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INTRODUCTION 
 

Compared with other tissues in the body, bone is a 

relatively dynamic organ, which undergoes significant 

turnover during life [1]. The coupling and precise 

regulation between bone cells affect the homeostasis of 

bone metabolism, including bone formation by 

osteoblast, bone resorption by osteoclast and regulation 

by osteocyte [2, 3]. In addition, bone microenvironment 

is a complex system containing various other types of 

cells, such as stromal cell, immune cells, endothelial 

cells, which also influence bone metabolism via 

complex crosstalks [4]. For instance, monocytes can 
regulate bone remodeling by secretion of various 

cytokines, such as bone morphogenetic protein 2 

(BMP2), which in turn promote the osteogenic 
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ABSTRACT 
 

The homeostasis of bone metabolism depends on the coupling and precise regulation of various types of cells in 
bone tissue. However, the communication and interaction between bone tissue cells at the single-cell level 
remains poorly understood. Thus, we performed single-cell RNA sequencing (scRNA-seq) on the primary human 
femoral head tissue cells (FHTCs). Nine cell types were identified in 26,574 primary human FHTCs, including 
granulocytes, T cells, monocytes, B cells, red blood cells, osteoblastic lineage cells, endothelial cells, endothelial 
progenitor cells (EPCs) and plasmacytoid dendritic cells. We identified serine protease 23 (PRSS23) and matrix 
remodeling associated protein 8 (MXRA8) as novel bone metabolism-related genes. Additionally, we found that 
several subtypes of monocytes, T cells and B cells were related to bone metabolism. Cell-cell communication 
analysis showed that collagen, chemokine, transforming growth factor and their ligands have significant roles in 
the crosstalks between FHTCs. In particular, EPCs communicated with osteoblastic lineage cells closely via the 
"COL2A1-ITGB1" interaction pair. Collectively, this study provided an initial characterization of the cellular 
composition of the human FHTCs and the complex crosstalks between them at the single-cell level. It is a 
unique starting resource for in-depth insights into bone metabolism. 
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differentiation by mesenchymal stem/stromal cells [5]. 

Resting T cells have a protective role of bone [6], while 

activated T cells increase the production of receptor 

activator of NF-kappaB ligand (RANKL) and tumor 

necrosis factor alpha (TNF-α) to promote osteoclast 

formation and subsequent bone loss under inflammatory 

conditions [7]. B cells can regulate osteoclastogenesis 

by expressing osteoclast differentiation factor 

(ODF)/RANKL [8]. However, current strategies for 

bone study are based on whole cell population of bone 

by bulk sequencing of al the cells for bone tissue [9, 

10]. The approach ignores the heterogeneity between 

individual cells and lack the accuracy and resolution to 

characterize regulation and crosstalks between bone 

tissue cells. 

 

Single-cell RNA sequencing (scRNA-seq) provides an 

opportunity to explore the heterogeneity of complex 

tissues and cell-to-cell interactions at high resolution 

[11, 12]. Although flow cytometry is a prominent 

technique for categorizing cells, which can identify the 

single cell through the expression of both cell surface 

and (or) intracellular proteins, it has been limited to 

probing a few selected proteins [13, 14]. Similarly, 

magnetic activated cell sorting (MACS) and 

immunohistochemistry (IHC) also have this limitation. 

And in situ hybridization (ISH) has been limited to 

probing a few selected RNAs. These single-cell 

approaches can only focus on information of the 

selected RNAs or proteins [13], while scRNA-seq can 

provide a broad characterization of the transcriptome 

profile. Besides, compared with the traditional bulk-

RNA sequencing, scRNA-seq provides information of 

cellular biology at higher resolution and with more 

accuracy [15]. scRNA-seq has been successfully 

applied to reveal the transcriptional diversity of murine 

bone marrow-derived mesenchymal stem cells (BM-

MSCs) [16], and to identify differential expression 

genes (DEGs) between human Wharton's jelly stem 

cells and human BM-MSCs [17]. However, the cellular 

composition of bone tissue cells and the crosstalks 

between them at single-cell resolution remains 

unknown. 

 

Here, we applied scRNA-seq technology to characterize 

cellular heterogeneity at single-cell level in freshly 

isolated bone tissue cells from human femoral head. We 

identified serine protease 23 (PRSS23) and matrix 
remodeling associated protein 8 (MXRA8) as novel 

bone metabolism-related genes. Moreover, we defined 

distinct subtypes of monocytes, T and B cells in bone 

microenvironment. We further discussed their 

relationship with bone metabolism and re-constructed 
the communication networks of cells in human femoral 

head. We believe that the global single-cell profile of 

how different types of human femoral head tissue cells 

work together would promote our comprehensive 

understanding of bone metabolism, and provide some 

novel insights into the prevention and treatment  

of skeletal diseases, such as osteoporosis and 

osteoarthritis. 

 

RESULTS 
 

scRNA-seq analysis reveals distinct cell types in 

human femoral head 

 

We performed scRNA-seq analyses on femoral head 

tissue cells from four human subjects (Figure 1A). The 

gene expression profiles between samples have a strong 

correlation, suggesting that there is no obvious batch 

effect between samples (R > 0.96; Supplementary 

Figure 1). After merging of the four datasets and QC, 

we obtained a cell-gene matrix of 26,574 cells, with an 

average of 1035 genes detected per cell (Figure 1B). 

Then we clustered cells into 16 distinct clusters  

(Figure 1C), and identified the cluster-specific markers 

(Figure 1D). 

