 0.72 0.282 0.72 0.259  0.44 0.478 0.43 0.486 0.48 0.410 

Antihistamines 0.21 0.770 0.22 0.759 0.11 0.875  0.20 0.758 0.27 0.682 0.14 0.817 

Antianxiety medications 0.22 0.762 0.23 0.760 -0.02 0.975  0.19 0.781 0.24 0.726 0.13 0.838 

Narcotic analgesics 0.39 0.668 0.23 0.803 0.00 0.998  -0.09 0.915 -0.35 0.680 -0.57 0.473 

 
PhenoAA (N=1,099)  GrimAA (N=1,099) 

Model 1 Model 2 Model 3  Model 1 Model 2 Model 3 

Beta P-value Beta P-value Beta P-value  Beta P-value Beta P-value Beta P-value 

Diuretics 0.67 0.159 0.66 0.172 0.70 0.118  -0.08 0.792 0.21 0.407 0.30 0.217 

Calcium channel blockers -0.07 0.897 -0.27 0.608 -0.19 0.697  0.63 0.071 0.32 0.252 0.37 0.165 

Beta blockers 0.12 0.862 0.08 0.908 -0.13 0.836  -0.23 0.614 -0.20 0.590 -0.29 0.393 

Alpha blockers -1.79 0.053 -1.77 0.054 -2.04 0.017  0.55 0.366 0.47 0.339 0.19 0.682 

Sympatholytics 0.14 0.882 -0.05 0.958 -0.58 0.519  0.74 0.245 0.47 0.360 0.20 0.671 

RAAS inhibitors 0.22 0.697 0.13 0.807 -0.19 0.712  0.62 0.094 0.67 0.025 0.50 0.075 

Statins 0.45 0.657 0.47 0.643 -0.24 0.795  1.74 0.009 1.26 0.019 0.79 0.118 

Sulfonylureas 1.70 0.035 1.65 0.041 1.74 0.021  0.66 0.214 0.57 0.187 0.50 0.213 

Insulins 2.11 0.011 2.06 0.013 1.36 0.080  0.78 0.153 1.12 0.012 0.83 0.048 

Non-narcotic analgesics 0.32 0.625 0.21 0.745 0.16 0.794  0.74 0.090 0.75 0.032 0.46 0.172 

NSAID analgesics -1.01 0.117 -0.98 0.128 -1.12 0.062  -0.31 0.464 0.09 0.794 0.08 0.803 

Antidepressants 1.78 0.054 1.74 0.057 1.78 0.037  1.29 0.034 0.88 0.070 0.89 0.054 

Antihistamines -0.56 0.569 -0.39 0.690 -0.25 0.782  -1.16 0.072 -0.54 0.296 -0.42 0.392 

Antianxiety medications -0.80 0.436 -0.74 0.471 -0.71 0.455  0.49 0.470 0.31 0.574 0.23 0.657 

Narcotic analgesics -0.08 0.947 -0.46 0.709 -0.44 0.701  0.52 0.533 -0.23 0.728 -0.26 0.674 

GrimAA: DNA methylation GrimAge acceleration; HannumAA: DNA methylations HannumAge acceleration; HorvathAA: DNA 
methylations HorvathAge acceleration; NSAID: nonsteroidal anti-inflammatory drug; PhenoAA: DNA methylations PhenoAge 
acceleration; RAAS: Renin-angiotensin-aldosterone system. 
Model 1: DNA methylation age acceleration~ age + sex + 15 medication use variables. 
Model 2: DNA methylation age acceleration~ age + sex + 15 medication use variables + education + smoking + alcohol 
consumption + BMI + random effects. 
Model 3: DNA methylation age acceleration~ age + sex + 15 medication use variables + education + smoking + alcohol 
consumption + BMI + random effects + white blood cell proportions. 
15 Medication use variables: Diuretic + Calcium channel blockers + Beta blockers + Alpha blockers + Sympatholytics + RAAS 
inhibitors + statins + Sulfonylureas + Insulin + Non-narcotic analgesics + NSAID analgesics + Antidepressants + Antihistamines 
+ Anti-anxiety medications + Narcotic analgesics. 
Bold values denote significance at P < 0.05. Asterisk denotes Bonferroni corrected significance at P < 0.05/15=0.003. 

hypertension, stroke, coronary heart disease, diabetes, 
and lipid levels at the Bonferroni corrected significance 

level (P=0.007 in Model 7). Compared to those who 

never used NSAID analgesics, those who started to take 

them after Phase 1 had an increase in HorvathAA of 
about 2.61 years (P=0.0005 in Model 7). Both 

associations remained significant with further 

adjustment for white blood cell proportions (Model 8). 
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Table 3. Association of DNA methylation age acceleration with medication use using multivariable models after 
further adjusting for hypertension, stroke, coronary heart disease, diabetes, and lipids. 

 
HorvathAA (N=1,100)  HannumAA (N=1,100) 

Model 4 Model 5  Model 4 Model 5 

Beta P-value Beta P-value  Beta P-value Beta P-value 

Diuretics 0.26 0.477 0.19 0.601  0.23 0.509 0.10 0.750 

Calcium channel blockers -0.98 0.016 -0.98 0.013  -1.27 0.001* -1.29 0.0003* 

Beta blockers 0.07 0.892 -0.001 0.998  -0.98 0.041 -1.09 0.015 

Alpha blockers -1.17 0.081 -1.05 0.106  -0.13 0.833 0.07 0.899 

Sympatholytics -0.19 0.792 -0.33 0.624  -0.14 0.836 -0.40 0.513 

RAAS inhibitors 0.30 0.472 0.19 0.635  -0.08 0.840 -0.22 0.547 

Statins 0.13 0.855 0.13 0.852  0.19 0.783 0.25 0.692 

Sulfonylureas 1.07 0.181 1.03 0.181  -0.47 0.524 -0.47 0.495 

Insulins 1.02 0.209 0.89 0.254  0.49 0.515 0.13 0.852 

Non-narcotic analgesics -0.17 0.738 0.26 0.587  -0.45 0.335 0.06 0.892 

NSAID analgesics -0.93 0.048 -1.06 0.020  -0.66 0.130 -0.77 0.059 

Antidepressants 0.73 0.273 0.73 0.255  0.41 0.502 0.45 0.438 

Antihistamines 0.20 0.774 0.12 0.865  0.28 0.671 0.18 0.770 

Antianxiety medications 0.24 0.744 0.01 0.983  0.18 0.796 0.09 0.888 

Narcotic analgesics 0.30 0.743 0.07 0.938  -0.22 0.790 -0.45 0.571 

 
PhenoAA (N=1,099)  GrimAA (N=1,099) 

