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INTRODUCTION 
 

Glioma is an aggressive brain tumor with high recurrence 

rates [1–3]. Universal treatment strategies for glioma 

involves surgical resection with postoperative 

chemotherapy and radiotherapy, but the clinical 

prognoses for patients suffering from glioma still remain 

poor due to its lethal malignancy [4–7]. Nowadays, a 

need still exists to find more advanced treatments for 

glioma. 
 

Aging is an essentially universal characteristic of 

living organisms, is considered to involve a progressive 

decline of internal cellular functions and is a hot spot 

in tumor research [8–10]. Tumor, like the other 

diseases of aging, become much more prevalent 

beginning at around the midpoint of life. Cellular 

senescence plays significant role in contributing the 

aging progress and developing of tumor, while the 

mechanisms of it on tumor are extremely complex, 

which can both stimulate and suppress tumor 

malignancy [11–13]. For example, some in vivo 

experiments indicated cellular senescence could 

restrict tumorigenesis in early-stage prostate cancer 

and Braig et al. revealed H3K9me-mediated cellular 

senescence as a novel mechanism to suppress the 
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ABSTRACT 
 

An accumulation of studies has indicated aging to be a significant hazard factor for the development of tumors. 
Cellular senescence is positively associated with aging progress and aging-related genes (AGs) can regulate 
cellular senescence and tumor malignancy. While the association between AGs and the prognosis of patients 
with glioma is still unclear. In our study, we initially selected four survival-associated AGs and performed 
consensus clustering for these AGs based on The Cancer Genome Atlas (TCGA) database. We then explored the 
potential biological effects of four selected AGs. A prognostic risk model was constructed according to four 
selected AGs (LEP, TERT, PON1, and SSTR3) in the TCGA dataset and Chinese Glioma Genome Atlas (CGGA) 
database. Then we indicated the risk score was an independent prognostic index, and was also positively 
correlated with immune scores, estimate score, immune cell infiltration level, programmed death ligand 1 (PD-
L1) expression, and expression of proinflammatory factors in patients with glioma. Finally, we performed the 
RT-qPCR and immunohistochemistry assay to validate our bioinformatics results. Thus, this study indicated the 
risk model was concluded to possibly have potential function as an immune checkpoint inhibitor and to provide 
promising targets for developing individualized immunotherapies for patients with glioma. 
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formation of lymphomas [14, 15]. While some studies 

indicated an obvious ability of injected senescent 

fibroblasts to stimulate the proliferation of human 

epithelial tumor cells in immunocompromised mice  

[16, 17], which was closely associated with the 

senescence-associated secretory phenotype (SASP) 

[18]. Aging-related genes (AGs) can regulate cellular 

senescence and play a key role in tumor malignancy 

[11, 19]. There is, however, limited knowledge about 

the relationships between AGs and the prognosis of 

patients with glioma. 

 

In our study, we selected four survival-associated  

AGs and performed consensus clustering for these 

AGs based on The Cancer Genome Atlas (TCGA) 

database. We then explored the potential biological 

effects of four selected AGs. Then a prognostic  

risk model was constructed, we indicated the risk  

score was an independent prognostic index, and  

was positively correlated with immune scores, 

estimate score, immune cell infiltration level, 

programmed death ligand 1 (PD-L1) expression, and 

proinflammatory factors expression in patients with 

glioma. Finally, we performed some laboratory 

experiment to validate our bioinformatics results. Our 

research revealed their underlying implication as 

biomarkers for predicting clinical prognosis of patients 

with glioma. 

 

RESULTS 
 

Selection the AGs association with the prognostic of 

patients with glioma 

 

To find differentially expressed AGs, we initially 

selected 676 differentially expressed genes based on 

TCGA database (Figure 1A, 1C). Then we identified 4 

differentially expressed AGs from 676 differentially 

expressed genes: LEP and TERT were upregulated 

while PON1 and SSTR3 were downregulated (Figure 

1B, 1D). We then found that these AGs were correlated 

with the prognosis of patients with glioma (P < 0.01, 

Figure 1E). We also identified that the frequency  

of these survival-associated AG genetic alterations  

(< 1.8%, Figure 1F). 