 

Among these clusters, we identified that, 1) clusters 

C01, C02, C04, C11 were CD11b+CD66b+ 

granulocytes; 2) cluster C03 was CD3+ T cells; 3) 

clusters C05 and C13 were CD14+ monocytes; 4) 

clusters C06, C08, C12 were CD19+CD79A+CD20+ B 

cells; 5) clusters C07 and C10 were CD235a+ red blood 

cells (RBCs); 6) cluster C09 was osteoblastic lineage 

cells; 7) cluster C14 was CD31+VWF+ endothelial cells 

(ECs); 8) cluster C15 was CD117+CD133+ endothelial 

progenitor cells (EPCs); 9) cluster C16 was 

GZMB+IL3RA+ plasmacytoid dendritic cells (PDCs). 

Proportions of each cluster and each cell type were 

shown in Figure 1E, respectively. 

 

Functional analyses and hub genes identification for 

DEGs of osteoblastic lineage cells 

 

The osteoblastic lineage cells were a complex cell 

population which contained BM-MSCs, osteoblasts, 

osteocytes and chondrocytes, and we showed the 

expression of cell-specific markers by the violin plot 

(Supplementary Figure 2A). 

 

To further study the biological functions of osteoblastic 

lineage cells, we performed GO and KEGG enrichment 

analyses based on the DEGs of osteoblastic lineage cells 

(Supplementary Tables 2, 3). GO enrichment analysis 

identified abundant terms related to bone metabolism, 

such as “extracellular structure organization”, 

“extracellular matrix organization”, “establishment of 

protein localization to organelle”, “skeletal system 

development”, and “ossification” (Supplementary 

Figure 2B). Several signal pathways related to bone 
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metabolism were revealed by KEGG enrichment 

analysis (Supplementary Figure 2B), such as “PI3K-Akt 

signaling pathway”, “Rap1 signaling pathway”, and 

“TGF-beta signaling pathway”. 

 

To identify the hub genes, which are genes with a high 

degree of connectivity, in the DEGs of osteoblastic 

lineage cells, a PPI network of DEGs was constructed 

(Supplementary Figure 2C), and the top 20 hub genes 

with a high degree of connectivity were detected 

(Figure 2A). These top 20 hub genes were enriched in 

the process related to bone metabolism (Supplementary 

Table 4 and Supplementary Figure 2D), such as 

“extracellular structure organization”, “extracellular 

matrix organization”, “ossification”, “skeletal system 

development” and “osteoblast differentiation”. We also 

detect seven significant modules in the PPI  

network (Figure 2B and Supplementary Figure 2E, 

Supplementary Table 5). We used genes in the most 

significant module, module 1 (score = 19.097, with 32 

nodes and 296 edges) for a GO enrichment analysis 

(Supplementary Figure 2D and Supplementary Table 6), 

and found that genes in module 1 were significantly 

related to extracellular structure, extracellular matrix, 

collagen fibril, ossification, skeletal system, etc. The 

biological process analysis of the top 16 genes in 

module 1 was shown in Supplementary Figure 2F. 

 

Among the hub genes in the DEGs network and the hub 

genes in the most significant module (module 1) of the

 

 
 

Figure 1. scRNA-seq reveals the cell populations of the human femoral head. (A) Study overview. (B) After QC, the number of genes 
(left) and RNA molecules (right). (C) t-SNE plot shows the color-coded clustering of human femoral head tissue cells. (D) Heat map shows the 
top 10 genes with the highest avg_logFC of each cluster. (E) The proportion of each cluster (left) and each cell type (right). scRNA-seq: single-
cell RNA sequencing: Gran: granulocyte; Mono: monocyte; RBC: red blood cell; OBC: osteoblastic lineage cell; EC: endothelial cell; EPC: 
endothelial progenitor cell; PDC: plasmacytoid dendritic cell. 
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PPI network, we found that most of these genes  

were known to be related to bone metabolism 

(Supplementary Table 7). However, two genes, PRSS23 

and MXRA8, were rarely reported to regulate bone 

metabolism. In addition, PRSS23 was highly expressed 

in osteoblast precursors and early osteoblasts (pre-

osteoblast and undetermined osteoblast) (Figure 2C), 

and MXRA8 was highly expressed in both BM-MSCs 

and osteoblasts (Figure 2D). During the process of 

osteogenic differentiation by BM-MSCs in vitro, the 

expression levels of PRSS23 and MXRA8 were 

significantly increased (Figure 2E). Therefore, we 

speculate that PRSS23 and MXRA8 may play important 

roles in bone metabolism. 

 

scRNA-seq analysis reveals distinct subtypes in 

monocytes, T cells and B cells in human femoral 

head 

 

To study the cellular heterogeneity of monocytes, T 

cells and B cells in bone tissue, we extracted 1,810 

CD14+ monocytes, 3,612 CD3+ T cells and 2,382 

CD19+CD79+CD20+ B cells from the original dataset 

for further analyses. 

 

 
 

Figure 2. Analysis of osteoblastic lineage cells. (A) Gene network analysis of DEGs. The top 20 hub genes in the network. The 

color changes from yellow to red, indicating low to high connectivity. (B) The top MCODE-score module (module 1) screened from the 
PPI network. The color changes from blue to red, indicating low to high MCODE-score. (C) The expression level of PRSS23 in BM-MSCs 
(left) and osteoblasts (right). C1: osteoblast precursor; C2: adipocyte precursor; C3: terminal 1; C4: terminal 2; C5: contam inated; C6: 
chondrocyte precursor; O1: pre-osteoblast (early osteoblast); O2: mature osteoblast; O3: undetermined osteoblast (early osteoblast). 
(D) The expression level of MXRA8 in BM-MSCs (left) and osteoblasts (right). (E) The expression levels of alkaline phosphatase (ALPL), 
PRSS23 and MXRA8 during in vitro osteogenic differentiation from BM-MSCs (left to right). X-axis represents time (days) of induce 
differentiation and y-axis reflects log2-normalized gene expression levels. Stars indicate significance level of gene expression 
difference between two samples by t-test. ns, not significant; *, p value < 0.05; **, p value < 0.01; ***, p value < 0.001; ****, p value 
< 0.0001. 
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Among the monocytes (Figure 3A–3C), we identified 

three putative subtypes: IL1B+ monocytes (M1), C1QA+ 

monocytes (M2), and MS4A3+ granulocyte-monocyte 

progenitors (M3). In the T cells (Supplementary Figure 

4D–4F), we identified one CD4 cluster (T1), and six 

CD8 clusters: GZMK+CCL4L2+ T cells (T2), CCR7+ T 

cells (T3), GZMK+CCR6+ T cells (T4), GZMB+GNLY+ 

T cells (T5), GZMK+CXCL8+ T cells (T6), and

 

