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INTRODUCTION 
 

Neural stem cells (NSCs) generate all major neural cell 

types in the central nervous system (CNS), including 

neurons, astrocytes, and oligodendrocytes [1–3]. NSCs 

persist in two locations in the adult brain to produce 

new neurons: the subventricular zone (SVZ) and the 

subventricular zone (SVZ). The SVZ generates 

neuroblasts that migrate over a great distance through 

the rostral migratory stream to the olfactory bulb and 

participate in normal olfaction functions, while SGZ 

NSCs in the hippocampal dentate gyrus migrate into the 

granular cell layer and produce neurons involved in 

modulating mood as well as short-term learning and 

memory [1]. NSCs are radial glia-like cells with an 

elaborate tree of processes in the granule cell layer and 

GFAP expression [4, 5]. However, an ongoing debate is 

whether neurogenesis occurs in areas of the adult 

mammal brain other than the SVZ and SGZ [6]. Adult 

neurogenesis is regulated by physiological and 

pathological activities at all levels, which includes adult 

NSCs proliferation, maturation, survival, differentiation, 

and integration of newborn neurons [2]. The stem cell 

pool is exhausted after development [7]. Extrinsic 

environmental signals and intrinsic signaling pathways 

regulate neurogenesis by activating quiescent NSCs, 

fate specification, new neuron development, and 

integration [8–12]. CNS resident cells, including 

peripheral immune cells, participate in functional 

regulation during hippocampal adult neurogenesis, and 
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ABSTRACT 
 

Neural stem cells play pivotal roles during prenatal development and throughout life. Here, we report that 
Paired immunoglobulin-like receptor B (PirB) functions as a suppressor during brain neurogenesis in the adult 
mouse. PirB expression increased with age during development, and its deficiency promoted neural stem cell 
proliferation and differentiation in vivo and in vitro. Furthermore, we detected an increase in Type 1 neural 
stem cells in PirB-deficient mice compared to their wild-type littermates. PirB deficiency promoted stemness 
marker gene expression of Sox2 and KLF4 by activating Akt1 phosphorylation. These findings suggest that PirB 
inhibits the self-renewal and differentiation capacities of neural stem cells. Thus, PirB may have the potential to 
serve as a therapeutic target for treatment of reduced neurogenesis in adults due to aging or other pathological 
conditions. 
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the inflammatory environment enhances NSC 

proliferation in the SGZ [13–15]. The phagocytosis-

related protein Mfge8—secreted by activated microglia 

and astrocytes—also regulates the adult NSC pool [16, 

17]. Interestingly, a role for the innate and adaptive 

immune systems in adult neurogenesis has been 

documented during aging [18]. However, whether 

immune signaling molecules regulate neurogenesis 

directly remains unknown.  

 

Immune signaling is well known for its roles in 

pathogen response and tissue injury and is an emerging 

factor for controlling resident NSC behavior [19]. For 

example, the major histocompatibility complex class I 

(MHCI) proteins and MHCI receptors play important 

roles regulating neuronal plasticity [20]. Paired 

immunoglobulin-like receptors (PIRs), also known as 

leukocyte immunoglobulin-like receptors (LIR) or Ig-

like transcripts (ILT) in humans, are expressed on B 

cells and myeloid lineage cells, and include the 

inhibitory PirB and activating isoform PirA, which bind 

to class I MHC molecules [21, 22]. PirB is crucial for 

inhibiting axon regeneration and synaptic plasticity, 

supporting its use as a target for axon regeneration 

therapies [23–28]. Interestingly, MHCI and PirB 

exacerbate brain injury following ischemia despite 

restricting synaptic plasticity in healthy neurons [29]. 

MHCI and PirB are upregulated in the neuroglial of the 

hippocampus in aged rats [30]. Kim et al. reported that 

PirB and its human ortholog LilrB2 (leukocyte 

immunoglobulin-like receptor B2) are receptors for 

soluble β-amyloid (Aβ) oligomers—key mediators for 

cognitive malfunction in Alzheimer disease (AD) [31]. 

Srinivas Ramasamy et al. reported that blocking PirB by 

a soluble PirB ectodomain reduced neurosphere 

formation [32]. Thus, although PirB is involved in 

neural development, whether intrinsic PirB can regulate 

the stemness maintenance of NSCs is unknown. 

