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INTRODUCTION 
 

Stroke is the chief cause of physical and intellectual 

disability in adults and remains the leading cause of death 

in developed countries [1]. Diabetes increases the 

vulnerability and fragility of brain vessels, which 

increases the risk of ischemic stroke by more than 3.35-

fold [2, 3]. Diabetic patients are more vulnerable to 

cerebral ischemia-reperfusion (CIR) injury [4, 5]. 

Epidemiological studies have shown that compared with 
non-diabetic patients, diabetic patients have a worse 

vascular prognosis, higher in-hospital mortality, and 

slower functional recovery after stroke [6, 7]. 

Unfortunately, the classic treatment for non-diabetic 

stroke patients with thrombolysis leads to an increased 

incidence of cerebral hemorrhage and a worsening 

neurological outcome when applied to patients with 

diabetes [8]. Several cell-based therapies, such as bone 

marrow stromal cells, can improve functional recovery 

after stroke in non-diabetic individuals. However, cell-

based therapies increase brain hemorrhage transformation 

and induce cerebral arteriosclerosis-like changes in 

individuals with diabetic stroke [9, 10]. Therefore, it is of 

great clinical significance to elucidate the pathogenesis of 

diabetes complicated with ischemic stroke and explore 

effective prevention and treatment strategies. 
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ABSTRACT 
 

Diabetic patients are more vulnerable to cerebral ischemia-reperfusion (CIR) injury and have a worse prognosis and 
higher mortality after ischemic stroke than non-diabetic counterparts. Melatonin can exert neuroprotective effects 
against CIR injury in nondiabetic animal models. However, its effects on diabetic CIR injury and the underlying 
mechanisms remain unclarified. Herein, we found that melatonin administration improved neurological deficit, 
cerebral infarct volume, brain edema, and cell viability, reduced mitochondrial swelling, reactive oxygen species 
generation, and cytoplasmic cytochrome C release, and increased mitochondrial antioxidant enzymes activities, 
adenosine triphosphate production, and mitochondrial membrane potential in both streptozotocin-induced 
diabetic mice and high glucose-treated HT22 cells. Importantly, melatonin also activated protein kinase B (Akt) and 
sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) signaling and upregulated mitochondrial biogenesis-related 
transcription factors. However, these effects were largely attenuated by LY294002 (a specific Akt signaling blocker) 
administration. Additionally, 3-TYP (a selective SIRT3 inhibitor) and SIRT3 siRNA inhibited the above protective 
effects of melatonin as well as the upregulation of SIRT3 and the decrease of SOD2 acetylation but did not affect 
the p-Akt/Akt ratio. Overall, we demonstrate that melatonin can alleviate CIR injury in diabetic mice by activating 
Akt-SIRT3-SOD2 signaling and subsequently improving mitochondrial damage. 

mailto:xiazhongyuan2005@aliyun.com
https://orcid.org/0000-0002-5807-9554
mailto:zb14526@whu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 16106 AGING 

The initial event of CIR injury is reactive oxygen 

species (ROS) burst production, which causes the 

oxidation of cellular proteins, DNA, and lipids [11]. 

Mitochondria are abundant in the brain, which is the 

chief source of cerebral intracellular ROS, and are 

particularly vulnerable to hypoxia and ischemia [12]. 

Mitochondrial insults lead to dysregulation of ROS 

homeostasis, which further leads to mitochondrial 

damage and continues a vicious cycle [13, 14]. 

Evidence shows that ischemic neuronal injury is 

particularly intensified during reperfusion due to 

impairment of mitochondria [15, 16]. Numerous pro-

survival cascades, such as antioxidant enzyme activities 

and mitochondrial biogenesis are inhibited during 

reperfusion. The inhibition of the pro-survival cascades 

increases neuronal cell death and aggravates CIR injury 

[17, 18]. Additionally, chronic hyperglycemia in 

diabetes aggravates hemorrhagic transformation  

after ischemic stroke by mitochondrial defects-induced 

endothelial cell apoptosis [19]. Therefore, 

mitochondria-targeting therapy may be a potential 

therapeutic strategy for diabetic patients complicated 

with ischemic stroke. 

 

Melatonin is a naturally synthesized hormone with a 

high local concentration in the brain and cerebrospinal 

fluid [20]. The synthesis and secretion of melatonin 

significantly decrease with aging, the relative deficiency 

of melatonin may be related to the pathophysiology of 

age-related neurological diseases [21, 22]. Importantly, 

increasing studies have confirmed the neuroprotective 

effects of melatonin in nondiabetic animal models with 

CIR injury [23, 24]. Moreover, melatonin contributes to 

maintaining mitochondrial homeostasis and protecting 

against mitochondria damage under various patho-

logical conditions, including diabetes [25, 26]. 

However, whether melatonin protects against 

mitochondrial damage in the diabetic brain following 

CIR injury and the underlying mechanisms remain 

unknown. 

 

Notedly, protein kinase B (PKB, also known as Akt) is 

a well-established pro-survival signaling molecule 

resistant to oxidative damage and mitochondrial insults 

in the brain [27, 28]. Previously, we and other scholars 

have demonstrated that Akt signaling activation 

protected the brain against CIR injury in nondiabetic 

animal models [29–31]. Sirtuin 3 (SIRT3) is the 

primary mitochondrial sirtuin in the brain [32]. 