 
 

Figure 3. scRNA-seq analysis reveals different cell subtypes in monocytes, T cells and B cells. (A) t-SNE plot shows the color-

coded clustering for monocytes. Monocytes: M1-M3. (B) t-SNE plot shows the cell cycle status of monocytes. (C) Monocyte subtypes 
signature genes, embedded on t-SNE dimension reduction map, and colored by gene expression levels. (D) t-SNE plot shows the color-coded 
clustering for T cells. T cells: T1-T7. (E) t-SNE plot shows the cell cycle status of T cells. (F) T cell subtypes signature genes, embedded on t-SNE 
dimension reduction map, and colored by gene expression levels. (G) t-SNE plot shows the color-coded clustering for B cells. B cells: B1-B5. 
(H) t-SNE plot shows the cell cycle status of B cells. (I) B cell subtypes signature genes, embedded on t-SNE dimension reduction map, and 
colored by gene expression levels. (J) The expression level of TRAP (left) and CTSK (right) in monocytes subtypes. (K) The expression level of 
CCL20 (left) and LTF (right) in T cells subtypes. 
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GZMK+HSPA1A+ T cells (T7). Within the B cells 

(Figure 3G–3I), we identified DNTT+/MME+ pre-B cell 

(B2 and B5), MSHA1+ mature/activated B cell (B4), 

CD27+ memory B cell (B3), and a plasmablast cluster 

(B1) with high expression of immunoglobulin genes 

and XBP1 (a transcription factor for plasma cell 

differentiation) [18]. 
 

GO and KEGG enrichment analyses suggested that 

several of these subtypes were involved in the 

regulation of bone metabolism (Table 1 and Figures 4–7 

and Supplementary Tables 8–13), including IL1B+ 

monocytes (M1), CD4 T cells (T1), GZMK+CCL4L2+ T 

cells (T2), GZMK+CCR6+ T cells (T4), GZMB+GNLY+ 

T cells (T5), GZMK+CXCL8+ T cells (T6), 

DNTT+/MME+ pre-B cell (only B5), and MSHA1+ 

mature/activated B cell (B4). 

 

Complex inter-cellular communication networks in 

human femoral head 
 

We identified ligand-receptor pairs and molecular 

interactions among bone tissue cells (except 

granulocytes) (Figure 8A). Cognate receptors with 

broadcast ligands were detected, demonstrating 

extensive communication between osteoblastic lineage 

cells and other types of cells (Figure 8A, 8B). Our 

results suggested that chemokine, transforming growth 

factor and collagen had significant roles in inter-cellular 

communications (Figure 8C). The "CXCL12-CXCR4" 

interaction pair played important role in the crosstalks 

between bone tissue cells. Previous studies have 

reported that the CXCL12/CXCR4 signaling was 

involved in the regulation of bone homeostasis [19–21]. 

Notably, the "COL2A1-ITGB1" interaction pair was 

significant in the crosstalk between EPCs and 

osteoblastic lineage cells (Figure 8C). Additionally, 

compared with other cells, monocytes could act through 

COL1A1-/COL1A2-CD44 interaction pairs to perform 

closer cell communication (measured with interaction 

score) with osteoblastic lineage cells (Figure 8C). 

 

DISCUSSION 
 

Bone is a complex tissue and undergoes modeling/ 

remodeling constantly during life [22]. Various types of 

cells are involved in the regulation of bone homeostasis, 

such as bone cells, stromal cell, immune cells, 

endothelial cells, which also communicate with each 

other closely [4]. Therefore, it is fundamental to study 

the cellular composition of the bone tissue cells and the 

crosstalks between them. In this study, we applied 

scRNA-seq analyses on freshly isolated bone tissue 
cells from human femoral head. We identified two 

novel bone metabolism-related genes, PRSS23 and 

MXRA8. We discovered several subtypes of immune 

cells (monocytes, T cells and B cells) that may be 

involved in the regulation of bone metabolism. Finally, 

the cell-cell communication analysis suggested complex 

inter-cellular communication networks among human 

femoral head tissue cells, and the close crosstalk 

between EPCs and osteoblastic lineage cells via the 

"COL2A1-ITGB1" interaction pair. Our results 

provided an initial systematic dissection of human 

femoral head tissue at single-cell resolution and a global 

single-cell profile of how different cells work together 

in human femoral head. 

 

To avoid potential alternation of transcriptome profiles 

caused by in vitro operations (e.g. culturing) [23], we 

performed scRNA-seq on the freshly isolated primary 

femoral head tissue cells. In addition, we identified two 

novel bone metabolism-related genes, PRSS23 and 

MXRA8, by analyzing the PPI network constructed from 

DEGs in osteoblastic lineage cells, and showed that the 

expression of these two genes were significantly 

increased during in vitro osteogenic differentiation. 