 

The phosphatidylinositide 3 kinases (PI3Ks)/Akt 

serine/threonine kinase (AKT) signaling cascade 

regulates cell proliferation, survival, and metabolism 

processes. Recent findings suggest PI3K/AKT 

signaling control pluripotency and differentiation by 

preserving the self-renewal and differentiation ability 

of pluripotent stem cells in a Sox2 activation-

dependent manner [33–37]. Importantly, multiple 

studies demonstrated that PirB functions as a potential 

suppressor of PI3K/Akt signaling pathway [26, 38]. In 

this study, we assessed whether intrinsic PirB residing 

in the hippocampal progenitor niche is important for 

postnatal dentate gyrus development and sought to 

decipher its underlying mechanism. Our findings 
support the use of PirB as a novel therapeutic target to 

reactivate decreased adult neurogenesis due to aging or 

pathological conditions.  

RESULTS 
 

PirB increases with age in hippocampal NSCs 

 

PirB is distributed in various hematopoietic cells 

including B cells, mast cells, macrophages, neutrophils, 

and dendritic cells [39, 40]. PirB is also found in 

different regions of the injured central nervous system, 

including the cerebral cortex, hippocampus, cerebellum, 

olfactory ensheathing neurons, axon cells, neuropil, 

spinal cord, and rubrospinal neurons [23, 24]. To 

determine whether PirB is expressed in NSCs and 

regulates neurogenesis, we focused on the hippocampal 

region. We investigated PirB regulation of hippocampus 

development by comparing the dentate gyrus volume 

between littermate wild-type and PirB knockout mice. 

Consistent with previous findings [30], we observed 

that PirB mRNA expression increased in brain NSCs as 

they aged (Figure 1A–1B). Furthermore, the dentate 

gyrus volume was dramatically enlarged in PirB 

knockout mice versus wild-type mice and its granular 

layer contained more granule neurons (Figure 1C–1D). 

However, neither the total cell density nor size was 

affected upon PirB depletion (Figure 1E). These results 

suggest that PirB is critical for hippocampal 

neurogenesis in vivo.  

 

PirB depletion promotes NSC self-renewal and 

differentiation  

 

To examine whether PirB regulates neurogenesis via 

modulating neural stem cell behavior, we decided tested 

the self-renewal of NSCs. We first cultured NSCs 

isolated from postnatal day 7 hippocampal dentate 

gyrus in wild-type or PirB knockout mice, respectively, 

and examined their PirB protein expression by western 

blot (Figure 2A). Next, we obtained neurosphere cells 

using culture conditions favoring stem cell growth. We 

discovered that the number and sizes of neurospheres 

(diameter ≥ 50 µm) derived from PirB knockout-NSCs 

increased in comparison to wild-type neurospheres 

(Figure 2B–2C). To validate whether the cell cycle 

transition of NSCs was regulated by PirB, we 

performed cell proliferation and BrdU incorporation 

assays. An increment of cell numbers and BrdU-

positive cells in PirB knockout was detected (18% vs. 

14%) compared to wild-type NSCs (Figure 2D–2F). 

Flow cytometric analysis showed that PirB deficiency 

led to an increased S-phase cell population (Figure 2G). 

To corroborate these findings in vivo, we performed 

IHC staining using the Proliferating Cell Nuclear 

Antigen (PCNA) as a proliferation marker [41, 42]. We 

found an increase in PCNA-positive cells in the PirB-

depleted hippocampal regions of 2- and 6-month-old 

mice compared to the wild-type controls (Figure 2H). In 

addition, we found an increase in cells expressing Tuj1, 
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MAP2, GFAP, and O4+ markers for immature postmitotic 

neurons, mature neurons, astrocytes, and oligodendrocytes, 

respectively, after PirB depletion (Figure 3A–3D). These 

results suggest that PirB knockout promotes the self-

renewal and differentiation abilities of NSCs. 

 

PirB knockout promotes NSC stemness maintenance 

in vivo 

 

To validate the functional role of PirB in vivo, we 

crossed PirB knockout mice with Nestin-GFP mice, in 

which the GFP-positive cell population indicates the 

NSCs population [7]. More GFP-positive cells were 

detected in the PirB-knockout hippocampal dentate 

gyrus of 2- and 6-month-old mice than wild-type mice 

(Figure 4A–4B). Morphological analysis showed that 

PirB deletion resulted in more glial-like GFP-positive 

cells (Figure 4C–4D), which indicates more type I 

NSCs in the PirB knockout mice than wild-type mice. 