Model 4 Model 5  Model 4 Model 5 

Beta P-value Beta P-value  Beta P-value Beta P-value 

Diuretics 0.59 0.248 0.65 0.167  0.16 0.560 0.27 0.282 

Calcium channel blockers -0.39 0.481 -0.28 0.586  0.25 0.394 0.34 0.231 

Beta blockers -0.24 0.741 -0.37 0.580  -0.46 0.218 -0.49 0.167 

Alpha blockers -1.84 0.047 -2.04 0.018  0.43 0.385 0.20 0.673 

Sympatholytics -0.06 0.953 -0.56 0.535  0.44 0.393 0.21 0.660 

RAAS inhibitors -0.05 0.933 -0.32 0.551  0.53 0.088 0.42 0.153 

Statins 0.31 0.759 -0.33 0.730  1.12 0.037 0.70 0.165 

Sulfonylureas 0.16 0.887 0.24 0.819  -0.19 0.747 -0.18 0.749 

Insulins 0.75 0.503 0.02 0.987  0.33 0.572 0.12 0.837 

Non-narcotic analgesics -0.01 0.988 0.06 0.931  0.45 0.219 0.25 0.466 

NSAID analgesics -0.96 0.139 -1.13 0.062  0.14 0.692 0.11 0.726 

Antidepressants 1.70 0.064 1.72 0.044  0.86 0.079 0.85 0.063 

Antihistamines -0.23 0.812 -0.10 0.911  -0.49 0.345 -0.38 0.434 

Antianxiety medications -0.90 0.383 -0.85 0.373  0.20 0.713 0.14 0.787 

Narcotic analgesics -0.36 0.770 -0.32 0.780  -0.23 0.726 -0.24 0.698 

GrimAA: DNA methylations GrimAge acceleration; HannumAA: DNA methylations HannumAge acceleration; HDL: high-
density lipoprotein; HorvathAA: DNA methylations HorvathAge acceleration; LDL: low-density lipoprotein; NSAID: nonsteroidal 

anti-inflammatory drug; PhenoAA: DNA methylations PhenoAge acceleration; RAAS: Renin-angiotensin-aldosterone system. 
Model 4: DNA methylation age acceleration ~ age + sex + 15 medication use variables + education + smoking + alcohol 
consumption + BMI + hypertension + stroke + coronary heart disease + diabetes + HDL + Triglyceride + LDL. 
Model 5: DNA methylation age acceleration ~ age + sex + 15 medication use variables + education + smoking + alcohol 
consumption + BMI + hypertension + stroke + coronary heart disease + diabetes + HDL + Triglyceride + LDL + Blood cell 
proportions. 
15 Medication use variables: Diuretic + Calcium channel blockers + Beta blockers + Alpha blockers + Sympatholytics + RAAS 
inhibitors + statins + Sulfonylureas + Insulin + Non-narcotic analgesics + NSAID analgesics + Antidepressants + Antihistamines 
+ Anti-anxiety medications + Narcotic analgesics. 
Beta is the regression coefficient of the respective variable from the regression model as stated above. 
Bold values denote significance at P < 0.05. Asterisk denotes Bonferroni corrected significance at P < 0.05/15=0.003. 
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No other significant longitudinal effects were observed 

at the Bonferroni corrected significance threshold 

(Supplementary Table 6). 

 

DISCUSSION 
 

This study investigated the cross-sectional and 

longitudinal associations of commonly used 

pharmaceuticals with four DNAm aging clocks in a 

large African American cohort. We found that DNAm 

age acceleration was associated with commonly used 

medications, but the strength of the associations varied 

by clock. Specifically, the use of calcium channel 

blockers was associated with 1.27-year lower 

HannumAA in the cross-sectional analysis even after 

further controlling for confounding diseases or traits. 

The association remained significant in a sensitivity 

analysis, including only participants with hypertension. 

In addition, RAAS inhibitor use was associated with 

2.67-year higher HorvathAA only in males. In 

longitudinal analysis, the use of antihypertensives 

among those who began taking it after Phase 1 was 

associated with a 0.97-year decrease in GrimAA while 

the use of NSAID analgesics was associated with a 

2.61-year increase in HorvathAA. 

 

To our knowledge, there have been a limited number of 

other studies investigating the association between 

medication use and epigenetic aging clocks. Gao et al. 

[27] recently evaluated the association between 

antihypertensives and DNAm age acceleration in a 

longitudinal study of older male participants of 

European ancestry (N=546). They found a significant 

association between any antihypertensive medication 

use and higher HorvathAA, which is in contrast to our 

findings that some types of antihypertensives were 

associated with lower HorvathAA. In a cross-sectional 

analysis of the first visit with the subset of participants

 

 
 

Figure 1. The plot shows the effects of RAAS inhibitors on HorvathAge acceleration in males (green) vs. females (blue). Each 

dot represents the least square mean of HorvathAge acceleration, and the bars represent the corresponding confidence intervals for the 
effect estimates. RAAS: Renin-angiotensin-aldosterone system. 
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Table 4. Association of NSAID analgesics and antihypertensives uses with the change rate of DNA methylation 
age acceleration from Phase 1 to Phase 2 using multivariable models (N=266). 

 
 GrimAA  

Model 6 Model 7 Model 8 

Change in use of antihypertensives  Beta P-value Beta P-value Beta P-value 

Never used Ref  Ref  Ref  

Continuous use -0.25 0.469 -0.40 0.273 -0.36 0.334 

Started use after Phase 1 -0.97 0.006* -0.97 0.007* -0.96 0.009* 

Stopped use after Phase 1 -0.47 0.394 -0.50 0.390 -0.46 0.425 

 
 HorvathAA  

Model 6 Model 7 Model 8 

Change in use of NSAID analgesics Beta P-value Beta P-value Beta P-value 

Never used Ref  Ref  Ref  

Continuous use -0.12 0.917 0.10 0.933 0.12 0.920 

Started use after Phase 1 2.64 0.0004* 2.61 0.0005* 2.50 0.001* 

Stopped use after Phase 1 1.83 0.017 2.01 0.010 2.00 0.011 

HannumAA: DNA methylations HannumAge acceleration; HorvathAA: DNAm HorvathAge acceleration; HDL: high-density 
lipoprotein; GrimAA: DNAm GrimAge acceleration; LDL: low-density lipoprotein; NSAID: nonsteroidal anti-inflammatory drug; 
PhenoAA: DNA methylations PhenoAge acceleration. 
Only the results with any Bonferroni corrected significant association are presented here. The full results, including those for 
HannumAA and PhenoAA, are presented in Supplementary Table 6. Longitudinal models include subjects that had DNA 
methylation measured at both Phases 1 and 2. Participants whose smoking status changed between Phase 1 and phase 2 
were removed. 
Model 6: Change in Horvath DNA methylation age acceleration (Phase 2-Phase 1) ~ change of medication use + phase 1 
covariates (age, DNAm age acceleration, sex, BMI, smoking, alcohol, education). 
Model 7: Model 6 + phase 1 covariates (hypertension, stroke, coronary heart disease, diabetes, HDL, Triglyceride, LDL). 
Model 8: Model 7 + blood cell proportions. 
Beta is the regression coefficient of the respective variable from the regression model, as stated below.  
Models were adjusted for changes in other medication use (N=5, diuretics, calcium channel blockers, antihypertensives, 
diabetes medications, and NSAID analgesics).  
Bold values denote significance at P < 0.05. Asterisk denotes Bonferroni corrected significance at P < 0.05/5=0.01. 

who had hypertension in Gao et al., calcium channel 

blockers were not associated with HorvathAA; 

however, the association in GENOA was significant at a 

Bonferroni corrected threshold. Potential explanations 

could include differences in ancestry (NAS: European 

ancestry; GENOA: African ancestry), mean age (NAS: 

71.6 years; GENOA 57.0 years), recruitment criteria of 

participants (NAS: free of chronic disease; GENOA: 

sibships with at least 2 individuals clinically diagnosed 

with hypertension before age 60), and sample size 

(NAS: 546; GENOA: 1,100). 