Based on our recent scRNA-seq data of BM-MSCs [24] 

and osteoblasts [25], PRSS23 was highly expressed in 

the osteoblast precursors and early osteoblasts (pre-

osteoblast and undetermined osteoblast). This result 

suggested that PRSS23 may promote the differentiation 

of BM-MSCs into osteoblasts. Previous studies reported 

that, in breast cancer cells, PRSS23 was co-expressed 

with estrogen receptor α (ERα), and PRSS23 

knockdown may suppress estrogen-driven cell 

proliferation of breast cancer cells [26]. Since estrogens 

were highly significant for bone metabolism and 

maintaining bone mineral density (BMD) [27], we 

speculated that PRSS23 may regulate bone metabolism 

through affecting ERα gene expression. Additionally, 

PRSS23 have been reported to interact with TGFB 

signaling pathways [28], and TGFB signaling pathway 

was significant for bone metabolism [29]. Therefore, we 

speculated that PRSS23 may also regulate bone 

metabolism through mediating the TGFB signaling 

pathway. MXRA8 was highly expressed in both BM-

MSCs and osteoblasts (Figure 2D), suggesting that it 

may play a critical role in maintaining the activity and 

function of BM-MSCs and osteoblasts. Recent studies 

showed that MXRA8 was a lipid metabolism-related 

gene [30] and also related to the proliferation of growth 

plate chondrocytes [31]. Interestingly, MXRA8 is a cell 

adhesion molecule, as an entry mediator for 

arthritogenic alphaviruses [32], and arthritogenic 

alphaviruses would cause chronic musculoskeletal 

disease [33]. Taken together, PRSS23 and MXRA8 were 

likely related to bone metabolism in humans. 

 
In the monocytes, we found the IL1B+ monocytes (M1) 

could regulate bone metabolism, and this subtype of 

monocytes have been reported as a key potential  
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Table 1. Enrichment analysis of subtypes in monocytes, T cells and B cells. 

Subtype ID Description GeneRatio p.adjust Gene symbol 

M1 

GO:0001503 ossification 19/399 0.011 
VCAN, ATP2B1, PTGS2, FGR, CTNNB1, TGFB1, H3F3A, HIF1A, AREG, TCIRG1, 

CEBPB, DDX5, DDX21, TPM4, SNAI1, IL6R, JUNB, CLEC5A, IL6 

GO:0001649 
osteoblast 

differentiation 
14/399 0.006 

VCAN, CTNNB1, H3F3A, AREG, TCIRG1, CEBPB, DDX5, DDX21, TPM4, SNAI1, 

IL6R, JUNB, CLEC5A, IL6 

GO:0030316 
osteoclast 

differentiation 
10/399 0.001 

LILRB3, FCER1G, CTNNB1, MAFB, TGFB1, OSCAR, TCIRG1, CEBPB, ANXA2, 

JUNB 

GO:0045453 bone resorption 5/399 0.045 CTNNB1, ADAM8, TNFAIP3, TCIRG1, IL6 

GO:0046849 
bone 

remodeling 
6/399 0.048 CTNNB1, TGFB1, ADAM8, TNFAIP3, TCIRG1, IL6 

hsa04380 
osteoclast 

differentiation 
19/238 0.000 

IL1B, NCF2, LILRB2, LILRA5, LILRB3, FOSL2, NFKBIA, SOCS3, TGFB1, IFNGR2, 

LCP2, OSCAR, NFKB2, NCF1, NFKB1, IFNGR1, IL1A, FYN, JUNB 

T1 GO:0030316 
osteoclast 

differentiation 
4/62 0.007 GPR183, JUNB, FOS, FOXP1 

T2 

GO:0030316 
osteoclast 

differentiation 
6/191 0.008 PIK3R1, CD81, CCL3, IFNG, GNAS, TGFB1 

GO:0045670 

regulation of 

osteoclast 

differentiation 

4/191 0.046 PIK3R1, CCL3, IFNG, GNAS 

T4 

GO:0030316 
osteoclast 

differentiation 
4/109 0.037 IL23R, CA2, GPR183, FOS 

GO:0045672 

positive 

regulation of 

osteoclast 

differentiation 

3/109 0.010 IL23R, CA2, FOS 

T5 

GO:0030316 
osteoclast 

differentiation 
6/308 0.043 TYROBP, FCER1G, TGFB1, CCL3, CD81, CEBPB 

GO:0045778 

positive 

regulation of 

ossification 

6/308 0.043 TGFB1, IFITM1, CLIC1, ADRB2, ZBTB16, CEBPB 

T6 GO:0030316 
osteoclast 

differentiation 
7/246 0.007 LTF, FCER1G, TYROBP, LILRB3, SNX10, MAPK14, FOS 

B5 GO:0001649 
osteoblast 

differentiation 
32/1647 0.042 

LEF1,CDK6, H3F3A, HNRNPC, SMAD1, CBFB, ID2, ID3, HNRNPU, ATP5F1B, 

RBMX, FBXO5, SYNCRIP, MEF2D, GNAS, SNRNP200, CLTC, ALYREF, REST, 

HDAC7, DHX9, DDX5, MEF2C, CLIC1, H3F3B, CTNNB1, ADAR, TPM4, RPS15, 

FBL, LIMD1, PHB 

B4 hsa04380 
osteoclast 

differentiation 
13/383 0.040 

JUNB, JUND, NFKB2, NFATC1, GRB2, TGFB1, FOS, FOSB, CYLD, PPP3CA, 

SOCS3, NCF1, NFKBIA 

Monocytes: M1-M3; T cells: T1-T7; B cells: B1-B5. 