Furthermore, representative immunostaining results 

showed that the Nestin-GFP+/GFAP+ double positive 

cell population (type I NSCs, [7]), was dramatically 

increased in PirB-deficient mice compared to wild-type 

mice (Figure 4E–4F).  

 

PirB inhibits Akt1 phosphorylation in NSCs 

 

We performed real-time qRT-PCR and western blot 

assays to examine NSC expression of stemness marker 

genes KLF4, Sox2, c-Myc, and Nestin. We found that

 

 
 

Figure 1. PirB increases with age in hippocampal neural stem cells. (A) Expression pattern of PirB human ortholog LilrB2 in the 

central nervous system as analyzed by a web source dataset: http://www.alzdata.org/Normalized_differential.php. (B) qRT-PCR of PirB mRNA 
expression in NSCs isolated from mice of different ages. (C–E) Dentate gyrus (DG) volume quantified over time using three-dimensional 
volumetric reconstructions following Nissl staining and shown to be enlarged in PirB-depletion mice (PirB KO) compared to wild type (WT) at 
different ages. n ≥ 3. Red lines and circles: thickness of the granular layer and the size of single cells, respectively. (E) Neuronal cell number 
increased upon PirB depletion based on the thicker granular layer and unaffected cell density or size. Data is shown the percentage of 
control. Means ± SEM, *P < 0.05; **P < 0.01; ***P < 0.001; ns = no significant difference by the t-test.  

http://www.alzdata.org/Normalized_differential.php
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these genes were upregulated in NSCs upon PirB 

depletion versus the wild-type control (Figure 4G–4H). 

We also discovered that PirB knockout promotes Akt1 

phosphorylation (Figure 4I), which is consistent with 

previous reports of PirB suppressing the PI3K/Akt 

signaling pathway [26, 38]. These findings suggest that 

PirB suppresses the self-renewal ability of NSCs via 

abrogating the PI3K/Akt signaling pathway.  
 

DISCUSSION 
 

PirB was first identified in the immune system  

and shown to negatively regulate the peritoneal B1 cell 

compartment, humoral responses to TI antigens, and 

TH2 responses to TD antigens [40]. It was then 

identified as one of the age-related hippocampal 

changed genes, whose expression was induced in the 

CA1 and dentate gyrus of aged rats [30]. PirB can also 

act as receptor for the oligomeric forms of Aβ, the loss 

of which reduces damage caused by Aβ accumulation in 

the hippocampus of mice [31]. 

 

In this study, we found that PirB is expressed in 

hippocampal adult NSCs and intrinsic PirB depletion 

leads to increased NSC self-renewal and proliferation in 

vitro. Additionally, the PirB depletion enlarged the

 

 
 

Figure 2. PirB knockout promotes NSC stemness maintenance. (A) PirB knockout (KO) was verified by western blot. Arrow: PirB 

molecular weight. (B–C) Neurospheres from wild-type and PirB-depleted animals indicate that PirB-deficient progenitors show an increased 
self-renewal capacity. (D) PirB depletion promoted cell proliferation. (E–F) PirB deficiency increased DNA synthesis in NSCs as shown by BrdU 
incorporation. Scale bar: 50 µm. (G) PirB knockout promoted cell cycle transition in NSCs, as measured by propidium iodide staining and flow 
cytometry. (H) 3,3’-diaminobenzidine (DAB) staining for PCNA shows the hippocampal dentate gyrus cell proliferation in 2- and 6-month-old 
mice, respectively. n ≥ 3. Means ± SEM, *P < 0.05; **P < 0.01; ***P < 0.001; ns = no significant difference by the t-test. 
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hippocampus and increased type I NSCs in vivo. We 

demonstrated that PirB knockout promotes the gene 

expression of stemness markers. Previous studies 

showed that a balanced expression of TrkB and PirB is 

critical for axon growth after injury, while TrkB is 

important for PI3K/Akt signaling activation [25]. In line 

with these findings [25], we observed that PirB 

deficiency promotes Akt1 phosphorylation, possibly 

through reducing recruitment and binding of Src 

homology 2-containing protein tyrosine phosphatase 

(SHP)-1 and SHP-2 to inactivate TrkB (Figure 4J). 