 

Consensus clustering for four survival-associated 

AGs and with the prognoses of patients with glioma 

 

To explore the association of four survival-associated 

AGs, we performed correlation analysis according to 

their mRNA expression level in the TCGA datasets. 

Our results revealed the expression of PON1 was 

crucially positive associated with SSTR3 in glioma, 

while there were a crucial negative association between 

the expression of PON1 and TERT, and the expression 

of LEP was negatively associated with PON1 and 

SSTR3 (Figure 2A). Consensus clustering analysis was 

used to sort samples into subtypes based on the 

expression profiles of the above-identified four 

survival-associated AGs in the TCGA datasets. The 

resulting cumulative distribution function (CDF) curves 

and SigClust analysis indicated a K value of = 2 (Figure 

2B, 2C and Supplementary Figure 1), categorization of 

two subtypes (cluster1 (n = 317) and cluster2 (n = 311)) 

on the basis of different expression levels of the  

four survival associated AGs. The expression levels of 

the four selected AGs were statistically different 

between the two subtypes, which showed cluster2 with 

the upregulated expression levels of the risk factors 

(TERT and LEP) and clsuter1 with the upregulated 

expression of protective factors (SSTR3 and PON1, 

Figure 2D). Then we further revealed the gene 

expression profiles between the two subtypes were 

differentiated well by using principal component 

analysis (PCA, Figure 2E). The Kaplan-Meier (KM) 

curves indicated a poor prognosis for the samples in 

cluster2 (P < 0.001, Figure 2F). Furthermore, high 

grade, old age, mutant-type isocitrate dehydrogenase 

(IDH) status, 1p19q non-codeletion status were 

presented in cluster2 than cluster1 (Figure 2D and 

Supplementary Table 1). 

 

Consensus clustering analysis revealed the potential 

cellular biological effects of four survival-associated 

AGs 

 

Since cluster2 presented the low OS, the malignancy-

related mechanisms were further explored in this 

subtype. We selected differentially expressed genes 

between cluster2 and cluster1, and analyzed some 

biological processes significantly correlated with 

cluster2. Compared with cluster1, genes whose products 

are involved in neutrophil degranulation, neutrophil 

activation, ras protein signal transduction and regulation 

of cell morphogenesis were positively enriched in 

cluster2 (Figure 3A). A Kyoto Encyclopedia of Genes 

and Genomes (KEGG) analysis also revealed a crucial 

positive enrichment of genes involved in human 

papillomavirus infection, the wnt signaling pathway, 

cellular senescence, and the AMPK signaling pathway 

(Figure 3B). In addition, we further showed malignant 

hallmarks by carrying out a gene set enrichment 

analysis (GSEA), which indicated that the IL6 JAK 

STATS signaling (NES = 1.53, normalized P = 0.039), 

apoptosis (NES = 1.60, normalized P = 0.013), DNA 

repair (NES = 1.89, normalized P = 0.004), and G2M 

checkpoint (NES = 1.68, normalized P = 0.03) were 

significantly positively associated with cluster2 (Figure 
3C). In conclusion, our results might provide novel 

insights for cellular biological function related to four 

survival-associated AGs. 
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Identification of the prognostic value of selected AGs 

and risk model derived from four select AGs 

 

The least absolute shrinkage and selection operator 

(Lasso) Cox regression algorithm was used to build a 

prognostic risk model according to the expression levels 

of the four selected AGs in the TCGA datasets, and 

coefficients were obtained to calculate the risk scores 

for each patient with glioma (Supplementary Figure 2). 

We sorted glioma samples into two subtypes by the 

median risk scores. The KM curves revealed that the 

samples in the high-risk categories had a poorer OS 

than did those in the low-risk categories based on 

training and validation databases (P < 0.001, Figure 4A, 

4B). The area under the time-dependent receiver 

operating characteristic (ROC) curve (AUC) values 

were calculated to assess the value of our four-AG risk 

model which was 0.805 for the TCGA dataset, 0.801 for 

the Chinese Glioma Genome Atlas (CGGA) datasets 

(Figure 4C, 4D). These results showed the accuracy of 

 

 
 