 

Antihypertensive drug use reduces the risk of 

developing age-related diseases caused by hypertension, 

such as CVD and dementia [31, 32]. This is consistent 

with the observed cross-sectional association between 

calcium channel blockers and lower HannumAA, as 
well as the longitudinal association between 

antihypertensives and lower GrimAA in the current 

study. Calcium channel blockers are one of many 

antihypertensive drugs, but are also used for other 

conditions such as coronary artery disease, angina, or 

arrhythmia. Many of the markers used for the Hannum 

clock are within or near genes that have functions in 

aging-related conditions, such as Alzheimer’s disease 

[17]. Specifically, two methylation markers used for the 

aging clock are located in the somatostatin (SST) gene 

region, which encodes somatostatin, a peptide hormone 

that regulates exocrine, endocrine, and nervous system 

function [33]. Somatostatin is highly expressed in the 

brain, and its actions include inhibiting the release of 

excitatory neurotransmitters through voltage-gated 

calcium channels [34, 35]. Somatostatin has been found 

to be reduced in the brain and cerebrospinal fluid of 

Alzheimer's disease patients [36]. Antihypertensive 

drugs have been shown to reduce the risk of dementia, 

and the most significant preventive efficacy of 

antihypertensives against dementia has been 
demonstrated with calcium channel blockers [37]. The 

precise mechanisms of how calcium channel blockers 

influence dementia, in addition to their antihypertensive 

effect, have been actively investigated. Potential 
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mechanisms may be through calcium homeostasis in the 

brain [38] and/or amyloid-beta reduction [39]. Our 

findings may be utilized in future studies to better 

understand the epigenetic mechanisms of calcium 

channel blockers and biological cellular aging 

processes, especially among the elderly population with 

hypertension who are at high risk of dementia. 

However, the results should be interpreted with caution 

because the association was not significant in 

longitudinal analysis, although the longitudinal analysis 

had a much smaller sample size than the cross-sectional 

analysis. 

 

We observed that DNAm age was accelerated by 

several medications. In particular, diabetes medications, 

including sulfonylurea and insulin, were nominally 

associated with all four DNAm age acceleration 

measures. However, these associations were all 

attenuated after further adjustment for age-related 

diseases including diabetes. Since the use of diabetes 

medication indicates having diabetes by definition, our 

findings may be the result of a proxy outcome that 

reflects the influence of diabetes on cellular aging; a 

phenomenon referred to as “confounding by 

indication.”  The strength of the association between 

statin use and higher GrimAA was reduced after 

adjusting for lipid levels, but remained nominally 

significant. One possible explanation for this effect is 

the adverse drug reactions (ADRs) of statin use and its 

influence on aging. The association between statin 

therapy and increased risk of development of diabetes 

has been previously demonstrated [40, 41], and type 2 

diabetes is associated with GrimAA [20]. Interestingly, 

a recent study provided evidence that DNAm partially 

mediates the effect of statins on type 2 diabetes risk 

[26]. In our study, statin use was nominally associated 

with three surrogate marker components (plasma 

proteins) of GrimAge: ADM, cystatin C, and TIMP-1, 

all of which are associated with diabetes. Specifically, 

ADM is a vasodilator, and its insufficiency is associated 

with the pathogenesis of CVD, hypertension, and 

diabetes [42–44]. Cystatin-C is a biomarker of kidney 

function, which may be altered at the preclinical and 

clinical stages of diabetes [45, 46]. TIMP1 has a role in 

promoting cell proliferation, and is associated with 

CVD, diabetes, and cancer [47–49]. However, the effect 

of statin use on these plasma proteins was attenuated 

after adjusting for white blood cell proportions, 

indicating that the association may be due to differences 

in white blood cell distributions. 

 

The interaction between use of RAAS inhibitors and sex 

on HorvathAA was significant after Bonferroni 
correction. The adverse effect of RAAS inhibitors on 

HorvathAA was only observed in males. Angiotensin-

converting enzyme inhibitors (ACEI) and angiotensin 

receptor type I blockers (ARB) are two major inhibitors 

of the RAAS that are used as the first line of 

antihypertensive therapy in patients with kidney 

disease. They reduce the overactivity of the RAAS that 

is associated with the development of hypertension, 

CVD, and kidney disease. Differences in the RAAS 

between men and women may be modulated by sex 

hormones [50, 51], and the efficacy of RAAS treatment 

varies between sexes [52, 53]. The aging process 

increases angiotensin II, the primary effector molecule 

of the RAAS, and may upregulate the RAAS. This 

suggests the need for different RAAS therapies for the 

elderly [54]. More studies of the relationship between 

the RAAS, RAAS inhibitors, and the cellular aging 

process may help to improve RAAS therapies for 

elderly patients. 

 

In the longitudinal analysis, we found that the use of 

NSAID analgesics in those who started the medication 

after Phase 1, compared to those who never took any 

NSAID analgesics, was associated with increased 

HorvathAA after controlling for all potential 

confounding covariates at a strict Bonferroni corrected 

significance level. This finding is not consistent with 

the anti-inflammatory effects of NSAID analgesics that 

reduce symptoms of age-related diseases. Although 

multiple potential factors may explain the discrepancy, 

including limited sample size and the relatively short 

follow-up time in longitudinal analysis, one important 

explanation is the potential adverse effects of NSAIDs. 

These include gastrointestinal bleeding, myocardial 

infarction, stroke, and renal damage [55], which may 

lead to morbidity and mortality, especially in patients 

with heart disease [55, 56]. GENOA participants have a 

higher baseline risk of cardiovascular events due to their 

recruitment criteria (e.g., essential hypertension before 

age 60), which may worsen these adverse effects of 

NSAID analgesics. An important research avenue may 

be to investigate whether and how epigenetic 

mechanisms are involved in the adverse effects of 

NSAIDs. However, it is important to note that the 

sample size for longitudinal analysis was fairly limited 

in our study.  

 

Several limitations of our study must be acknowledged. 

Although we conducted sensitivity analyses, we were 

not able to fully examine whether the observed 

associations were driven from medication use itself or 

relevant diseases requiring the use of specific 

medications. In addition, we could not adjust for other 

potential confounding factors that would influence the 

DNAm age acceleration measures, including diet, 

supplements, or toxicants. We also acknowledge that 
the sample size for the longitudinal analysis may not be 

large enough to detect statistically significant 

associations for some medications. Future studies with 
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larger sample sizes are warranted to more accurately 

estimate the longitudinal effects of medication use on 

change in DNAm age acceleration. The follow-up 

duration may also be relatively short to capture the 

change in DNAm age acceleration by medication use. 

Further, since use of a specific medication was based on 

participants bringing their prescription container, if a 

participant was taking a specific medication but did not 

bring the container, they were classified as not taking 

the medication. Therefore, we recognize that some 

participants classified as not taking a particular 

medication may actually have been taking the 

medication.  This would then bias the results toward the 

null. Where we detect differences between those who 

were classified as taking a medication versus not, the 

differences we detected may actually be smaller than 

the true differences. In addition, we collected current 

medication use at two exam timepoints, but had no data 

for the medications that participants were taking 

between the two exams. Finally, we cannot generalize 

our findings to non-hypertensive populations or 

populations of different races/ancestries. 

 

A notable strength of our research includes using four 

epigenetic aging clocks to capture the influence of 

medication use on different aspects of biological aging. 

The strength of association with each medication varied 

by clock, which suggests that different clocks may 

capture adverse or protective effects from different 

medications. DNAm aging clocks, after adjusting for 

age, are not highly correlated, and most of the DNAm 

aging clocks are, in fact, largely comprised of non-

overlapping CpG sites [23]. To our knowledge, this is 

the first study that comprehensively examined the 

association of commonly used medications with multiple 

DNAm clocks in the African ancestry population using 

both cross-sectional and longitudinal approaches. 

 

In summary, our results suggest that DNAm age 

acceleration is associated with commonly used 

medications in African Americans, but that associations 

varied by clock. Notably, we found a significant  

cross-sectional association of calcium blocker use  

with lower HannumAA and a longitudinal association 

of antihypertensives with lower GrimAA after 

controlling for potential confounding factors, including 

hypertension. This study sheds light on the epigenetic 

effects of pharmaceuticals on aging at the cellular level 

captured by multiple DNA methylation aging clocks. 