Recently, SIRT3 has been reported to maintain ROS 

homeostasis by deacetylating and activating the 

antioxidant enzyme superoxide dismutase 2 (SOD2), 

which can convert harmful superoxide free radicals into 
nontoxic oxygen or hydrogen peroxide [33]. Emerging 

evidence shows that SIRT3/SOD2 signaling activation 

prevents oxidative stress and mitochondrial damage in 

multiple pathological conditions [34, 35]. Interestingly, 

a recent study reported that melatonin attenuates 

hepatocytes damage by inhibiting mitochondrial stress 

and activating the Akt-Sirt3 signaling pathway [36]. 

Therefore, we hypothesized that melatonin might exert 

protective effects in diabetes complicated with CIR 

injury by alleviating mitochondrial defects through 

activating the Akt-SIRT3-SOD2 signaling pathway. 

 

RESULTS 
 

Effects of melatonin on the cerebral infarct volume, 

neurological deficits, and brain edema in diabetic 

mice following CIR 

 

To examine whether melatonin has a neuroprotective 

effect in diabetic mice following CIR injury, we 

assessed neurobehavioral outcomes, cerebral infarct 

volume, and brain edema. Neurological scoring was 

performed 24 h after middle cerebral artery occlusion 

(MCAO). Then, the mice were killed and the brains 

were quickly isolated, sliced, and stained with TTC. 

The results showed that administration of melatonin (5 

and 10 mg/kg) significantly reduced the cerebral infarct 

volume and neurological deficits compared with the 

vehicle group (Figure 1A–1C). Similarly, compared 

with the vehicle group, melatonin (5 and 10 mg/kg) also 

alleviated brain edema (Figure 1D). Additionally, the 10 

mg/kg dose had the optimal protective effect and was 

selected for subsequent experiments. The results 

enabled us to believe that melatonin exerts 

neuroprotective effects in diabetes complicated with 

CIR injury. 

 

Effects of SIRT3/SOD2 signaling on the melatonin-

mediated alleviation of mitochondrial oxidative 

stress induced by CIR in diabetic mice 

 

To determine the underlying mechanisms of melatonin 

on CIR in the diabetic state, we evaluated mitochondrial 

oxidative stress in our in vivo experiment. Since 

mitochondria are the main intracellular sources of ROS 

[12], we first measured ROS production in brain tissue 

The results showed that melatonin significantly reduced 

ROS level while the above effect was significantly 

weakened after the use of SIRT3 specific inhibitor 3-

TYP (Figure 2A and 2B). Additionally, we evaluated 

mitochondrial malondialdehyde (MDA) content, 

superoxide dismutase (SOD) activity, and catalase 

(CAT) activity in these experimental groups. MDA is a 

frequently used membrane lipid peroxidation hallmark, 

while SOD and CAT are anti-oxidative enzymes that 

can remove free radicals produced during the metabolic 

process and reduce damage from oxygen free radicals 

[37]. As shown in Figure 2C–2E, melatonin effectively 

improved mitochondrial SOD and CAT activity, and 
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reduced mitochondrial MDA generation. Consistently, 

3-TYP also blunted these effects. 

 

Effects of SIRT3/SOD2 signaling on the melatonin-

mediated amelioration of mitochondrial defects in 

diabetic mice following CIR 

 

As shown in Figure 3A, mitochondria in the sham group 

showed normal morphological structure with integrated 

mitochondrial crest while mitochondria in the vehicle 

group showed serious vacuolization and swelling. 

Melatonin significantly improved mitochondrial 

vacuolization and swelling while the beneficial effects 

of melatonin were attenuated by 3-TYP. Next, we 

evaluated the integrity of mitochondria by detecting the 

expression of cytoplasmic cytochrome C (Cyt-cyto C) 

(Figure 3B and 3C). Cytochrome C is an important 

component of the electron transport chain in 

mitochondria. Once the integrity of mitochondria is 

impaired, the expression level of Cyt-cyto C would be 

significantly increased [38]. Our results showed that 

melatonin treatment significantly reduced CIR-induced 

upregulation of Cyt-cyto C, suggesting that melatonin 

exerted beneficial effects in maintaining the integrity of 

mitochondria but the effects were significantly blunted 

by 3-TYP. Furthermore, melatonin significantly 

improved CIR-induced mitochondrial adenosine 

triphosphate (ATP) deficiency, which was also 

prominently attenuated by 3-TYP (Figure 3D). Besides, 

we measured the expression of nuclear respiratory 

factor 1(NRF1) and mitochondrial transcription factor A 

(TFAM), two important mitochondrial biogenesis 

factors. The results showed that melatonin significantly 

increased their expressions in the Mel group compared 

with those in the vehicle group. Consistently, 3-TYP 

largely weakened these effects (Figure 3E–3G). 

 

Effects of Akt signaling on SIRT3/SOD2 signaling in 

the neuroprotection of melatonin against CIR injure 

in diabetic mice  

 

To investigate the mechanism of melatonin-induced 

SIRT3/SOD2 signaling activation, the Akt signaling 

was studied further. As shown in Figure 4, CIR induced 

 

 
 

Figure 1. Effects of melatonin on cerebral infarct volume, neurological function, and brain water content in diabetic mice 
with CIR injury. (A) TTC staining of brain sections taken from diabetic mice with CIR injury. (B, C, D) Effects of melatonin at different 

concentrations on the infarct volume, neurological score, and brain water content in diabetic mice with CIR injury. Data were presented as 
the mean ± SEM (n = 6). &p < 0.05 vs. sham group; #p < 0.05 vs. vehicle group; *p < 0.05 vs. melatonin (5 mg/kg). 
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a reduced phosphorylation level of Akt (p-Akt/Akt 

ratio), accompanied by decreased SIRT3 expression and 

increased acetylation of SOD2 (ac-SOD2/SOD2 ratio). 