 

mediator of the pathogenesis of rheumatoid arthritis 

[34]. Besides, the IL1B+ monocytes (M1) contain the 

TRAP+CTSK+ osteoclasts precursor (Figure 3J). Among 

the T cells, we found the majority of CD8 T cells in 

bone tissue express GZMK, which is similar to the 

results in synovial tissue [34]. GO enrichment analysis 

suggested that GZMK+CCR6+CD8 T cells (T4)  

could promote osteoclastogenesis and enhance  

bone resorption. CCL20 was highly expressed in 

GZMK+CCR6+CD8 T cells (T4) (Figure 3K), and 

CCL20 can enhance osteoclastogenesis and induce 

osteoclast differentiation [35, 36]. In contrast, another 

subpopulation of CD8 T cells, GZMK+CXCL8+ T cells 

(T6), specifically express high levels of LTF (Figure 

3K), which can inhibit the bone resorption mediated by 

osteoclasts [37]. Therefore, the previous notion that 

CD8 T cells are suppressive to bone resorption should 

be re-evaluated at single-cell level [38–40]. In addition,  
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GO enrichment analysis suggested that the pre-B cells 

(only B5) may also regulate the differentiation of 

osteoblasts. Therefore, future studies are needed to further 

explore the functional roles of GZMK+CCR6+CD8 T cells 

(T4) and pre-B cells (only B5) on bone metabolism in the 

context of their in vivo functional importance in bone 

tissues. 

To explore inter-cellular interaction in human femoral 

head tissue cells, we constructed the inter-cellular 

communication networks in femoral head based on 

known ligand-receptor interactions. In the network, 

EPCs closely communicated with osteoblastic lineage 

cells via "COL2A1-ITGB1" interaction. Since COL2A1 

is a known chondrogenic marker [41], we suspected that

 

 
 

Figure 4. Enrichment analysis of subtypes in monocytes (M1-M3). (A) GO (left) and KEGG (right) enrichment analysis of DEGs 
in M1. (B) GO (left) and KEGG (right) enrichment analysis of DEGs in M2. (C) GO (left) and KEGG (right) enrichment analysis of DEGs 
 in M3. 
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EPCs may regulate chondrogenesis of osteoblastic 

lineage cells through "COL2A1-ITGB1" interaction. 

For novel bone metabolism-related genes, PRSS23 and 

MXRA8, we did not find any significant crosstalks in the 

cell-cell communication analysis, which is probably due 

to the very limited knowledge about the functions of 

these two genes. 

 

Despite interesting and novel findings in this initial 

comprehensive characterization of cells and their 

interactions in vivo in human femoral head at single cell 

level, our study may have some limitations. First, due to 

limited amount of data (only 691 osteoblastic lineage 

cells detected in our dataset), we were unable to further 

dissect subpopulations of osteoblastic lineage cells. This 

is mainly because we performed scRNA-seq on the 

primary femoral head tissue cells without any 

purification/enrichment procedures specifically for 

osteoblastic lineage cells. Also, the samples of this 

study were from subjects with osteoporosis or

 

 
 

Figure 5. Enrichment analysis of subtypes in T cells (T1-T3). (A) GO (left) and KEGG (right) enrichment analysis of DEGs in T1. (B) GO 

(left) and KEGG (right) enrichment analysis of DEGs in T2. (C) GO enrichment analysis of DEGs in T3. 
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Figure 6. Enrichment analysis of subtypes in T cells (T4-T7). (A) GO (left) and KEGG (right) enrichment analysis of DEGs in T4. (B) GO 

(left) and KEGG (right) enrichment analysis of DEGs in T5. (C) GO (left) and KEGG (right) enrichment analysis of DEGs in T6. (D) GO (left) and 
KEGG (right) enrichment analysis of DEGs in T7. 
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Figure 7. Enrichment analysis of subtypes in B cells (B1-B5). (A) GO (left) and KEGG (right) enrichment analysis of DEGs in B1. (B) GO 
(left) and KEGG (right) enrichment analysis of DEGs in B2. (C) GO (left) and KEGG (right) enrichment analysis of DEGs in B3. (D) GO (left) and 
KEGG (right) enrichment analysis of DEGs in B4. (E) GO (left) and KEGG (right) enrichment analysis of DEGs in B5. 
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osteopenia because appropriate bone samples can be 

obtained from these subjects during hip replacement 

therapy, and this might incur some bias in the cell 

subpopulation identification and proportion estimation 

compared with healthy individuals. Previous studies 

showed that the number and activity of osteoblastic 

lineage cells were significantly decreased in people 

with osteoporosis or osteopenia [42]. Therefore, we 

need to specifically isolate/enrich osteoblastic lineage 

cells from study subject with different health 

conditions in future studies. As the osteoblastic 

lineage cells are a heterogeneous cells population, a 

negative sorting approach can be adopted [43]. In 

addition, we were unable to detect osteoclasts in this 

study. This is as expected because the size of 

osteoclasts (150-200 µm in diameter) exceeds the 

upper limit of cell size (40 µm in diameter) 

compatible with the current 10x Genomics  

system, and thus osteoclasts were filtered out  

before the scRNA-seq library construction. In 

addition, osteoclasts are multinucleated cells with 

heterogeneous nuclei inside mature osteoclasts, and 

thus the current single-nucleus RNA-seq is not 

suitable for osteoclasts either [44]. In future studies, 

spatial transcriptomics may hopefully provide an 

opportunity to explore the cellular heterogeneity  

of osteoclasts and the relationship with bone 

metabolism [45]. 

 

 
 

Figure 8. Extensive crosstalk networks in human femoral head tissue cells. (A) Capacity for inter-cellular communication between 
osteoblastic lineage cells and other cells in human femoral head. The map quantifies the potential communication, but does not consider the 
anatomical location or boundaries of the cell type. The color of each line indicates the ligands expressed by the same color cell type. The lines 
connect to the cell clusters types that express the cognate receptors. The thickness of line is proportional to the number of ligands. The loop 
indicates autocrine circuits. The number indicates the quantity of ligand-receptor pairs in each inter-cellular link. (B) Detailed view of the 
ligands and cognate receptors between each cell type. (C) Overview of selected ligand-receptor interactions of osteoblastic lineage cells. 
Interaction score is indicated by circle size and color. Mono: monocyte; EC: endothelial cell; OBC: osteoblastic lineage cell; EPC: endothelial 
progenitor cell; RBC: red blood cell; PDC: plasmacytoid dendritic cell. 
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In summary, our study characterized the cellular 

composition of the human femoral head tissue cells, 

and identified PRSS23 and MXRA8 as novel bone 

metabolism-related genes. The complex inter-cellular 

communication networks in human femoral head 

suggest that various types of cells are involved in the 

regulation of bone metabolism, and EPCs 

communicate with osteoblastic lineage cells closely 

via the "COL2A1-ITGB1" interaction pair. Our study 

provides a systematic dissection of human femoral 

head at the single-cell level, and shows the global 

single-cell profile of how different cells work together 

in human femoral head on the single-cell resolution, 

which is a unique resource for in-depth insights into 

bone metabolism. 