Figure 1. Selection of differentially expressed and survival-associated AGs based on TCGA datasets. (A) Heatmap of all genes 

with significant differences between lower-grade glioma (LGG) and glioblastoma (GBM) samples. (C) Volcano plot of all genes based on TCGA 
datasets, light blue represented downregulated of genes, and pink represented upregulated of genes. (B) Differentially expressed AGs are 
showed in heatmap between LGG and GBM samples. (D) Volcano plot of the four selected differentially expressed AGs, light blue 
represented downregulated of AGs, and pink represented upregulated of AGs. (E) Forest plot of the four differentially expressed AGs.  
(F) Genetic changes of the four survival-associated AGs. 
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Figure 2. Two categories of patients based on distinct clinical characteristics and the OS according to the expression levels of 
the four survival-associated AGs in the TCGA datasets. (A) Spearman’s correlation analysis of the four survival-associated AGs (LEP, 
TERT, PON1, and SSTR3) in the TCGA datasets. (B) The relative change of the area under the cumulative distribution function (CDF) for K =2-9. 
(C) The consistency clustering CDF curve for K = 2-9. (D) Clinical characteristics of two clusters identified based on the expression levels of the 
four survival-associated AGs in the TCGA datasets. (E) Principal component analysis (PCA) for the total mRNA expression profile based on 
TCGA datasets. (F) Kaplan-Meier (KM) curves for 628 cluster1 and cluster2 glioma patients based on the TCGA datasets. * P < 0.05,  
** P < 0.01, and *** P < 0.001. 
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our four-AGs risk model for glioma prognosis. The risk 

plot distribution, survival status of patients with glioma, 

and heatmap of the expression of included genes were 

determined based on the TCGA and CGGA databases 

(Figure 4E, 4F). 

Positive correlations of the risk model with the OS 

and clinical characteristics of patients with glioma 
 

The correlations between the risk scores and clinical 

characteristics of patients with glioma were examined 

 

 
 

Figure 3. The potential biological functions of four selected associated-survival genes. (A, B) Functional annotations of 

differentially expressed genes in clsuter2 compared with cluster1 based on TCGA datasets determined from Geno Ontology (GO) and Kyoto 
Encyclopedia of Gene and Genomes (KEGG) pathway analyses. (C) Malignancy hallmarks positively enriched in cluster2 determined using 
gene set enrichment analysis (GSEA) in the TCGA datasets. 



 

www.aging-us.com 16203 AGING 

using the Wilcoxon test, which showed significant 

differences between risk scores in groups stratified by 

the Word Health Organization (WHO) tumor grade (P < 

0.001), age (P < 0.001), 1p/19q status (P < 0.001) and 

IDH status (P < 0.001, Figure 4G–4K). Univariate Cox 

regression analyses revealed that the WHO grade, age, 

IDH status, 1p/19q status, and risk score were 

significantly correlated with prognosis of patients in the 

 

 
 

Figure 4. Construction of a risk model and the association of the risk model with clinical characteristics of patients with 
glioma. (A, B) Kaplan-Meier (KM) curves for overall survival (OS) prediction based on the training (TCGA) and validation (CGGA) datasets.  
(C, D) Receiver operating characteristic (ROC) curves for the risk model both in the training and validation datasets. (E, F) Risk plot 
distribution, survival status of patients, and heatmap of expression of included genes in the training and validation datasets. (G–K) 
Relationships between the risk score and clinical characteristics (grade, age, 1p19q status, IDH status, and gender) of patients with glioma. 
Non-significant (ns) P > 0.05, * P < 0.05, ** P < 0.01, and *** P < 0.001. 
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TCGA datasets. Multivariate Cox regression analyses 

showed that the WHO grade (P < 0.01), IDH status (P < 

0.05), and risk score (P < 0.05) remained crucially 

associated with the OS of patients (Figure 5A). Similar 

conclusions were made based on the results of the 

multivariate Cox regression analysis using the validation 

dataset (Figure 5B), which revealed positive associations 

of the WHO grade (P < 0.001), IDH status (P < 0.01), 

1p19q status (P < 0.001), and risk scores (P < 0.05) with 

prognosis. Therefore, the risk scores derived from the 

four selected AGs indicated a good prognostic 

performance for this set of AGs and that they could 

represent an independent prognostic index for glioma. A 

nomogram was then constructed for providing a 

prognosis of glioma that integrated tumor grade, IDH 

status, and risk scores based on the TCGA database 

(Figure 5C), and the C-index for survival prediction was 

0.828. The calibration plots for providing prognoses of 

patients at 2-, 3-, and 5- years revealed an optimal 

agreement between the nomogram prediction and the 

actual observed outcomes (Figure 5D–5F). The results 

showed this four-AGs risk model to have accurate 

predictive value for prognosis and clinicopathological 

features. 