In contrast, melatonin treatment significantly increased 

the phosphorylation of Akt and the expression of SIRT3 

and reduced the acetylation of SOD2. Notably, 

inactivation of the Akt pathway using LY294002 

mediated a reduction in the phosphorylation of Akt and 

also caused a decrease in the SIRT3 expression and 

induced an elevation of acetylation of SOD2 in the 

presence of melatonin. Collectively, it suggested that 

Akt is required for the activation of SIRT3-SOD2 

signaling by melatonin in the CIR-injured diabetic 

brain.  

 

Effects of Akt signaling and SIRT3/SOD2 signaling 

in simulated ischemia-reperfusion (SIR)-induced cell 

injury in high glucose treated-HT22 cells  

 

We further performed in vitro studies using murine 

hippocampal neuron cell line HT22 to investigate 

whether melatonin directly protects against CIR injury 

and to illuminate the underlying mechanism. As shown 

in Figure 5A, SIR-injured HT22 cells were treated with 

different concentrations of melatonin (25 μM, 50 μM, 

and 100 μM) and cell viability was then tested. 

Melatonin notably increased the cell viability of SIR-

injured HT22 cells in a dose-dependent manner. The 

cytoprotective effect of melatonin was most obvious at 

100 μM and 100 μM was then selected for further 

mechanistic investigations. Furthermore, the effects of 

melatonin, LY294002 and siSIRT3 treatments were 

evaluated in control cells. As shown in Figure 5B, 

melatonin, LY294002, and siSIRT3 treatments had no 

significant effects on the cell viability of high glucose-

treated control HT22 cells, respectively. However, 

LY294002 or siSIRT3 treatment significantly reduced 

melatonin-mediated increase of cell viability in high 

glucose-treated HT22 cells following SIR injury (Figure 

5C). Additionally, the apoptosis level was markedly 

reduced by melatonin pretreatment compared with that 

in the SIR+V group. Nevertheless, the anti-apoptosis 

 

 
 

Figure 2. Effects of melatonin on mitochondrial oxidative stress in diabetic mice with CIR injury. (A) Changes in the production 

of reactive oxygen species (ROS) were revealed by DHE staining (×400). Scale bar = 50 µm. (B) Quantification of ROS production in the brain. 
(C–E) Quantitative analysis of levels of mitochondrial malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were 
quantified by using commercial kits. Data were presented as the mean ± SEM (n = 6). &p < 0.05 vs. sham group; #p < 0.05 vs. vehicle group; 
$p < 0.05 vs. Mel group. 
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effects mediated by melatonin observed in the SIR + 

Mel group were markedly attenuated by either 

LY294002 or siSIRT3 (Figure 5D and 5E). These 

results provided evidence that Akt signaling and 

SIRT3/SOD2 signaling are key mediators of the 

cytoprotective actions of melatonin. 

 

Effects of Akt signaling and SIRT3/SOD2 signaling 

on melatonin-mediated suppression of mitochondrial 

oxidative stress against SIR injury in high glucose-

treated HT22 cells  

 

As shown in Figure 6A and 6B, melatonin markedly 

decreased intracellular ROS production and the 

alleviative effect was largely weakened by either 

LY294002 or siSIRT3. Simultaneously, mitochondrial 

MDA generation significantly decreased in the 

melatonin-treated group, accompanied by increased 

activity of SOD and CAT. However, the mitigatory 

effects were also blunted by LY294002 or siSIRT3 

(Figure 6C–6E). These data showed that melatonin 

could attenuate mitochondrial oxidative damage against 

SIR injury via Akt and SIRT3/SOD2 signaling in high 

glucose-treated HT22 cells. 

 

Effects of Akt signaling and SIRT3/SOD2 signaling 

on melatonin-mediated improvements in 

mitochondrial impairments in HT22 cells following 

SIR injury 

 

To further confirm the beneficial role of melatonin, we 

measured mitochondrial membrane potential (MMP), an 

important parameter of the mitochondrial function used 

as an indicator of ATP synthesis [39], and 

mitochondrial ATP content in our in vitro study. As 

shown in Figure 7A, 7B and 7E, melatonin treatment 

significantly ameliorated SIR induced-reduction of 

MMP and ATP levels and these effects were largely 

reversed by either LY294002 or siSIRT3. Additionally, 

western blot analysis showed that expression of Cyt-

cyto C was noticeably reduced while the expression of 

NRF1 and TFAM was increased in the melatonin-

treated group. However, LY294002 or siSIRT3 also 

blunted these effects (Figure 7C, 7D and 7F–7H). These 

 

 

 
Figure 3. Effects of melatonin on mitochondrial defects in diabetic mice with CIR injury. (A) Representative images of the 

ultrastructural changes of mitochondria under electron microscopy (×1.2k). (B) Representative images for Cytoplasmic cytochrome C (Cyt-
cyto C) expression detected by Western blot. (C) Quantitative analysis of the Cyt-cyto C protein levels. (D) Quantitative analysis of 
mitochondrial ATP content. (E) Representative images for NRF1 and TFAM expression detected by Western blot. (F, G) Quantitative analysis 
of the NRF1 and TFAM levels. Data were presented as the mean ± SEM (n = 6). &p < 0.05 vs. sham group; #p < 0.05 vs. vehicle group; $p < 
0.05 vs. Mel group. 
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data suggested that melatonin could alleviate the 

impairments in mitochondrial function and biogenesis 

in high glucose-treated HT22 cells. Importantly, Akt 

and SIRT3/SOD2 signaling mediated this action. 