However, further investigation is warranted to replicate 

our findings and confirm that the associations were 

driven by the medication use itself. These findings will 

be valuable for investigators who plan to use epigenetic 
biomarkers in pharmaceutical studies of age-related 

diseases. Future studies further investigating the 

influence of individual medication use on cellular aging 

are needed to better understand their potential beneficial 

and deleterious epigenetic mechanisms. 

 

MATERIALS AND METHODS 
 

Study sample 

 

The GENOA study is a community-based longitudinal 

study that was initiated to identify the genetic effects of 

hypertension and related target organ damage [57]. In the 

first phase of GENOA (Phase 1: 1996-2001), European 

American and African American sibships with at  

least 2 individuals who were clinically diagnosed  

with hypertension before age 60 were recruited. All  

other siblings were invited to participate, regardless  

of hypertension status. Exclusion criteria included 

secondary hypertension, alcoholism or drug abuse, 

pregnancy, insulin-dependent diabetes mellitus, active 

malignancy, or serum creatinine levels >2.5mg/dL [57]. 

In Phase 1, 1,583 European Americans (Rochester, MN) 

and 1,854 African Americans (Jackson, MS) were 

enrolled. In the first follow-up phase of GENOA (Phase 

2: 2000-2004), 1,239 non-Hispanic white and 1,482 

African American participants were successfully 

followed up, and their potential target organ damage 

from hypertension was measured. Demographics, 

medical history, clinical characteristics, information on 

medication use, and blood samples were obtained in each 

phase. In GENOA, DNA methylation levels were 

measured only in African American participants using 

blood samples collected at Phases 1 and 2. African 

American GENOA participants with DNA methylation 

available at Phase 1 were included in the current  

cross-sectional analysis (N=1,100). In the longitudinal 

analysis, those with available DNA methylation 

measurements at both Phases 1 and 2 and without 

changes in smoking status between phases were included 

(N=266). Written informed consent was obtained from 

all subjects, and approval was granted by participating 

institutional review boards (University of Michigan, 

University of Mississippi Medical Center, and Mayo 

Clinic).  

 

Methylations measures 

 

A total of 1,106 samples at Phase 1 and 304 samples at 

Phase 2 were assessed using the Illumina 

HumanMethylationEPIC BeadChip. First, raw IDAT 

files were imported using the Minfi R package [58]. We 

used the shinyMethyl R package [59] to visualize the 

raw intensity data and identify sex mismatches and 

outliers, which were removed. We also obtained the 

detection p-value for each sample at each probe, and 

individual probes with detection p-value <10-16 were 

considered to be successfully detected [60]. Samples 

and probes with the detection rate <10% were removed 
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[60]. Samples with incomplete bisulfite conversion 

identified using the QCinfo() function in the ENmix R 

package were removed [61]. We also checked sample 

identity using the 59 SNP probes implemented in the 

EPIC chip and removed mismatched samples. Next, 

Noob was used for individual background and dye-bias 

normalization [62]. Since two types of probes are 

present on the EPIC BeadChip (Infinium I and Infinium 

II), we used the Regression on Correlated Probes (RCP) 

method to adjust for probe-type bias [63]. ComBat, an 

empirical Bayes batch-correction method, was used 

sequentially to remove those batch effects (Johnson, 

2007). We performed principal variance component 

analysis (PVCA) to quantify the variance explained by 

the known batch variables before and after batch 

adjustment to ensure that no single batch factors 

explained more than 3% of the variance. After 

exclusions, a total of 857,121 probes in 1,100 samples 

at Phase 1 and 294 samples at Phase 2 remained for 

analysis. 

 

DNAm age calculation and blood cell counts 

 

To calculate HorvathAge, methylation beta values were 

uploaded to the online Horvath epigenetic age calculator 

[18]. HorvathAge was estimated based on 353 CpGs 

[18]. This epigenetic clock captures chronological age 

across multiple tissue types and in different age groups. 

HorvathAA is the residual from regressing HorvathAge 

on chronological age. HannumAge was estimated based 

on 71 CpG sites using a single tissue (whole blood) [17], 

which captures chronological age. HannumAge 

acceleration (HannumAA) is the residual from 

regressing HannumAge on chronological age. PhenoAge 

was estimated using 513 CpG sites, and the PhenoAA 

measure is the residual from regressing PhenoAge on 

chronological age [19]. PhenoAge captures the effect  

of phenotypic aging as it was trained on many aging-

related clinical measurements, including albumin, 

creatinine, glucose, C-reactive protein, alkaline 

phosphatase, white blood cell count, chronological age, 

and other metrics. GrimAge was estimated using 1,030 

CpG sites, and GrimAA is the residual from regressing 

GrimAge on chronological age [20]. GrimAge captures 

the effects of the number of cigarettes smoked in  

pack-years as well as seven plasma proteins associated 

with mortality, including adrenomedullin, beta-2 

microglobulin, growth differentiation factor 15, Cystatin 

C, leptin, plasminogen activation inhibitor 1, and tissue 

inhibitor metalloproteinase 1 [20]. Since GrimAge is a 

composite measure, we wanted to better understand  

the effects of pharmaceuticals on each component of 

GrimAge, so we additionally obtained the DNAm 
surrogates of all eight individual items from the online 

calculator. It is important to note that the EPIC array is 

missing 19 sites used to construct HorvathAge, and six 

sites that are used to calculate HannumAge; however, 

previous studies have demonstrated that this does not 

impact the performance of DNAm age predictors and 

acceleration measurements [64, 65]. All analyses were 

repeated with additional adjustment for white blood cell 

proportions, including CD8+ T, CD4+ T, natural killer, 

B cells, and granulocytes. These blood cell counts were 

estimated using Houseman’s method as implemented in 

the online epigenetic age calculator [66]. For each 

measure of DNAm age acceleration, outliers greater or 

less than 5 standard deviations from the mean were 

removed. 

 

Drug classifications and other covariates 

 

Prescription information for medications used in the past 

month was collected from the labels on prescriptions 

provided by the participants at each GENOA visit. The 

Medi-Span Therapeutic Classification (MTC) was 

utilized to codify the pharmacological class of each 

prescription using the first six digits. For the current 

analysis, we categorized medications into major classes 

using the first two digits of the MTC code. Major drug 

categories with N < 30 at Phase 1 were excluded from 

the analysis. The 12 major medication categories 

included diuretics, calcium channel blockers, beta 

blockers, antihypertensives, antihyperlipidemics, 

diabetes medication, non-narcotic analgesics, NSAID 

analgesics, antidepressants, antihistamines, antianxiety 

medication, and narcotic analgesics. Categories of 

antihypertensive, antihyperlipidemic, and diabetes 

medications were further subcategorized using the third 

digit of the MTC codes and were included in the analysis 

if N ≥ 30 at Phase 1: antihypertensives were further 

subcategorized into alpha blockers, sympatholytic, and 

RAAS inhibitors; antihyperlipidemics included statins as 

a sub-category; and diabetes medications were further 

classified into sulfonylurea and insulin. Although 

diuretics, calcium channel blockers, and beta blockers 

are often prescribed as antihypertensive medications, 

they have different MTC codes because they are used for 

other conditions as well, such as congestive heart failure, 

angina, and arrhythmia. As a result, a total of 15 drug 

categories were available at Phase 1 for the cross-

sectional analysis. We only included major drug 

categories with N ≥ 30 at both Phases 1 and 2 (diuretics, 

calcium channel blockers, antihypertensives, diabetes 

medications, and NSAID analgesics) for the longitudinal 

analysis due to the limited sample size. 