 

The association between the risk model and the 

immune cell infiltration level in glioma 

 

To explore the occurrence of any association between  

the risk score, immune score, and estimate score, the 

 

 
 

Figure 5. The risk score could serve as an independent prognostic index and predict the prognoses of patients with glioma. 
(A, B) Univariate and multivariate Cox analysis of clinical characteristics and molecular features based on the training (TCGA) and validation 
(CGGA) datasets. (C) Nomogram based on the WHO grade, IDH status and risk score for providing prognoses of patients with glioma in the 
TCGA datasets. (D–F) Calibration plots used to indicate that the nomogram could effectively predicted the 2-,3-, and 5- years prognoses of 
patients with glioma. 
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estimate formula was performed to calculate the immune 

score and estimate score of patients with glioma based on 

the TCGA dataset. The high-risk subtype was associated 

with a higher immune score and estimate score than  

was the low-risk subtype (P < 0.001, Figure 6A, 6B). 

Furthermore, our results also showed crucially positive 

associations of risk score with immune score (R = 0.43,  

P < 0.001, Figure 6C) and estimate score (R = 0.46,  

P < 0.001, Figure 6D) in glioma samples. 

 

We evaluated the composition of 22 important immune 

fractions of samples based on the TCGA dataset using 

 

 
 

Figure 6. Relationships between the risk score and immune cell infiltration levels, and PD-L1 expression levels based on 
TCGA datasets. (A, B) Comparison of immune and estimate scores according to two subtypes grouped by the median risk score. (C, D) 

Relationship between the risk score and immune scores and the estimate score. (E) The violin plot showed distribution of the ratio 
differentiation of 22 kinds of immune cells in glioma samples according to two subtypes grouped by the median risk score. (F–J) Distribution 
of PD-L1 expression levels based on the risk score (F) and expression levels of the four selected AGs (LEP (G), TERT (H), PON1 (I), and SSTR3 
(J)) of patients with glioma in the TCGA datasets. Non-significant (ns) P > 0.05, * P < 0.05, ** P < 0.01, and *** P < 0.001. 
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the CIBERSORT formula to explore the compositional 

fraction of 22 types of immune cells between high-risk 

and low-risk subtypes (Figure 6E). The results revealed 

that patients with glioma in the high-risk subtype 

included a higher fraction of memory B cells (P < 0.05), 

CD4 memory resting T cells (P < 0.001), CD4 memory 

activated T cells (P < 0.001), regulatory T (Tregs) cells 

(P < 0.001), resting NK cells (P < 0.001), M0 

macrophages (P < 0.001), M1 macrophages (P < 0.001), 

M2 macrophages (P < 0.001), activated dendritic cells 

(P < 0.01), resting mast cells (P < 0.001), activated mast 

cells (P < 0.001), eosinophils (P < 0.01), and neutrophils 

(P < 0.001) than did those in the low-risk subtype. While 

naïve B cells, plasma cells, naïve CD4 T cells, activated 

NK cells, monocytes, and activated mast cells showed 

the opposite result (P < 0.001). Our results showed that 

the risk score was statistically positively correlated with 

immune cell infiltration levels in glioma. 

 

Association of PD-L1 expression with the risk score 

and the four selected AGs 

 

To explore the relationship between PD-L1 and the  

four selected AGs, expression levels of PD-L1 were 

calculated for the high-risk and low-risk subtypes based 

on the TCGA database. The PD-L1 expression was 

found to be upregulated in the high-risk subtypes 

compared to that in the low-risk subtypes (Figure 6F). 