 

Relationship between the Akt signaling and the 

SIRT3/SOD2 pathway in the neuroprotective effects 

of melatonin 

 
Finally, we focused on the correlation between the 

Akt signaling and the SIRT3/SOD2 signaling. Both 

in vivo and in vitro experiments revealed that 

inhibiting Akt signaling with LY294002 noticeably 

weakened melatonin-induced increase of p-Akt/Akt 

ratio and SIRT3 expression and obviously impaired 

melatonin-induced decrease of SOD2 acetylation. 

Additionally, our in vitro study further found that 

siSIRT3 markedly attenuated melatonin-mediated 

upregulation of SIRT3 expression and apparently 

weakened melatonin-induced reduction of the ac-

SOD2/SOD2 ratio but failed to change the ratio of p-

Akt/Akt. (Figure 8). Collectively, these data 

suggested that Akt might function as an upstream 

regulator of SIRT3/SOD2 signaling in mediating the 

neuroprotective effects of melatonin against CIR 

injury in diabetic states. 

 

DISCUSSION 
 

Our present results provide evidence that melatonin 

protects the brain against CIR injury in the diabetic state 

by alleviating mitochondrial impairments in vivo and in 

vitro. We found that (a) melatonin treatment reduced 

cerebral infarct volume, neurological deficits, and brain 

edema after CIR injury in diabetic mice, as well as 

increase the cell viability in high glucose-treated HT22 

cells following SIR injury; (b) melatonin attenuates 

CIR-induced mitochondrial oxidative damage and 

dysfunction in the diabetic state; (c) the neuroprotective 

effects of melatonin were mediated, at least in part, by 

activating the Akt-SIRT3-SOD2 signaling pathway. 

These results provide a novel insight into the 

mechanism of diabetes complicated with CIR injury and 

offer a potentially beneficial approach to ameliorate 

brain damage induced by CIR in the diabetic 

population. 

 

 
 

Figure 4. Effects of Akt signaling on the SIRT3/SOD2 pathway in the neuroprotective effects of melatonin in diabetic mice 
with CIR injury. (A) Representative images for Akt phosphorylation, SIRT3 expression, and SOD2 acetylation detected by Western blot. (B–
D) Quantitative analysis of the ratio of p-Akt/Akt, expression of SIRT3 and the ratio of ac-SOD2/SOD2 in ischemic cortical tissue. Data were 
presented as the mean ± SEM (n = 6). &p < 0.05 vs. sham group; #p < 0.05 vs. vehicle group; $p < 0.05 vs. Mel group. 
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Ischemic stroke is the second leading cause of death 

worldwide and the major cause of chronic disability in 

adults, causing approximately 6.2 million deaths each 

year [40, 41]. Diabetes, with its soaring prevalence 

worldwide, has been demonstrated to be an independent 

risk factor for stroke, increasing the risk of stroke by 1.8 

to 6 times [42]. In diabetic patients, CIR injury is 

associated with elevated vulnerability to disability and 

death and the long-term prognosis is also much worse 

than non-diabetic individuals [43, 44]. Disappointingly, 

the preventive or therapeutic approaches against diabetic 

CIR injury, such as rigorous glycemic control and 

thrombolysis, carry major risk accompanying theoretical 

but unrealized protective effects [45] Therefore, it is 

highly necessary to explore safe and effective therapies to 

reduce the incidence of cerebrovascular events and 

alleviate CIR injury in diabetic patients. 

 

Mitochondria, very susceptible to any insult, can trigger 

a series of catabolic reactions [46]. In recent years, 

mitochondria have received increasing attention as 

therapeutic targets for neurodegenerative diseases due 

to their key roles in the production of ATP and ROS, 

which are key mediators of cellular signal transduction 

and energy homeostasis [47, 48]. Compared to other 

cell types, neurons have higher energy expenditure and 

little energy reserve [49]. During CIR, the substrates 

needed for energy production are rapidly depleted, and 

mitochondria are severely impaired [47, 50]. Prolonged 

hyperglycemia in diabetes deteriorated energy 

metabolism and ROS homeostasis, further caused 

damage in mitochondria, which can lead to the failure 

of cellular pumps and cause cytotoxic edema and cell 

death [19, 51]. Additionally, the ROS-scavenging 

system and mitochondrial biogenesis have been 

reported to play a crucial role as an endogenous 

protective mechanism during CIR [52]. In line with 

these studies, our present study demonstrated that CIR 

injury increased mitochondrial oxidative damage, 

impaired structure and functions of mitochondria and 

disturbed mitochondrial biogenesis in diabetic mice and 

high glucose-treated HT22 cells, suggesting that 

mitochondrial impairments may be the key mechanism 

of diabetic CIR injury. 

 

 
 

Figure 5. Effects of melatonin on cell viability and apoptosis in high glucose-treated HT22 cells after SIR operation. (A–C) Cell 

viability was measured by the CCK8 kit. (D) Representative images for apoptosis assessed by flow cytometry. (E) Quantitative analysis of the 
levels of apoptosis. Data were presented as the mean ± SEM (n = 6). ap < 0.05 vs. control group; bp < 0.05 vs. SIR+V group; cp < 0.05 vs. 
SIR+Mel group; ep < 0.05 vs. Mel (25 µM).  
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Melatonin, a pleiotropic hormone synthesized by the 

pineal gland at night, regulates a variety of 

physiological functions in numerous organs [53]. 