 

Self-reported smoking status was obtained at Phases 1 

and 2 of GENOA. Current smokers were defined as 

individuals who reported smoking at the time of the 
exam and had smoked at least 100 cigarettes in one’s 

lifetime. Former smokers were individuals who had 

smoked at least 100 cigarettes in one’s lifetime but do 
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not currently smoke. Never smokers were individuals 

who had not smoked more than 100 cigarettes in one’s 

lifetime. Educational attainment was collected at 

GENOA Phase 1 as the self-reported highest degree, 

as well as years of education. Participants were 

grouped as having less than a high school degree (<12 

years of education), high school degree or equivalent 

(12 years or GED), and some college and above (> 12 

years). Alcohol consumption was determined based 

on the number of drinks per week. Because the 

distribution of alcohol consumption was skewed, it 

was log-transformed prior to the analysis. Weight and 

height were collected at both phases, and BMI was 

calculated. Participants’ medical conditions were self-

reported and confirmed during the medical exam. 

Participants were classified as having hypertension if 

they were taking antihypertensive medications, had a 

systolic blood pressure ≥ 140 mmHg, or had a 

diastolic blood pressure ≥ 90 mmHg. Patients taking 

diabetes medication or with glucose level 

measurement ≥ 126mg/dL were categorized as having 

diabetes.  

 

Statistical analyses 

 

We used Chi-square tests to assess independence 

among medication categories. We then performed 

cross-sectional analysis to assess the associations 

between medication use and the four DNAm age 

acceleration measures at Phase 1. For each DNAm age 

acceleration measure, multivariable linear mixed 

models were constructed with all of the drug 

categories as the predictors and DNAm age 

acceleration as the outcome, adjusting for age and sex, 

with batch effects and familial relationships as random 

effects (Model 1). We included all of the drug 

categories in a single model to capture the unique 

contribution of each medication. We also included 

socioeconomic and lifestyle factors that have been 

previously associated with DNAm age acceleration, 

including education, smoking status, alcohol 

consumption, and BMI (Model 2). Since the DNAm 

age clocks are correlated with white blood cell  

counts, we additionally adjusted for white blood cell 

proportions to assess whether any of the associations 

were due to differences in blood cell composition 

(Model 3). For the three major drug categories 

(antihypertensives, antihyperlipidemics, and diabetes 

medications) that had sub-categories, we included only 

the sub-categories into the multivariable model. Since 

we evaluated multiple medications, Bonferroni 

correction was used to account for multiple 

comparisons. However, the measures of medication 
use are not independent, and the Bonferroni approach 

is conservative in this setting, so we also considered a 

nominal significance level (P<0.05). 

Since almost everyone treated with a drug has, by 

definition, the relevant disease to begin with, it is 

important to assess whether the associations of 

medication use with DNAm age acceleration were 

independent of relevant participants’ disease status or 

traits. To address this issue, we ran two sensitivity 

analyses, as follows. First, we repeated the analyses with 

multivariable models among a subset of participants who 

had hypertension since GENOA is a predominately 

hypertensive cohort. Second, we repeated the analyses in 

all participants controlling for age-related diseases and 

lipid levels (hypertension, stroke, coronary heart disease, 

diabetes, high-density lipoproteins (HDL), triglycerides, 

and low-density lipoproteins (LDL) (Model 4). Model 5 

additionally adjusted for white blood cell proportions. 

 

We assessed whether the observed effects of medication 

use on DNAm age acceleration differed by gender. For 

medication-by-sex interactions significant after 

Bonferroni correction (P<0.05/15 = 0.003), we further 

examined the sex-specific effects of the medication on 

DNAm age acceleration. Since GrimAge was 

comprised of DNAm surrogates of eight individual 

items (ADM, B2M, GDF15, CystatinC, Leptin, PAI1, 

TIMP1, and PACKYRS), we also assessed the observed 

effect with each component to identify those that may 

drive the association for any medication categories that 

were associated with GrimAA in Model 4. 

 

Last, we conducted longitudinal analysis for drug 

categories with N ≥ 30 at both Phase 1 and Phase 2 on a 

subset of samples (N=266) whose DNA methylation  

was measured at both Phases. Batch effects and  

familial relationships were adjusted as random effects. 

Because smoking status substantially influences DNA 

methylation, we removed 27 participants whose smoking 

status changed between Phases. We considered the 

change in medication use between Phases by setting the 

change in DNAm age acceleration between Phases as the 

outcome and the change in medication use as the 

predictor. The change in medication use was categorized 

as "Never used" (reference category), "Continued," 

"Stopped," and "Started." Model 6 covariates included 

Phase 1 age, sex, education, BMI, smoking status, 

alcohol consumption, and DNAm age acceleration,  

and Model 7 additionally controlled for Phase 1 

hypertension, stroke, coronary heart disease, diabetes, 

HDL, triglycerides, and LDL. We repeated the analyses 

with further adjustment for white blood cell counts to 

assess whether the association observed was independent 

of the changes in blood cell composition (Model 8). 

 

Abbreviations 
 

ADM: adrenomedullin; ADRs: adverse drug reactions; 

ARB: angiotensin receptor type I blocker; ACEI: 
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Angiotensin-converting enzyme inhibitor; B2M: beta-2 

microglobulin; CVD: cardiovascular disease; CystatinC: 

Cystatin C; DNAm: DNA methylation; GENOA: Genetic 

Epidemiology Network of Arteriopathy; GrimAA: 

GrimAge acceleration; GDF15: growth differentiation 

factor 15; HannumAA: HannumAge acceleration; HS: 

high school; HDL: high-density lipoproteins; HorvathAA: 

HorvathAge acceleration; Leptin: leptin; LDL: low-

density lipoproteins; MTC: Medi-Span Therapeutic 

Classification; NSAIDs: nonsteroidal anti-inflammatory 

drugs; NAS: Normative Aging Study; PhenoAA: 

PhenoAge acceleration; PAI1: plasminogen activation 

inhibitor 1; PVCA: principal variance component 

analysis; RCP: Regression on Correlated Probes; RAAS: 

renin–angiotensin–aldosterone system; SST: somatostatin; 

PACKYRS: the amount of cigarettes smoked in pack-

years; TIMP1: tissue inhibitor metalloproteinase 1. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Correlation between chronological age and DNAm age estimated by four epigenetic clocks. 
Scatterplots with Pearson correlation coefficients between chronological age and DNA methylation age estimated by the HorvathAge (A), 
HannumAge (B), PhenoAge (C), and GrimAge (D) clocks. DNAm: DNA methylation; r: Pearson correlation coefficient. 
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Supplementary Figure 2. Pearson correlation coefficients for DNA methylation age acceleration metrics estimated by four 
epigenetic clocks. 
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Supplementary Tables 
 

Supplementary Table 1. Medication use by first two digits of medi-span therapeutic classification 
(MTC) drug classification code in the genetic epidemiology network of arteriopathy (GENOA). 