 

Multiple studies indicate the suppressive role of PirB in 

the immune and central nervous systems after injury or 

advanced aging. However, the physiological roles of 

PirB during normal development should be further 

characterized. In addition, the reason for PirB induction 

in hippocampal adult NSCs with advanced aging 

remains unknown. To decipher the intrinsic and 

extrinsic mechanistic roles of PirB, the upstream 

regulators controlling PirB expression need to be 

uncovered, and the functional role of PirB during 

embryonic development should also be clarified. In 

summary, our results suggest that selectively blocking 

PirB might be a promising therapeutic strategy for 

elderly or other neurodegenerative patients in the future.  
 

MATERIALS AND METHODS 
 

Animals 

 

All mice were humanely housed and cared for in  

the Animal Resource Center at the Kunming Institute of  

Zoology. The mice used for this work were wild-type 

and/or PirB-deficient mice crossed with Nestin-GFP 

mice on a C57/Bl6 background [7].  

 

Cell culture 

 

The NSCs were prepared as previously described [7]. 

Briefly, wild-type or PirB-deficient dentate gyrus were 

isolated and digested with activated papain solution, 

and then grown in serum-free medium containing 20 

ng/ml of epidermal growth factor, 20 ng/ml of 

fibroblast growth factor, 1X N2 supplement (Gibco), 

1X B27 supplement (Gibco), 10 µg/ml of heparin, and 

1% penicillin/streptavidin. For the cell proliferation 

assay, 5 × 104 neural progenitor cells per well were 

plated on 8-well chamber slides (Thermo) and treated 

with 10 μM of 5-bromo-2′-deoxyuridine (BrdU) for 15 

minutes to label dividing cells in growth medium. The 

BrdU-positive cells were counted with Image J 

software. For the differentiation assay, 5 × 104 neural 

progenitor cells per well were plated onto 8-well 

chamber slides and cultured for three days in 

differentiation medium: serum-free medium without 

epidermal growth factor and fibroblast growth factor. 

The Tuj1+, MAP2+, GFAP+ and O4+ cells were 

counted with Image J software. 

 

RNA isolation and qRT-PCR 

 

Total RNA isolated from mice brains were transcribed 

to cDNA using the SuperScript First-Strand Synthesis 

system (Takara) for RT-PCR analysis by Faststart 

Universal SYBR Green Master (Roche) with an ABI 

 

 
 

Figure 3. PirB knockout promotes NSC differentiation ability. (A–B) PirB knockout promotes the differentiation of NSCs into neurons. 

Tuj1 and MAP2 marks immature postmitotic neurons and mature neurons, respectively. PirB knockout promotes the differentiation of NSCs 
into (C) astrocytes and (D) oligodendrocytes. Means ± SEM, *P < 0.05; **P < 0.01; ***P < 0.001 by the t-test. 
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7500 Real-time PCR system (Applied Biosystems). 

The relative gene amounts were normalized to actin. 

Primer sequences for real time PCR were: 

PIRB-F: 5′-CAATCAGGCTGCCGAATCT-3′, PIRB-R: 

 

 
 

Figure 4. PirB depletion increases the NSC pool in vivo through Akt1 signaling. (A–B) Neural stem/progenitor cell (GFP-expressing 

cell) number quantified in the dentate gyrus of mice over time. n ≥ 3. (C–D) Type 1 cells (arrows) were increased in PirB-depleted mice 
compared with the wild-type control group; n ≥ 3. (E–F) PirB knockout increased Type 1 early progenitors in 2-month-old mice. (Green: GFP-
positive; red: GFAP positive); n ≥ 3. (G) qRT-PCR relative mRNA expression of KLF4, SOX2, c-MYC, and Nestin. (H) Increases in stemness 
marker genes KLF4 and Sox2 were verified by western blot. (I) Akt1 phosphorylation was increased upon PirB depletion as shown by western 
blot. (J) Working model for PirB in NSCs. PirB deficiency promotes Akt1 phosphorylation through reducing recruitment and binding of Src 
homology 2-containing protein tyrosine phosphatase (SHP)-1 and SHP-2 to inactivate TrkB. This results in constitutive activation of the Akt1 
signaling pathway and increased NSC self-renewal. Means ± SEM, *P < 0.05; **P < 0.01; ***P < 0.001 by the t-test. 
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5′-CCGCCAGAGTAGCATATACAC-3′; ACTIN-F: 5′-