Owing to its highly lipophilic properties that can easily 

cross most biological cell membranes along with its low 

toxicity to humans, melatonin has attracted great 

clinical interest [54, 55]. Previously, we have 

demonstrated that melatonin attenuated acute kidney 

ischemia-reperfusion injury in diabetic rats [56]. 

Additionally, numerous studies have documented a 

pronounced protective effect of melatonin against CIR 

injury in non-diabetic animals [47, 57, 58]. However, 

the neuroprotective mechanisms exerted by melatonin 

in diabetes complicated with CIR injury remain unclear. 

Interestingly, mitochondria are the main sites for 

melatonin synthesis in various cells, including neurons 

[59, 60]. Zhou et al. demonstrated that melatonin 

promoted osteogenesis by ameliorating mitochondrial 

oxidative stress [34]. Notably, Yang et al. reported that 

in a non-diabetic CIR mice model, melatonin treatment 

attenuates CIR injury by reducing CIR-induced 

mitochondrial dysfunction [47]. These studies suggest 

 

 
 

Figure 6. Effects of LY294002 and siSIRT3 on the melatonin-mediated reduction in mitochondrial oxidative stress in high 
glucose-treated HT22 cells with SIR injury. (A) Representative images for ROS generation assessed by flow cytometry. (B) Quantitative 
analysis of ROS production. (C–E) Quantitative analysis of levels of mitochondrial MDA, SOD and CAT were quantified by using commercial 
kits. Data were presented as the mean ± SEM (n = 6). ap < 0.05 vs. control group; bp < 0.05 vs. SIR+V group; cp < 0.05 vs. SIR+Mel group. 
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that mitochondria may be a key target of melatonin in 

various diseases. Consistent with these findings, we 

found that under the diabetic state, melatonin not only 

alleviated the mitochondrial oxidative damage but also 

significantly ameliorated the impairments in the 

mitochondrial structure and function. Notably, 

mitochondrial biogenesis has been shown to help 

mitigate oxidative stress-induced detrimental 

 

 
 

Figure 7. Effects of LY294002 or siSIRT3 on the melatonin-mediated improvement in mitochondrial defects in high glucose-
treated HT22 cells with SIR injury. (A) Representative images for mitochondrial membrane potential (MMP) assessed by flow 
cytometry. (B) Quantitative analysis of MMP. (C) Representative images for Cyt-cyto C expression detected by Western blot. (D) 
Quantitative analysis of the Cyt-cyto C protein levels. (E) Quantitative analysis of mitochondrial ATP content. (F) Representative images for 
NRF1 and TFAM expression detected by Western blot. (G–H) Quantitative analysis of the NRF1 and TFAM levels. Data were presented as 
the mean ± SEM (n = 6). ap < 0.05 vs. control group; bp < 0.05 vs. SIR+V group; cp < 0.05 vs. SIR+Mel group.  



 

www.aging-us.com 16114 AGING 

consequences and has been recognized as a new 

component of the central nervous system repair 

mechanism [61, 62]. As expected, we also observed that 

the melatonin-treated group showed noticeably 

upregulated expressions of the two mitochondrial 

biogenesis factors, NRF1 and TFAM. Increased activity 

of endogenous antioxidant enzymes SOD and CAT in 

our study may be the result of increased mitochondrial 

biogenesis [63]. 

 

Another novel finding of this study is that we proved 

the roles of Akt-SIRT3-SOD2 signaling in melatonin’s 

neuroprotective effects in diabetes complicated with 

CIR injury. SOD2, a major mitochondrial oxidative 

scavenging enzyme, plays essential roles in the 

regulation of ROS balance [64]. The activity of SOD2 is 

tightly regulated by acetylation at its lysine residues and 

is inversely proportional to its acetylation [65, 66]. 

SIRT3, the most robust mitochondrial deacetylase, has 

been reported to function as a key regulator of SOD2 

activity by direct deacetylation of the SOD2 gene [66].  

Recently, Liu et al. found that SIRT3 repression results 

in SOD2 acetylation, leading to SOD2 inactivation, 

which enhanced high glucose-induced oxidative stress 

and cytotoxicity in endothelial cells [67]. Katwal et al. 

demonstrated a protective effect of SIRT3 against 

hepatic ischemia-reperfusion injury via regulation of its 

downstream mediator SOD2 [68]. Li and colleagues 

showed that phosphocreatine attenuated liver injury by 

the SIRT3/SOD2 pathway mediated mitochondrial 

protection [35]. In line with these studies, the 

downregulation of SIRT3 expression, the decrease in 

SOD2 deacetylation. and the increase of mitochondrial 

impairments occurred in both diabetic brain and high 

 

 
 

Figure 8. Correlation between the Akt signaling and the SIRT3/SOD2 signaling in mediating the neuroprotective actions of 
melatonin. (A) Representative images for Akt phosphorylation, SIRT3 expression, and SOD2 acetylation detected by Western blot. (B–D) 

Quantitative analysis of the ratio of p-Akt/Akt, expression of SIRT3, and the ratio of ac-SOD2/SOD2. Data were presented as the mean ± 
SEM (n = 6). ap < 0.05 vs. control group; bp < 0.05 vs. SIR+V group; cp < 0.05 vs. SIR+Mel group; dp < 0.05 vs. SIR+Mel+LY294002 group. 
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glucose treated-HT22 cells following CIR operation in 

our present study. Besides, melatonin treatment 

significantly ameliorated the SIRT3 expression and 

SOD2 deacetylation and alleviated the mitochondrial 

impairments. However, these effects were largely 

weakened by the SIRT3 specific inhibitor 3-TYP or 

SIRT3 siRNA.  Moreover, inhibition of SIRT3/SOD2 

signaling noticeably blunted the neuroprotective action 

of melatonin as well, indicating that the SIRT3-SOD2 

signaling mediated mitochondrial protection is vital to 

the neuroprotective actions of melatonin on CIR-injured 

brain or SIR-treated HT22 cells in the hyperglycemic 

state. 