 
 

Cross-Sectional 

(N=1,100) 

Longitudinal 

(N=266) 

First two digitsof MTC code Phase 1 Phase 1 Phase 2 

Diuretics D37 377 79 109 

Calcium channel blockers D34 221 58 77 

Beta blockers D33 118   

Antihypertensives D36 321 73 107 

    Alpha blockers  59   

    Sympatholytics  54   

    RAAS inhibitors  207   

Antihyperlipidemics D39 62   

    Statins  51   

Diabetes medications D27 164 32 56 

    Sulfonylureas  82   

    Insulins  78   

Non-narcotic analgesics D64 141   

NSAID analgesics D66 130 36 38 

Antidepressants D58 60   

Antihistamines D41 53   

Antianxiety medications D57 48   

Narcotic analgesics D30 30   

NSAID: nonsteroidal anti-inflammatory drug; RAAS: renin–angiotensin–aldosterone system. 
Number of participants taking each drug category is displayed. Medication use in GENOA was categorized using 
the first two digits of MTC drug classification code. For categories of antihypertensives, antihyperlipidemics, and 
diabetes medication, sub-categories were included. Drug categories with N < 30 were excluded. 
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Supplementary Table 2. P-value from Chi-square test of independence among medication categories. 
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Diuretics 3.1E-04 4.7E-11 0.02 4.2E-04 1.3E-10 2.5E-03 0.02 0.02 2.7E-04 8.7E-05 0.10 5.6E-03 0.03 0.28 

Calcium channel 

blockers 
 1.00 0.91 0.90 0.69 0.01 0.02 0.16 9.6E-10 0.75 3.7E-05 0.09 0.29 0.48 

Beta blockers   0.35 0.14 0.94 0.06 1.00 0.42 2.8E-05 0.89 0.03 0.20 8.2E-06 0.30 

Alpha blockers    1.00 0.89 1.00 0.11 0.87 0.24 0.83 0.18 0.68 0.06 1.00 

Sympatholytics     0.81 1.00 0.80 0.72 0.86 0.63 0.78 0.95 1.00 0.38 

RAAS inhibitors      0.15 9.1E-11 5.4E-11 4.1E-06 0.82 0.68 0.36 0.04 1.00 

Statins       0.35 0.01 0.03 0.51 0.65 0.49 0.11 1.00 

Sulfonylureas        0.89 0.02 1.00 0.31 0.06 1.00 0.60 

Insulins         3.5E-07 0.23 0.03 0.89 0.53 1.00 

Non-narcotic 

analgesics 
         0.03 1.8E-05 0.47 0.55 0.46 

NSAID analgesics           0.32 3.3E-04 1.8E-03 6.4E-04 

Antidepressants            4.3E-03 0.57 1.00 

Antihistamines             0.03 0.96 

Antianxiety 

medications 
             1.00 

NSAID: nonsteroidal anti-inflammatory drug; RAAS: Renin-angiotensin-aldosterone system.  
P < 0.05 is highlighted. 
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Supplementary Table 3. Association of DNA methylation age acceleration with medication use using 
multivariable models among those with hypertension. 

  HorvathAA (N=779)   HannumAA (N=779) 

  Model 1 Model 2 Model 3   Model 1 Model 2 Model 3 

  Beta P-value Beta P-value Beta P-value   Beta P-value Beta P-value Beta P-value 

Diuretics 0.16 0.680 0.24 0.536 0.17 0.652  0.27 0.455 0.34 0.350 0.25 0.460 

Calcium channel blockers -1.21 0.005 -1.17 0.006 -1.13 0.006  -1.30 0.001* -1.36 0.001* -1.33 0.0003* 

Beta blockers -0.13 0.815 -0.06 0.907 -0.15 0.775  -1.16 0.022 -1.04 0.039 -1.13 0.016 

Alpha blockers -1.37 0.053 -1.16 0.101 -1.04 0.128  -0.34 0.603 -0.22 0.738 0.00 0.997 

Sympatholytics -0.21 0.775 -0.34 0.642 -0.55 0.438  0.11 0.876 -0.13 0.844 -0.40 0.532 

RAAS inhibitors 0.17 0.705 0.05 0.911 -0.04 0.923  -0.10 0.817 -0.16 0.705 -0.27 0.489 

Statins -0.01 0.988 0.11 0.884 0.15 0.844  0.15 0.839 0.30 0.680 0.40 0.561 

Sulfonylureas 1.39 0.034 1.29 0.049 1.32 0.038  0.64 0.285 0.49 0.422 0.56 0.329 

Insulins 1.37 0.041 1.17 0.081 1.05 0.103  1.46 0.018 1.42 0.022 1.16 0.047 

Non-narcotic analgesics -0.04 0.934 -0.31 0.566 0.15 0.781  -0.48 0.324 -0.60 0.224 -0.09 0.852 

NSAID analgesics -0.68 0.226 -0.75 0.180 -0.85 0.116  -0.48 0.351 -0.48 0.353 -0.55 0.250 

Antidepressants 0.75 0.328 0.70 0.354 0.66 0.365  0.49 0.488 0.41 0.553 0.38 0.567 

Antihistamines 0.10 0.904 0.06 0.937 -0.04 0.961  0.28 0.710 0.31 0.682 0.22 0.756 

Antianxiety medications -0.14 0.873 -0.12 0.888 -0.37 0.653  -0.17 0.829 -0.15 0.851 -0.23 0.755 

Narcotic analgesics -0.25 0.840 -0.24 0.846 -0.36 0.763  -0.01 0.990 -0.29 0.801 -0.45 0.672 

  PhenoAA (N=778)   GrimAA (N=779) 

  Model 1 Model 2 Model 3   Model 1 Model 2 Model 3 

  Beta P-value Beta P-value Beta P-value   Beta P-value Beta P-value Beta P-value 

Diuretics 0.63 0.246 0.72 0.187 0.79 0.119  -0.25 0.469 0.13 0.644 0.24 0.373 

Calcium channel blockers -0.40 0.505 -0.50 0.397 -0.44 0.414  0.38 0.310 0.27 0.389 0.30 0.302 

Beta blockers -0.11 0.881 -0.03 0.973 -0.27 0.693  -0.39 0.413 -0.23 0.552 -0.36 0.333 

Alpha blockers -2.18 0.027 -2.06 0.036 -2.25 0.013  0.39 0.534 0.42 0.410 0.17 0.731 

Sympatholytics -0.08 0.941 -0.30 0.768 -0.72 0.445  0.68 0.294 0.44 0.405 0.20 0.690 

RAAS inhibitors 0.05 0.939 0.03 0.955 -0.27 0.638  0.45 0.254 0.63 0.050 0.48 0.114 

Statins 0.33 0.762 0.35 0.745 -0.30 0.766  1.89 0.006 1.28 0.024 0.83 0.122 

Sulfonylureas 1.81 0.048 1.77 0.053 1.80 0.033  0.77 0.177 0.74 0.118 0.60 0.179 

Insulins 2.17 0.020 2.15 0.020 1.41 0.099  0.60 0.299 1.07 0.026 0.80 0.082 

Non-narcotic analgesics 0.96 0.194 0.77 0.295 0.74 0.285  0.87 0.062 0.78 0.043 0.49 0.179 

NSAID analgesics -1.35 0.082 -1.29 0.095 -1.24 0.079  -0.40 0.412 -0.10 0.797 -0.07 0.848 

Antidepressants 1.61 0.127 1.48 0.158 1.41 0.144  1.03 0.121 0.71 0.194 0.75 0.147 

Antihistamines 0.13 0.908 0.34 0.766 0.62 0.555  -0.94 0.189 -0.39 0.507 -0.26 0.634 

Antianxiety medications -1.67 0.165 -1.54 0.198 -1.58 0.154  0.52 0.494 0.22 0.723 0.09 0.878 

Narcotic analgesics 0.55 0.744 -0.11 0.950 -0.52 0.736   1.03 0.341 -0.28 0.750 -0.61 0.470 

GrimAA: DNA methylation GrimAge acceleration; HannumAA: DNA methylations HannumAge acceleration; HorvathAA: DNA 
methylations HorvathAge acceleration; NSAID: nonsteroidal anti-inflammatory drug; PhenoAA: DNA methylations PhenoAge 
acceleration; RAAS: Renin-angiotensin-aldosterone system. 
Model 1: DNA methylation age acceleration~ age + sex + 15 medication use variables. 
Model 2: DNA methylation age acceleration~ age + sex + 15 medication use variables + education + smoking + alcohol 
consumption + BMI + random effects. 
Model 3: DNA methylation age acceleration~ age + sex + 15 medication use variables + education + smoking + alcohol 
consumption + BMI + random effects + white blood cell proportion. 
Medication use variables: Diuretic + Calcium channel blockers + Beta blockers + Alpha blockers + Sympatholytics + RAAS 
inhibitors + Statins + Sulfonylureas + Insulin + Non-narcotic analgesics + NSAID analgesics + Antidepressants + Antihistamines 
+ Anti-anxiety medications + Narcotic analgesics. 
Bold values denote significance at P < 0.05. Asterisk denotes Bonferroni corrected significance at P < 0.05/15=0.003. 
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Supplementary Table 4. Interactions between medication use and sex on DNAm age acceleration. 