 

In future studies, more subjects should be included to 

further dissect subpopulation of osteoblastic lineage 

cells, and to explore how different health states affect 

the bone metabolism and vice versa. Besides, by 

combining scRNA-seq with spatial transcriptomics 

[45] and scATAC-seq (a powerful tool to evaluate 

chromatin accessibility at the single-cell level) [46], 

we will aim to unveil the complicated crosstalk 

between bone tissue cells, and the gene regulatory 

network within/between them. In the meantime, 

deconvolution of the cellular heterogeneity of  

bone tissue cells in vivo in humans represents an 

important and necessary advancement step towards 

improving our understanding of bone physiological 

processes. 

 

MATERIALS AND METHODS 
 

Study subjects 

 

The study was approved by the Medical Ethics 

Committee of Xiangya Hospital of Central South 

University and written informed consent was obtained 

from all participants. The study subjects consisted of 

four Chinese subjects of Han ethnicity (detailed 

information of the study subjects provided in 

Supplementary Table 1), who underwent hip 

replacement surgery at Xiangya Hospital of Central 

South University. All the subjects were screened with 

a detailed questionnaire, medical history, physical 

examination, and measured for bone mineral density 

(BMD) before surgery. Subjects were excluded from 

the study if they had chronic diseases that may affect 

bone metabolism, including but not limited to renal  

failure, liver failure, diabetes mellitus, hematologic  

diseases, malabsorption syndrome, disorders of the 

thyroid/parathyroid, malignant tumors, ankylosing 

spondylitis, hyperprolactinemia, oophorectomy, or 

previous pathological fractures [47]. The femur head 

was collected from the patient during hip replacement 

surgery. The specimens were immediately stored at  

4° C temporarily and transferred to the wet laboratory 

within 2 hours, where they were processed within 24 

hours after delivery. 

 

BMD measurement 

 

BMD (g/cm2) was measured by the duel energy x-ray 

absorptiometry (DXA) fan-beam bone densitometer 

(Hologic QDR 4500A, Hologic, Inc., Bedford, MA, 

USA) at the right hip (femoral neck and trochanter) 

and the lumbar spine (L1-L4). According to the World 

Health Organization (WHO) definition [48] and the 

BMD reference established for Chinese [49],  

subject with T-score ≤ -2.5 is clinically diagnosed 

 as osteoporosis, while T-score between -2.5 and -1  

as osteopenia, and T-score > -1.0 are considered 

healthy. 

 

Isolation of bone tissue cells 

 

Bone tissue cells were extracted from the femoral head 

specimens based on widely used dissociation protocols 

with a few adjustments [50, 51]. First, femoral heads 

were washed three times with αMEM (Cat: 

SH30265.01, HyClone, USA) and dissected into small 

pieces of approximately 1-2 mm in diameter. Bone 

pieces (10 g wet weight) were placed into a 50 ml 

conical tube with 20 ml of 2 mg/ml collagenase type II 

(Cat: A004174-0001, Sangon Biotech, China) dissolved 

in αMEM with 100 U/ml Penicillin and 100μg/ml 

Streptomycin (Cat: 15140-122, Gibco, USA) and 

digested with gentle agitation for 25 minutes at 37° C. 

After that, the collagenase solution was aseptically 

removed and bone pieces were rinsed in 10 ml PBS for 

3 times. Briefly, after five rounds of digestion, we 

combined the collagenase solutions from the last two 

rounds of digestion and filtered the solution through a 

40 μm filter. Finally, we incubated the collected cells 

with red blood cell (RBC) lysis buffer (Cat: R1010, 

Solarbio, China) for 5 minutes and then washed it twice 

with PBS. 

 

scRNA-seq library preparation and sequencing 

 

scRNA-seq libraries were prepared using Single Cell 

3’ Library Gel Bead Kit V3 following the 

manufacturer’s guidelines (https://support.10xgenomi 

cs.com/single-cell-gene-expression/library-prep/doc/ 

user-guide-chromium-single-cell-3-reagent-kits-user-

guide-v3-chemistry). Single cell 3’ Libraries contain 

the P5 and P7 primers used in Illumina bridge 

amplification PCR. The 10x Barcode and Read 1 
(primer site for sequencing read 1) were added to the 

molecules during the GEM-RT incubation. The P5 

primer, Read 2 (primer site for sequencing read 2), 

https://support.10xgenomics.com/single-cell-gene-expression/library-prep/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v3-chemistry
https://support.10xgenomics.com/single-cell-gene-expression/library-prep/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v3-chemistry
https://support.10xgenomics.com/single-cell-gene-expression/library-prep/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v3-chemistry
https://support.10xgenomics.com/single-cell-gene-expression/library-prep/doc/user-guide-chromium-single-cell-3-reagent-kits-user-guide-v3-chemistry
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Sample Index and P7 primer were added during 

library construction. The protocol was designed to 

support library construction from a wide range of 

cDNA amplification yields spanning from 2 ng to > 2 

μg without modification. Finally, scRNA-seq libraries 

were sequenced on the Illumina Novaseq6000 

platform with a sequencing depth of at least 100,000 

reads per cell for a 150bp paired end (PE150) run. 