 

Indeed, Akt and SIRT3-SOD2 signaling are both 

essential for preserving mitochondrial function [35, 69]. 

Recently, Song et al. reported that melatonin 

upregulated SIRT3 expression through the Akt 

signaling pathway in TNF‐α‐treated hepatocytes [36]. It 

has also been found that the SIRT3 expression was 

regulated by the phosphatidylinositol 3-kinase/Akt 

signaling in Rg3(S) treated human diploid fibroblasts 

and sodium fluoride-treated hepatocytes [70, 71]. 

Collectively, the data suggested that Akt may function 

as the upstream regulator of SIRT3. Consistently, our 

present study demonstrated that melatonin alleviated 

mitochondrial impairments and triggered Akt 

phosphorylation, SIRT3 upregulation, and SOD2 

deacetylation while inhibition of Akt significantly 

weakened the beneficial effects of melatonin and 

downregulated Akt phosphorylation, SIRT3 expression, 

and SOD2 deacetylation. Moreover, it is noteworthy 

that inhibition of SIRT3 largely attenuated the 

protective effects of melatonin and blunted the elevation 

of SOD2 deacetylation mediated by melatonin treatment 

without affecting the Akt phosphorylation. Therefore, 

we conclude that melatonin reduces mitochondrial 

defects by activating the Akt-SIRT3-SOD2 axis, 

thereby reducing CIR damage in diabetic states. 

 

Recent studies demonstrated that the neuroprotective 

effects of melatonin in CIR injury animal models 

were mediated through receptor-dependent or 

receptor-independent manners [59, 60, 72]. It will 

contribute to further revealing the underlying 

mechanisms if we could identify whether the 

protective effects of melatonin are mediated by its 

receptors or it is a receptor-independent activity in 

diabetic mice with CIR injury by using receptor 

agonists and antagonists in our future study. 

Additionally, experiments using Akt-and SIRT3-

deficient animals would also be helpful to further 

confirm the underlying mechanisms. 
 

Taken together, this study provides the first evidence 

for the potential neuroprotective effects of melatonin in 

diabetes complicated with acute ischemic stroke. We 

found that melatonin-mediated amelioration of CIR 

injury in diabetic states can be attributed to its 

mitochondrial protective actions. More importantly, we 

clarified the critical role of the Akt-SIRT3-SOD2 

signaling pathway in melatonin’s neuroprotective 

actions. These results suggested that melatonin 

treatment might be a promising therapeutic strategy for 

diabetic patients with ischemic stroke. 

 

MATERIALS AND METHODS 
 

Animals 
 

Specific-pathogen-free (SPF) male C57BL/6J mice (4–5 

w, 18–20g) were purchased from Beijing Vital River 

Laboratory Animal Technology Co., Ltd. (Beijing, 

China). All mice were housed in the Animal Center of 

Renmin Hospital of Wuhan University under pathogen-

free conditions with a 12-hour light/12-hour dark cycle 

(lights on at 07:00) at 22–24°C and fed a regular pellet 

diet ad libitum. All experimental protocols were 

approved by the Laboratory Animal Welfare & Ethics 

Committee (IACUC) of Wuhan University (issue no. 

WDRM20151210), and experimental processes were 

performed according to the National Institutes of Health 

Guide for the Care and Use of Laboratory Animals. All 

operations and detection were performed during the 

morning hours to prevent the influence of the time-of-

day variation on mice. 
 

Reagents  
 

Melatonin, streptozotocin (STZ), and 2,3,5-triphenyl 

tetrazolium chloride (TTC) were obtained from Sigma-

Aldrich (St. Louis, MO, USA). LY294002 and 3-TYP 

were purchased from MedChemExpress (MCE; 

Monmouth Junction, NJ, USA). Dulbecco’s Modified 

Eagle Medium (DMEM) and penicillin/streptomycin 

were obtained from GENOM (Hangzhou, China), fetal 

bovine serum (FBS) were bought from TIANHANG 

(Zhejiang, China). The mitochondrial membrane 

potential assay kit with JC-1 and the ROS Assay Kit 

were got from Beyotime (Shanghai, China). Cell 

Counting Kit-8 (CCK-8) was obtained from Absin 

(Shanghai, China). Kits for detecting malondialdehyde 

(MDA) content, superoxide dismutase (SOD) activity, 

catalase (CAT) activity, and ATP content and 

Mitochondria Isolation Kit were purchased from the 

Nanjing Jiancheng (Nanjing, Jiangsu, China). The 

Annexin V-FITC Apoptosis Detection Kit was obtained 

from KeyGEN (Nanjing, Jiangsu, China). Primary 

antibodies against p-Akt, Akt, cytochrome c (cyto-C), 
and β-actin, as well as the secondary antibodies, were 

all purchased from Cell Signaling Technology (CST; 

Boston, MA, USA). Primary antibodies against SIRT3, 
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SOD2 (acetyl K68) (ac-SOD2), SOD2, TFAM, TFAM 

were purchased from Abcam (Cambridge, MA, USA). 