  

HorvathAA (N=1,100)   HannumAA (N=1,100) 

Model 1 Model 2 Model 3   Model 1 Model 2 Model 3 

Beta P-value Beta P-value Beta P-value   Beta P-value Beta P-value Beta P-value 

Diuretics -0.83 0.276 -0.63 0.402 -0.19 0.790  -0.43 0.543 -0.36 0.608 0.16 0.813 

Calcium channel blockers -0.28 0.740 -0.34 0.682 0.00 0.998  -0.03 0.965 -0.09 0.912 0.09 0.897 

Beta blockers -0.83 0.463 -0.75 0.506 -0.93 0.394  1.60 0.125 1.67 0.110 1.36 0.165 

Alpha blockers -1.09 0.415 -1.11 0.404 -1.70 0.186  -0.91 0.462 -1.10 0.374 -1.87 0.107 

Sympatholytics 1.50 0.314 1.78 0.228 1.48 0.300  0.33 0.813 0.52 0.707 0.21 0.868 

RAAS inhibitors -2.34 0.004 -2.27 0.006 -2.51 0.0015*  -1.04 0.173 -1.00 0.187 -1.44 0.044 

Statins 1.54 0.346 1.92 0.239 2.36 0.133  0.23 0.882 0.36 0.810 0.84 0.555 

Sulfonylureas -1.57 0.192 -1.45 0.227 -1.39 0.230  0.03 0.982 -0.15 0.894 -0.34 0.748 

Insulins -2.55 0.048 -2.22 0.085 -2.45 0.049  -0.60 0.620 -0.37 0.756 -0.67 0.553 

Non-narcotic analgesics -0.01 0.995 0.07 0.942 -0.06 0.948  0.80 0.360 0.72 0.407 0.51 0.532 

NSAID analgesics 0.30 0.767 0.19 0.848 1.09 0.262  1.00 0.288 0.90 0.336 1.77 0.043 

Antidepressants -0.26 0.868 -0.17 0.916 -0.80 0.594  1.01 0.488 1.15 0.425 0.26 0.846 

Antihistamines 0.31 0.851 0.27 0.870 0.20 0.902  -0.18 0.905 -0.37 0.806 -0.52 0.713 

Antianxiety medications 0.01 0.997 0.34 0.831 0.43 0.782  2.57 0.084 2.75 0.065 2.13 0.130 

Narcotic analgesics 3.00 0.107 2.69 0.148 2.39 0.182   0.69 0.690 0.61 0.721 0.40 0.803 

 

PhenoAA (N=1,099)   GrimAA (N=1,099) 

Model 1 Model 2 Model 3   Model 1 Model 2 Model 3 

Beta P-value Beta P-value Beta P-value   Beta P-value Beta P-value Beta P-value 

Diuretics 0.09 0.928 0.17 0.872 0.44 0.652  0.31 0.661 0.35 0.536 0.33 0.532 

Calcium channel blockers -1.25 0.276 -1.34 0.242 -0.65 0.544  -0.94 0.219 -0.95 0.126 -0.66 0.257 

Beta blockers 1.30 0.400 0.91 0.557 0.85 0.556  0.91 0.380 -0.01 0.992 0.21 0.787 

Alpha blockers 0.94 0.608 0.66 0.717 -0.47 0.781  0.69 0.574 0.45 0.652 0.26 0.780 

Sympatholytics -0.54 0.793 -0.15 0.941 -0.93 0.626  -0.63 0.644 0.02 0.985 -0.45 0.659 

RAAS inhibitors -0.95 0.402 -0.81 0.472 -1.23 0.242  -1.01 0.184 -0.59 0.330 -0.60 0.291 

Statins -2.51 0.267 -1.97 0.380 -1.26 0.548  -1.00 0.501 -0.52 0.663 -0.34 0.761 

Sulfonylureas -0.13 0.937 -0.31 0.855 0.45 0.772  -0.20 0.857 -0.66 0.459 -0.10 0.905 

Insulins 0.00 0.999 0.30 0.866 -0.47 0.778  0.40 0.739 0.42 0.661 0.03 0.976 

Non-narcotic analgesics 0.08 0.951 0.11 0.934 0.32 0.792  -0.75 0.385 -0.98 0.157 -0.79 0.227 

NSAID analgesics 0.62 0.656 0.50 0.719 0.94 0.467  1.59 0.086 1.32 0.077 1.20 0.088 

Antidepressants 1.52 0.480 1.55 0.466 1.23 0.534  -0.13 0.929 0.18 0.874 0.30 0.783 

Antihistamines 1.02 0.653 1.04 0.645 0.15 0.942  2.68 0.076 2.46 0.043 2.02 0.077 

Antianxiety medications 0.08 0.971 -0.38 0.865 -1.41 0.505  0.49 0.740 -1.28 0.285 -1.35 0.231 

Narcotic analgesics 1.96 0.441 1.76 0.488 0.93 0.693   -0.11 0.948 -0.50 0.716 -0.90 0.485 

GrimAA: DNA methylation GrimAge acceleration; HannumAA: DNA methylations HannumAge acceleration; HorvathAA: DNA 
methylations HorvathAge acceleration; NSAID: nonsteroidal anti-inflammatory drug; PhenoAA: DNA methylations PhenoAge 
acceleration; RAAS: Renin-angiotensin-aldosterone system. 
Model 1: DNA methylation age acceleration ~ age + sex + medication use (one at a time) + medication use*sex. 
Model 2: DNA methylation age acceleration ~ age + sex + medication use (one at a time) + education + smoking + alcohol 
consumption + BMI + medication use*sex. 
Model 3: DNA methylation age acceleration ~ age + sex + medication use (one at a time) + education + smoking + alcohol 
consumption + BMI + white blood cell proportions + medication use*sex. 
Beta is the regression coefficient of the interaction term between respective medication variable and sex from the regression 
model as stated above.  
Bold values denote significance at P < 0.05.  
Asterisk denotes Bonferroni corrected significance at P < 0.05/15=0.003. 
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Supplementary Table 5. Associations of GrimAge components with statin use using multivariable models 
(N=1,100). 