Furthermore, the PD-L1 expression levels showed a 

positive correlation with risk factors (LEP and TERT, 

Figure 6G, 6H), while a crucially negative relationship 

was noted with protective factors (PON1 and SSTRS, 

Figure 6I, 6J). 

 

Association of the six types of immune cells with the 

four selected AGs in the risk model 

 

According to the associations of the risk score and the six 

types of immune cells (Figure 7A), the relationships 

between these immune cells and the four selected AGs 

were investigated. Glioma patients of the subtype 

expressing high levels of LEP had a lower fraction of 

naïve B cells, plasma cells, NK activated cells, and 

monocytes cells than did those of subtype expressing low 

levels of LEP, while the opposite was the case for CD4 

memory resting T cells and M0 macrophages (P < 0.05, 

Figure 7B), in accord with the results grouped by the risk 

score. Similarly, the results for TERT, except for the 

 

 
 

Figure 7. Association of six types of immune cells with the risk score and four selected AGs in the TCGA datasets.  
(A) Distributions of the six types of immune cells (naïve B cells, plasma cells, CD4 memory resting T cells, NK activated cells, monocytes, and 
M0 macrophages) in the two subtypes grouped by the median risk score. (B–E) Comparison of the six types of immune cells (naïve B cells, 
plasma cells, CD4 memory resting T cells, NK activated cells, monocytes, and M0 macrophages) according to LEP (B), TERT (C), PON1 (D), and 
SSTR3 (E) expression levels. Non-significant (ns) P > 0.05, * P < 0.05, ** P < 0.01, and *** P < 0.001. 
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CD4 memory resting T cells and NK activated cells (P > 

0.05), were also in accord with the risk score results (P < 

0.01, Figure 7C). But the results for PON1 and SSTR3, 

as protective factors, were not in accord with the risk 

score results; glioma patients of the high-LEP-expression 

subtype included a higher fraction of naïve B cells, 

plasma cells, NK activated cells, and monocytes than did 

those of low-LEP-expression subtype, while CD4 

memory resting T cells and M0 macrophages showed the 

opposite result (P < 0.05, Figure 7D). Similarly, the 

results for SSTR3, except for M0 macrophage and 

monocytes (P > 0.05), were in contrast with the risk score 

results (P < 0.01, Figure 7E). The four selected AGs 

(LEP, TERT, PON1, and SSTR3) were concluded to 

have important functions in immune cell infiltration of 

glioma. 

 

Association of proinflammatory factors with the risk 

score and the four selected AGs 

 

An accumulation of research has indicated chronic 

inflammation associate with cellular senescence to have 

an important function in immune cell infiltration and 

major proinflammatory factors, including interleukin-1α 

(IL-1α), interleukin-1β (IL-1β), interleukin-6 (IL-6), 

interleukin-8 (IL-8) and interleukin-18 (IL-18) [20, 21]. 

In our study, we explored the association of major 

proinflammatory factors with the risk score and the four 

selected AGs, and showed the expressing features of 

eight major proinflammatory factors based on the TCGA 

datasets (Supplementary Figure 3). Our results revealed 

that the levels of expression of IL-1α, IL-1β, IL-6, IL-8, 

and IL-18 in the high-risk groups were statistically 

higher than those in the low-risk groups (P < 0.001, 

Table 1), in accord with the risk score results. This study 

also revealed that IL-1α, IL-1β, IL-6, IL-8, and IL-18 

were expressed at higher levels in the high-LEP-

expression group than in the low-LEP-expression group 

(P < 0.05, Table 1). And the results for TERT showed 

that, except for IL-1α (t = 1.640, P = 0.104), IL-1β (t = -

2.646, P < 0.001), and IL-18 (t = -2.827, P < 0.001), the 

other interleukins were expressed at high levels in the 

high-TERT-expression group (P < 0.05, Table 1). The 

PON1 and SSTR3, as protective factors, the results 

showed that IL-1α, IL-1β, IL-6, IL-8, and IL-18 were 

expressed at lower levels in the high expression group 

than in the low expression group (P < 0.05, Table 1). 