 

Diabetic model establishment 

 

After one week’s acclimation, the mice diabetic model 

was constructed as previously described [73]. Mice 

were fasted overnight and received an intraperitoneal 

injection (i.p.) of STZ at a dose of 50 mg/kg for five 

consecutive days. One week later, blood glucose 

concentrations in samples obtained from the tail vein 

were measured by a glucometer (Johnson & Johnson, 

USA). Mice with random blood glucose concentration > 

16.7 mmol/L (300 mg/dL) were considered diabetes. 

 

Experimental design 

 

All diabetic mice were randomly divided into the 

following groups (n = 15): (a) Sham group: mice 

underwent the sham operation and were treated with 

vehicle; (b) Vehicle group: mice underwent the CIR 

operation and were treated with vehicle; (c) Mel group: 

mice underwent the CIR operation and were treated 

with melatonin (10 mg/kg i.p., immediately after 

induction of ischemia and at reperfusion onset); (d) 

Mel+3-TYP group: mice were subjected to the CIR 

operation, and pretreated with melatonin and 3-TYP (50 

mg/kg i.p., every 2 days for a total of three times); (e) 

Mel +LY294002 group: mice were subjected to the CIR 

operation and administered with melatonin and 

LY294002 (15 nmol/kg, injected by tail vein 30min 

before the ischemia). The dosage regimen of melatonin, 

3-TYP, and LY294002 were based on previous studies 

[47, 57, 58, 74]. 

 

Cerebral ischemia-reperfusion (CIR) injury model 

construction  

 
The CIR injury model (or the sham operation) was 

constructed in mice four weeks after established 

diabetes. CIR injury was induced by middle cerebral 

artery occlusion (MCAO) in the mice using a suture 

embolism, as previously described [75]. Briefly, a face 

mask was applied to the mice and was connected to a 

gaseous anesthetic system. The depth of anesthesia 

was monitored by checking toe pinch responses. All 

the mice were deeply anesthetized with 5% isoflurane, 

followed by 60 min occlusion of the left middle 

cerebral artery (MCA) with a 6–0 suture. The suture 

was then carefully removed to initiate reperfusion. 

Sham-operated mice underwent the same surgical 

procedures without placing the suture in the MCA. 

During surgery, the mice's body temperature was 

maintained at 37°C with a homeothermic heating pad. 

To minimize the risk of pain, EMLA cream (lidocaine 

2.5% and prilocaine 2.5%) was externally applied for 

analgesia using sterile swabs to cover the incision site 

soon after the surgery. 

 

The neurological deficit, cerebral infarct volume, 

and brain water content assessment 

 
24 h after reperfusion, the neurological deficit scores 

were evaluated as described previously [23]. Each 

mouse was scored by three examiners who were blinded 

to the treatment protocol. The score ranged from 0 (no 

motor deficits) to 4 (critical). After being evaluated for 

the neurological deficit, the cerebral infarct volume was 

measured by TTC staining and analyzed by ImageJ 

v1.61 (National Institutes of Health, Bethesda, MD, 

USA) according to the indirect method and corrected 

for edema by comparing the volume of the ischemic and 

nonischemic hemispheres as previously described [23]. 

The infarct volume was presented as a percentage of the 

whole volume. After obtaining the photos of the infarct 

area, brain edema was assessed by the wet/dry method 

[47]. Briefly, the wet weight of the brain slices was 

quantified and then was dried at 105°C for 48 h to 

determine the water content. The brain water content 

was calculated by using the following formula: (wet 

weight-dry weight)/wet weight × 100%. 
 

Transmission electron microscopy (TEM) 

observation  
 

Fragments of 1 mm3 of periinfarct tissue in the cerebral 

cortex isolated from mice brain were collected 24 h 

after reperfusion and immobilized overnight in 2.5% 

glutaraldehyde at 4°C. The tissue samples were washed, 

fixed, dehydrated, embedded, and cured with buffer 

solution, and then cut into ultra-thin sections using an 

ultra-thin slicer. The ultrastructure of the mitochondria 

was scanned using a TEM (Hitachi, Japan) at 12.0k 

magnification. 
 

Simulated ischemia-reperfusion (SIR) and cell 

treatment  
 

Murine hippocampal neuron cell line HT22 (Procell, 

Wuhan, China) were cultured in DMEM (25 mM 

glucose) supplemented with 10% FBS and 1% 

penicillin/streptomycin and maintained at 37°C in a 

humidified incubator containing 5% CO2. HT22 cells 

were cultured in a high-glucose medium (50 mM 

glucose) for 8 h before SIR treatment and during the 

entire reperfusion period to mimic the in vivo diabetic 

model. SIR injury was initiated by incubating HT22 

cells for 6 h in a hypoxic incubator (Binder, CB-210 

hypoxia workstation) with 1% O2, 5% CO2, and 94% 
N2. Subsequently, cultures were returned to the 

normoxic incubator for 24 h, corresponding to the 

reperfusion period [76, 77]. To select the appropriate 
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concentration of melatonin, HT22 cells were pretreated 

with melatonin at a range of concentrations (25, 50, 100 

μM) for 4 hours in SIR-injured HT22 cells. Cell 

viability assays suggested that the pro-survival effect of 

melatonin was most noticeable with a concentration of 

100μM. Consequently, a dose of 100 μM was chosen 

for the subsequent experiments. Then,  high glucose-

incubated HT22 cells were randomly divided into five 

groups as follows: the Control group, the cells were 

pretreated with the vehicle without SIR treatment; the 

SIR+V group, the cells were pretreated with the vehicle 

for 4 hours and then exposed to SIR treatment as 

mentioned above; the SIR+Mel group, the cells were 

pretreated with melatonin (100 μM) for 4 hours  

and then exposed to SIR treatment; the 

SIR+Mel+LY294002 group, the cells were treated with 

melatonin (100 μM) and LY294002 (10 μM) for 4 hours 

before SIR treatment; the SIR+Mel+siSIRT3 group, the 

cells in which were transfected with the SIRT3-specific 

siRNA, then treated with melatonin (100 μM) for 4 

hours before SIR treatment. The doses of LY294002 

and siSIRT3 were chosen based on previous studies and 

the manufacturers’ instructions [78–80]. 