GrimAge Component 
Model 1  Model 2  Model 3 

Beta SD P-value  Beta SD P-value  Beta SD P-value 

DNAmADM 4.91 2.36 0.038  5.16 2.35 0.028  3.35 2.30 0.145 

DNAmB2M 8345.00 20252.93 0.680  8116.31 20282.21 0.689  6713.34 20211.28 0.740 

DNAmCystatinC 7434.12 3236.05 0.022  7884.45 3239.36 0.015  4816.55 3007.28 0.110 

DNAmGDF15 25.80 15.88 0.105  21.82 15.55 0.161  12.42 15.34 0.418 

DNAmLeptin -59.50 258.21 0.818  -8.68 257.52 0.973  53.35 258.07 0.836 

DNAmPACKYRS 3.04 1.82 0.094  1.11 1.22 0.366  0.68 1.22 0.579 

DNAmPAI1 596.35 365.89 0.103  622.38 347.12 0.073  449.63 343.95 0.191 

DNAmTIMP1 334.04 143.42 0.020  362.00 143.71 0.012  232.06 136.51 0.089 

DNAmADM: DNAm surrogate of adrenomedullin (ADM); DNAmB2M: DNAm surrogate of beta-2 microglobulin (B2M), 
DNAmGDF15: DNAm. 
surrogate of growth differentiation factor 15 (GDF15); DNAmCystatinC: DNAm surrogate of Cystatin C (CystatinC); 
DNAmLeptin: DNAm. 
surrogate of leptin (Leption); DNAmPAI1: DNAm surrogate of plasminogen activation inhibitor 1 (PAI1); DNAmTIMP1: DNAm 
surrogate of 
Issue inhibitor metalloproteinase 1 (TIMP1); DNAmPACKYRS: DNAm surrogate of the amount of cigarettes smoked 
(PACKYRS). 
Model 1: DNA methylation GrimAge components ~ age + sex + medication use (one at a time). 
Model 2: DNA methylation GrimAge components ~ age + sex + medication use (one at a time) + education + smoking + 
alcohol consumption + BMI. 
Model 3: DNA methylation GrimAge components ~ age + sex + medication use (one at a time) + education + smoking + 
alcohol consumption + BMI + white blood cell proportions. 
Beta is the regression coefficient of the respective variable from the regression model as stated above. 
Bold values denote statistical significance at P < 0.05. 
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Supplementary Table 6. Association of medication use with change rate of DNA methylation age acceleration 
from Phase 1 to Phase 2 using multivariable models (N=266). 

 Change of medication 

use 

HorvathAA  HannumAA 

Model 1 Model 2 Model 3  Model 1 Model 2 Model 3 

Beta P-value Beta P-value Beta P-value  Beta P-value Beta P-value Beta P-value 

Diuretics 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use 0.98 0.112 1.27 0.054 1.25 0.063  0.10 0.834 -0.14 0.787 -0.21 0.687 

Started use after Phase 1 -0.74 0.246 -0.59 0.370 -0.52 0.434  0.16 0.762 0.06 0.915 0.04 0.934 

Stopped use after Phase 1 0.56 0.540 0.67 0.502 0.69 0.509  0.38 0.608 0.10 0.902 0.06 0.940 

Calcium channel 

blockers 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use 0.59 0.331 0.80 0.215 0.84 0.208  0.13 0.788 0.02 0.976 -0.03 0.950 

Started use after Phase 1 -0.56 0.414 -0.39 0.579 -0.25 0.729  0.66 0.231 0.61 0.271 0.57 0.315 

Stopped use after Phase 1 0.95 0.372 1.28 0.248 1.28 0.261  0.81 0.342 0.48 0.579 0.47 0.600 

Antihypertensives 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use -0.96 0.112 -0.71 0.278 -0.69 0.298  0.24 0.627 0.14 0.779 0.26 0.624 

Started use after Phase 1 -0.65 0.299 -0.54 0.397 -0.60 0.358  -0.52 0.300 -0.54 0.284 -0.46 0.374 

Stopped use after Phase 1 -0.34 0.727 0.09 0.932 0.10 0.922  -0.71 0.374 -1.06 0.198 -0.92 0.268 

Diabetes medications 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use 0.45 0.531 0.67 0.627 0.82 0.560  0.29 0.617 1.66 0.128 1.62 0.141 

Started use after Phase 1 0.49 0.511 0.82 0.353 0.97 0.285  -1.00 0.096 -0.30 0.662 -0.24 0.733 

Stopped use after Phase 1 -5.28 0.131 -5.42 0.195 -5.60 0.188  1.31 0.640 1.19 0.718 1.23 0.712 

NSAID analgesics 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use -0.12 0.917 0.10 0.933 0.12 0.920  0.18 0.846 -0.25 0.783 -0.20 0.825 

Started use after Phase 1 2.64 0.0004* 2.61 0.001* 2.50 0.001*  1.28 0.032 1.29 0.028 1.30 0.030 

Stopped use after Phase 1 1.83 0.017 2.01 0.010 2.00 0.011  0.19 0.760 0.41 0.497 0.43 0.485 

 Change of medication 

use 

PhenoAA  GrimAA 

Model 1 Model 2 Model 3  Model 1 Model 2 Model 3 

Beta P-value Beta P-value Beta P-value  Beta P-value Beta P-value Beta P-value 

Diuretics 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use 0.28 0.696 -0.35 0.648 -0.67 0.378  0.14 0.683 0.11 0.762 0.03 0.942 

Started use after Phase 1 0.27 0.718 0.02 0.978 0.02 0.975  -0.01 0.977 -0.08 0.838 -0.10 0.790 

Stopped use after Phase 1 -1.12 0.300 -1.65 0.158 -1.89 0.108  0.21 0.688 0.19 0.729 0.08 0.885 

Calcium channel 

blockers 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use 0.13 0.853 -0.34 0.646 -0.32 0.666  0.01 0.967 -0.02 0.957 -0.04 0.913 

Started use after Phase 1 -1.10 0.168 -1.37 0.093 -1.40 0.089  0.09 0.814 0.05 0.901 -0.09 0.814 

Stopped use after Phase 1 1.45 0.240 0.89 0.487 0.37 0.771  1.17 0.049 1.22 0.049 1.06 0.091 

Antihypertensives 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use 0.06 0.934 -0.40 0.599 -0.31 0.679  -0.25 0.469 -0.40 0.273 -0.36 0.334 

Started use after Phase 1 -1.65 0.024 -1.72 0.021 -1.90 0.011  -0.97 0.006* -0.97 0.007* -0.96 0.009* 

Stopped use after Phase 0.35 0.761 -0.47 0.696 -0.43 0.720  -0.47 0.394 -0.50 0.390 -0.46 0.425 

Diabetes medications 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use 1.10 0.192 3.09 0.053 2.92 0.067  0.48 0.234 0.61 0.428 0.41 0.596 

Started use after Phase 1 0.28 0.744 0.63 0.535 0.61 0.548  0.07 0.862 0.09 0.849 -0.02 0.963 

Stopped use after Phase 1 -1.51 0.710 -0.35 0.941 -2.29 0.633  -0.08 0.967 0.08 0.974 -0.35 0.881 

NSAID analgesics 

Never used Ref  Ref  Ref   Ref  Ref  Ref  

Continuous use -1.36 0.293 -1.83 0.169 -1.68 0.200  -0.52 0.393 -0.59 0.355 -0.53 0.406 

Started use after Phase 1 0.49 0.568 0.48 0.576 0.44 0.610  0.14 0.734 0.12 0.777 0.16 0.709 

Stopped use after Phase 1 1.57 0.074 1.66 0.062 1.59 0.071  0.35 0.412 0.34 0.431 0.33 0.439 

HorvathAA: DNAm HorvathAge acceleration; HannumAA: DNAm HannumAge acceleration; GrimAA: DNAm GrimAge 
acceleration; PhenoAA: DNAm PhenoAge acceleration. 
Longitudinal models include subjects that had DNA methylation measured at both Phases 1 and 2. Participants whose 
smoking status changed between Phase 1 and Phase 2 were removed.  
Model 1: Change in DNA methylation age acceleration (Phase 2-Phase 1) ~ change in medication use + phase 1 covariates 
(age, DNAm age acceleration, sex, BMI, smoking, alcohol, education) 
Model 2: Model 1 + phase 1 covariates (hypertension, stroke, coronary heart disease, diabetes, HDL, Triglyceride, LDL) 
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Model 3: Model 2 + blood cell proportions 
Medication use variables: diuretics, calcium channel blockers, antihypertensives, diabetes medications, and NSAID analgesics 
Beta is the regression coefficient of the respective variable from the regression model, as stated below.  
Bold values denote significance at P < 0.05. Asterisk denotes Bonferroni corrected significance at P < 0.05/5= 0.01. 