 

Pre-processing of scRNA-seq data 

 

The FASTQ files were mapped to the human 

transcriptome (GRCh38/hg38) using Cell Ranger  

3.0 (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger 

). To create Cell Ranger-compatible reference genomes, 

the references were rebuilt according to instructions 

from 10x Genomics (https://www.10xgenomics.com), 

which performs alignment, filtering, barcode counting 

and UMI counting. Finally, the digital gene expression 

matrix was generated. For quality control (QC), we used 

the R (version 3.6.1, https://www.r-project.org/) and 

Seurat R package (version 3.1, https://satijalab. 

org/seurat/) [52, 53] to calculate the distribution of 

genes detected per cell and remove the cells in the top 

or the bottom 2% quantile. We also excluded cells in 

which more than 10% of the transcripts were attributed 

to mitochondrial genes. 

 

Dimension reduction and cluster identification 

 

To visualize and cluster the data, we selected top 

2,000 most variable genes for principal-component 

analysis (PCA), and then, we used the first 20 

principal-components (PCs) for visualization by t-

Distributed Stochastic Neighbor Embedding (t-SNE) 

[54]. Next, we performed an unbiased graph-based 

method for clustering analysis using the first 20 PCs 

[55]. To identify differentially expressed genes 

(DEGs) between clusters, Wilcoxon rank-sum test 

was used to identify genes showing significantly 

higher levels of expression (false discovery rate 

(FDR) < 0.05) in a specific cluster compared to the 

other clusters. 

 

 
 

Figure 9. Workflow of this study. After QC, dimension reduction, and clustering of the data, we identify nine cell types in our data. The 
downstream analysis was divided into three parts. Part 1, analysis of osteoblastic lineage cells, functional analyses of osteoblastic lineage cells 
and identify novel bone metabolism-related gene. Part 2, revealing distinct subtypes in monocytes, T cells and B cells, and discussion their 
relationship with bone metabolism. Part 3, constructing the communication networks of human femoral head tissue cells, and inferring the 
role of novel metabolism-related gene in crosstalk network. QC: quality control; PCA: principal-component analysis; t-SNE: t-Distributed 
Stochastic Neighbor Embedding; GO: gene ontology enrichment analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes enrichment 
analysis; DEG: differentially expressed gene; PPI: protein-protein interaction; MCODE: Molecular Complex Detection; Cs: clusters. 

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger
https://www.10xgenomics.com/
https://www.r-project.org/
https://satijalab.org/seurat/
https://satijalab.org/seurat/
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Pathway enrichment analysis 

 

To investigate the biological processes and signal 

pathways associated with cell type, we performed gene 

ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analyses for the genes that 

were identified as important DEGs for clusters (adjusted p 

value < 0.05), by using the clusterProfiler R package [56]. 

 

Protein-protein interaction (PPI) network, hub genes 

and module analysis 

 

To identify the most significant gene among the DEGs 

in the context of functioning in gene networks, a PPI 

network of DEGs (selected with average log(Fold 

change) > 1.0, adjusted p value < 0.05) was constructed 

using the Search Tool for the Retrieval of Interacting 

Genes (STRING, http://string.embl.de/) [57]. The 

Cytoscape software (version 3.7.2) was applied to 

visualize and analyze the molecular interaction 

networks [58]. The hub genes of the PPI network were 

identified by cytoHubba (Cytoscape) [59]. The modules 

of the PPI network were selected by Molecular 

Complex Detection (MCODE) (Cytoscape) [60]. The 

biological analyses of hub genes were constructed using 

BiNGO (Cytoscape) [61]. 

 

Cell-cell communication analysis 

 

To explore the potential interactions between cells in 

human femoral head, we used iTALK [62] to perform 

cell-cell communication analysis, which is an R toolkit 

for visualizing ligand-receptor-mediated inter-cellular 

interaction in scRNA-seq data. The product of average 

receptor expression and average ligand expression was 

calculated in each cell cluster to score the enriched 

receptor-ligand interactions. 

 

Public datasets 

 

We recently generated scRNA-seq datasets of human 

BM-MSCs and human osteoblasts [24, 25], which can 

be accessed from GEO database (https://www.ncbi. 

nlm.nih.gov/geo/) [63] under the accession numbers of 

GSE147287 and GSE147390, respectively. In this 

study, we processed these datasets using the same 

parameters as described in our previous studies  

[24, 25]. The gene expression profile of osteogenic 

differentiation by BM-MSCs in vitro was obtained 

from the GEO database with accession numbers 

GSE37558 [64]. And the data were log2 transformed 

and normalized using the quantile-normalization 

approach. 
 

The data analyses of this study were divided into three 

parts, and illustrated in Figure 9. 

Ethics approval 

 

The study was approved by the Medical Ethics 

Committee of Xiangya Hospital of Central South 

University, and the IRB approval number is No. 

201912315. 

 

Consent to participate 

 

Written informed consent was obtained from all 
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Consent for publication 

 

All authors gave their consent for publication. 