GCGGACTGTTACTGAGCTGCGT-3′, ACTIN-R: 5′-

TGCTGTCGCCTTCACCGTTCC-3′; SOX2-F: 5′-

CACAGATGCAACCGATGCA-3′, SOX2-R: 5′-

GGTGCCCTGCTGCGAGTA-3′; KLF4-F: 5′-

CACACAGGCGAGAAACCTTACC-3′, KLF4-R: 5′-

CGGAGCGGGCGAATTT-3′; NESTIN-F: 5′-

CCAGAGCTGGACTGGAACTC-3′, NESTIN-R: 5′-

ACCTGCCTCTTTTGGTTCCT-3′; C-MYC-F: 5′-

AATCCTGTACCTCGTCCGAT-3′, C-MYC-R: 5′-

TCTTCTCCACAGACACCACA-3′. 

 

Immunohistochemistry and immunocytochemistry 

 

All animals were deeply anesthetized, perfused, and 

stained as previously described [7]. After perfusion, the 

brain was isolated, post-fixed overnight with 4% PFA, 

and sectioned with a vibratome at 50 μm intervals by 

embedding in 3% agarose in PBS (Leica, VT1000S). 

All sections through the hippocampus were collected in 

PBS containing 0.1% NaN3 and stored at 4°C. Every 

twelfth section of brain tissue was permeabilized with 

0.3% Triton X-100 in PBS, blocked for at least 2 hours 

at room temperature with 10% normal goat serum, and 

incubated with primary antibodies followed by 

secondary antibodies. For immunocytochemistry 

analysis, cells were fixed with 4% PFA for 20 minutes 

at room temperature, blocked with 10% normal goat 

serum in PBS containing 0.1% Tween20 for 1 hour, and 

incubated with primary then secondary antibodies. The 

primary antibodies used were: rabbit anti-GFAP 

(DAKO, 1:2000), rabbit anti-GFP (Proteintech, 1:500), 

rat anti-BrdU (Abcam, 1:500), mouse anti-PCNA (Santa 

Cruz, 1:200), mouse anti-Tuj1 (Sigma, 1:1000), rabbit 

anti-MAP2 (Millipore, 1:1000), rabbit anti-GFAP 

(DAKO, 1:1000), and mouse anti-O4 (R&D System, 

1:1000). Fluorescent-conjugated secondary antibodies 

were used (Invitrogen, 1:1000). Biotinylated-conjugated 

anti-species IgG (Vector Laboratories, 1:500) were used 

for peroxidase/diaminobenzidine (DAB) staining in 

stereology analysis. 

 

Stereological quantification 

 

Cell counts were performed using an unbiased 

stereological analysis (Stereo-Investigator version 8, 

MBF Bioscience). For the analysis, every twelfth 

section of brain tissue was quantified. An unbiased 

counting frame was utilized with the Stereo 

Investigator software. The contours were traced in low 

magnification (10×), counting frames and the guard 

zones of all sections were set at 100 μm × 100 μm and 

30-μm top and bottom, respectively. Cells were 
counted at high magnification (40×). DAB sections 

stained for GFP were also used to quantify the number 

of highly arborized dendritic tree morphology Type I 

cells for wild-type and PirB deficient mice [7]. For 

dentate gyrus volume quantification, the sections were 

stained with Nissl solution and estimated by the 

Cavalieri Estimator. 
 

Cell cycle analysis  
 

Neural stem and progenitor cells were cultured as a 

monolayer and isolated into single cells before 

fixation in 70% ice-cold ethanol. Cell pellets were 

resuspended in 500 µl of staining buffer containing 

propidium iodide after a PBS rinse and analyzed by 

flow cytometry (BD Pharmingen). 

 

Statistical analysis 

 

All statistical analysis was done in GraphPad Prism 

(Version 7.01; GraphPad Software Inc., La Jolla, CA, 

USA). T-tests (for paired data) or one-way ANOVA 

(for non-parametric) analysis were used for data 

analysis. All data shown represent the mean ± S.E.M. 

and a P value <0.05 indicates statistical significance. 
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