 

Small interfering RNA (siRNA) transfection 

 
SIRT3 siRNA duplex solution, transfection reagent, and 

medium were all obtained from RiboBio (Guangzhou, 

China). HT22 cells were transfected with either 100 nM 

SIRT3-targeting small siRNA (siSIRT3) or a control 

nonspecific siRNA (si-control) following the 

manufacturer's instruction as described previously [63, 

79]. After transfection for 72 h, the cells were subjected 

to various treatments or measurements as described 

above. 

 

Cell viability assay  

 

Cell viability was determined by the CCK-8 according 

to the manufacturer’s protocol. Briefly, HT22 cells 

were seeded in 96-well plates and pretreated with 

various conditions as described above, followed by 

incubating with 10 μL CCK-8 solution for 4 hours, and 

the absorbance at 450 nm was measured using a 

microplate reader. The results were presented as the 

fold of control. 

 

ROS assessment 

 

For the determination of ROS generation, brain sections 

were incubated with 10 μmol/L DHE in the dark for 30 

min at 37°C. Sections were then washed in PBS for 3 × 

10 min, dried off, and then mounted with DAPI and 

coverslip. The brain tissue slides were observed with a 

fluorescence microscope (Nikon Eclipse C1), and the 

intensity of DHE fluorescence in brain sections was 

analyzed by Image Pro-Plus 6.1 analysis system (Media 

Cybernetics Inc., Silver Spring, MD, USA). The results 

were presented as fold change from the sham control 

[81]. Intracellular ROS production following SIR in 

HT22 cells was measured by the ROS Assay Kit using 

flow cytometry (Beckman Coulter CytoFLEX) according 

to the manufacturers’ instructions. The results were 

presented as fold change from the control group [82]. 

 

Mitochondria and cytosol fraction isolation  

 

The isolation of mitochondrial/cytosol fraction was 

performed using the mitochondria isolation kit 

according to the manufacturer's protocol. Briefly, the 

brain tissues or cells were washed and homogenized 

using lysis buffer, and then were centrifuged at 800 g 

for 5 min at 4°C. Solution A was added to the collected 

supernatant and centrifuged at 15,000 g for 10 min at 

4°C. The obtained supernatant was the cytosolic 

fraction, which was transferred to another tube. The 

resulting sediment, which consisted of mitochondrial 

fraction, was re-suspended in rinsing solution and 

further centrifuged at 15,000 g for 10 min. The 

supernatant was removed and the mitochondrial 

precipitation was then resuspended with a storage 

solution or an appropriate buffer. 

 

Mitochondrial oxidative stress and functional 

evaluation 

 

The levels of oxidative stress markers (MDA content, 

SOD activity, CAT activity) and ATP production in the 

mitochondria were assessed by correspondingly 

commercially available kits as described previously [37, 

74, 75]. The MMP was assayed by flow cytometry 

using the mitochondrial membrane potential assay kit 

with JC-1. In brief, HT22 cells were incubated with a 

JC-1 solution for 20 min at 37°C in the dark and were 

then collected for subsequent flow cytometry analysis. 

The results are expressed as a relative red/green 

fluorescence ratio [83]. Additionally, we also measured 

the Cyt-cyto C expression to evaluate the mitochondrial 

integrity and apoptosis [38]. 

 

Flow cytometry and apoptosis analysis 

 

Cell apoptosis was analyzed using an Annexin V-FITC 

Apoptosis Detection Kit according to the manufacturer's 

protocols. HT22 cells at 80% confluency were 

harvested using 0.25% trypsin for 5 min at 37°C and 

washed twice with PBS. Following centrifugation at 

2000 rpm for 5 min at 4°C, cells were resuspended in a 

solution containing Annexin V‑FITC and propidium 

iodide for 15 min at room temperature. Subsequently, 

the cells were analyzed with a flow cytometer 

(Beckman Coulter CytoFLEX). 
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Western blot analysis 

 

Western blot analysis was performed as described 

previously [75].  Briefly, proteins of brain tissue and 

HT22 neurons were prepared and separated on SDS-

PAGE gels. Then, they were transferred to PVDF 

membrane and incubated overnight at 4°C with p-Akt, 

Akt, SIRT3, SOD2 (acetyl K68) (ac-SOD2), SOD2, 

NRF1, TFAM, cytochrome c, and β -actin antibodies 

(1:1000 dilution). Then, the membranes were washed and 

probed with the secondary antibodies for 1 hour at room 

temperature. The β-actin antibody was used as an internal 

control. The blot bands were quantified by ImageJ v1.61 

(National Institutes of Health, Bethesda, MD, USA). 

 

Statistical analysis 

 

All the results are shown as the means ± standard error 

of the mean (SEM). Data were analyzed by one-way 

analysis of variance (ANOVA) followed by Tukey’s 

post hoc test. p < 0.05 were considered to be statistically 

significant. The statistical analyses were performed 

using SPSS 18.0 (SPSS Inc., Chicago, IL, USA). 
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