 

Availability of data and material 
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from four human samples is available in the GEO 

database with accession numbers GSE169396. The 

scRNA-seq data of human BM-MSCs and human 

osteoblasts are available in the GEO database with 

accession numbers GSE147287 and GSE108891. The 

data of osteogenic differentiation by BM-MSCs in vitro 

was obtained from the GEO database with accession 

numbers GSE37558. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Correlation of gene expression profiles between each two subjects. Each dot represents an individual 
gene. 
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Supplementary Figure 2. PPI network and module analysis for DEGs of osteoblastic lineage cells. (A) Violin plots show the 

expression of marker genes about BM-MSCs (LEPR, NGFR), osteoblasts (ALPL, RUNX2, BGLAP), osteocytes (PDPN), and chondrocytes 
(COL2A1, SOX9) in the osteoblastic lineage cells. Each dot represents one cell. (B) GO (above) and KEGG (below) enrichment analysis for DEGs 
of osteoblastic lineage cells. (C) Visualize PPI network with Cytoscape. The PPI network consists of 111 nodes and 800 edges. (D) GO 
enrichment analysis of the 20 hub genes with a higher degree of connectivity in gene network (above). GO enrichment analysis of genes in 
module 1 (below). (E) The geometry view of seven modules. (F) The biological process analysis of hub genes in module 1 was constructed 
using BiNGO (Cytoscape). The color depth of node refers to the corrected p value of ontologies. The size of node refers to the number of 
genes that are involved in the ontologies. The corrected p value < 0.05 was considered statistically significant. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–4, 6, 8–13. 

 

Supplementary Table 1. The detailed information of this study subjects. 

ID Age Gender Sample 
T-score of BMD 

Disease state Date 
Lumbar vertebra Left hip joint 

S1 61 female femoral head -3 -1.9 osteoarthritis and osteoporosis 2019.7.16 

S2 45 female femoral head -1.3 -1.2 osteoarthritis and osteopenia 2019.7.19 

S3 66 male femoral head NA NA NA 2019.7.26 

S4 31 male femoral head 0.6 -1.1 osteoarthritis and osteopenia 2019.8.7 

S3 without bone mineral density test due to the tight schedule of surgery. 
  

 

Supplementary Table 2. GO enrichment analyses of osteoblastic lineage cells. 

 

Supplementary Table 3. KEGG enrichment analyses of osteoblastic lineage cells. 

 

Supplementary Table 4. GO enrichment analysis for top 20 genes of gene network. 

 

Supplementary Table 5. The detailed information of each module. 

Module 
Score 

(Density*#Nodes) 
Nodes Edges Node IDs 

1 19.097 32 296 

CTGF, PRSS23, TNC, BGN, TIMP3, FSTL1, FBN1, APOE, LGALS1, 

SPARCL1, IGFBP4, COL6A3, SPARC, MXRA8, DCN, LUM, MFGE8, 

COL3A1, GAS6, COL5A2, TIMP1, COL6A2, COL6A1, PCOLCE, IGFBP7, 

COL1A1, CYR61, COL1A2, FMOD, CP, COL11A1, IGFBP5 

2 4 5 8 FN1, FGF7, IBSP, BGLAP, THY1 

3 4 4 6 SERPING1, C1S, C1R, CFH 

4 3.667 7 11 CDH11, MMP2, PDGFRB, ACAN, FBLN1, CXCL12, ACTA2 

5 3.333 4 5 TPM1, MYL9, TPM2, DSTN 

6 3.333 4 5 MT1E, SOD3, MT2A, MT1M 

7 3 3 3 ID4, ID3, ESM1 

 

Supplementary Table 6. GO enrichment analysis for genes of module 1. 
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Supplementary Table 7. Function of the top 16 hub genes of module 1 in bone metabolism. 

Gene symbol Full name Function 

PRSS23 serine protease 23 NA 

TNC tenascin C 
An extracellular matrix glycoprotein involved in osteogenesis and 

bone mineralization [1] . 

FSTL1 follistatin like 1 Promotes  chondrocyte apoptosis [2] and osteoclast formation [3]. 

FBN1 fibrillin 1 
Limits osteoclast formation and function [4]; a negative regulators of 

bone resorption [5]. 

APOE apolipoprotein E 
Plays crucial roles in maintaining bone mass by promoting osteoblast 

differentiation and suppressing osteoclast differentiation [6]. 

LGALS1 galectin 1 
Relates to osteoblast maturation [7], and plays a role in cell-cell and 

cell-matrix interactions of osteoblastic cells [8]. 

SPARCL1 SPARC like 1 
An extracellular matrix remodel gene [9]; a member of the osteonectin 

family of proteins [10]; suppresses osteosarcoma metastasis [11]. 

IGFBP4 insulin like growth factor binding protein 4 
Highly expressed in adipocytes and osteoblasts [12]; regulates bone 

metabolism [13–15]. 

MXRA8 matrix remodeling associated protein 8 NA 

MFGE8 milk fat globule EGF and factor V/VIII domain containing Regulates osteoclast homeostasis and inflammatory bone loss [16]. 

GAS6 growth arrest specific 6 
Enhances the bone resorbing activity of mature osteoclasts [17]; 

induces osteoclast differentiation [18]. 

TIMP1 TIMP metallopeptidase inhibitor 1 
Inhibits the activity of MMPs and then regulate the degradation of 

bone extracellular matrix molecules [19]. 

IGFBP7 insulin like growth factor binding protein 7 

Inhibits osteoclastogenesis and osteoclast activity [20]; enhanced 

osteogenic differentiation of BM-MSCs in vitro and promoted new 

bone formation in vivo [21]. 

CYR61 cysteine-rich protein 61 

Modulates mature osteoblast and osteocyte function to regulate bone 

mass [22]; stimulates proliferation and differentiation of osteoblasts in 

vitro and contribute to bone remodeling in vivo in myeloma bone 

disease [23]; regulates adipocyte differentiation from mesenchymal 

stem cells [24]. 

CP ceruloplasmin Inhibits osteoblast activity, mineralization [25, 26]. 

IGFBP5 insulin like growth factor binding protein 5 

The IGFBP5 produced by osteoblasts stimulates osteoclastogenesis 

and bone resorption, and as an osteoblast-osteoclast coupling factor 

[27]. 

SPARC: secreted protein acidic and cysteine rich. TIMP: tissue inhibitor of metalloproteases; MMPs: matrix 
metalloproteinases; BM-MSCs: bone marrow-derived mesenchymal stem cells. 
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