 

The mRNA and protein expression levels of four 

selected AGs in glioma 

 

We performed the Real-time quantitative polymerase 

chain reaction (RT-qPCR) and immunohistochemistry 
assay to validate the bioinformatics results. The RT- 

qPCR assay showed that the four AGs (LEP, TERT, 

PON1, and SSTR3) were expressed to different extents in 

normal brain tissue (NBT), lower-grade glioma (LGG) 

and Glioblastoma (GBM) tissue in mRNA expression 

level (Figure 8A–8D), and the immunohistochemistry 

assay revealed that the protein expression of four AGs 

were also expressed to different extents in NBT and 

glioma tissue (Figure 8E–8H), in accord with the 

bioinformatics results. 

 

DISCUSSION 
 

There are currently many pieces of evidences of age-

dependent changes being correlated with proinflammatory 

nature and involved in chronic inflammatory 

microenvironment [22–24]. Increasing in inflammation 

and immune cell infiltration levels with age-dependent 

changes may contribute to formation and malignancy of 

tumors [25], while the functions of them in the 

malignancy of glioma are still unclear. Exploring the 

molecular mechanisms of AGs is important for 

identifying the role of age-dependent changes in glioma. 

Few studies have to date systematically investigated the 

molecular mechanisms of AGs in glioma and the 

association between the expression profile of AGs and 

the OS of patients with glioma. 

 

In our study, we performed a systematic analysis to select 

the differentially expressed and survival-associated AGs. 

Consensus clustering analysis was used to sort glioma 

samples into two clusters according to the expression 

profile of four survival-associated AGs (TERT, LEP, 

PON1, and SSTR3). The cluster1/2 subtypes could affect 

prognosis and clinical characteristics of patients with 

glioma, and revealed strong correlations with some 

significant biological processes and signaling pathways, 

including human papillomavirus infection, the wnt 

signaling pathway, cellular senescence and the AMPK 

signaling pathway. We then established a risk model 

with the four selected AGs and showed that the risk 

score could be regarded as an independent prognostic 

index for predicting the prognosis of patients with 

glioma based on both training (TCGA) and validation 

(CGGA) datasets. In our risk model, TERT and LEP 

acted as risk factors, while PON1 and SSTR3 acted as 

protective factors. For TERT, it had been shown the 

promoter mutations were correlated with poor prognosis 

and shorter survival of patients with glioma [26, 27], and 

some researches also identified that TERT promoter 

mutations was an independent prognostic factor in the 

other human cancer [28, 29]. Yeh et al. found LEP 

expressed at higher levels in glioma than in astrocytes, 

and indicated that high levels of expression of LEP 

could promote glioma cell migration and invasion by 

increasing the MMP-13 expression levels [30]. Zhang et 

al. identified low LEP expression level was correlated 

with short OS and low complete remission rate in acute 

myeloid leukemia [31]. The molecular mechanisms of 



 

www.aging-us.com 16208 AGING 

Table 1. Correlation of proinflammatory factors with the risk score and gene of the risk model in the TCGA dataset. 

Genes 
TERT PON1 LEP SSTR3 Risk score 

t P t P t P t P t P 

IL-1α 1.640 0.104 -6.382 <0.001 3.187 <0.01 -3.060 <0.01 3.747 <0.001 

IL-1β -2.646 <0.001 -4.481 <0.001 2.367 <0.05 -1.276 0.203 4.231 <0.001 

IL-6 2.291 0.02 -9.763 <0.001 5.730 <0.001 -4.167 <0.001 8.591 <0.001 

IL-8 5.958 <0.001 -9.244 <0.001 5.637 <0.001 -4.045 <0.001 9.270 <0.001 

IL-18 -2.827 <0.01 -7.259 <0.001 2.96 <0.01 -7.367 <0.001 5.704 <0.001 

t: t value of student’s test; P: P-value of student’s t test. 

 

PON1 and SSTR3 in glioma remained ambiguous. Li et 

al. found PON1 inhibited the proliferation and migration 

of renal cancer cells and Ding et al. reported PON1 

could be used as a biomarker for evaluating the invasion 

of hepatocellular carcinoma [32, 33]. Hu et al. indicated 

low expression in gastric cancer and expressed SSTR3 

could inhibit gastric cancer cell proliferation and induce 

cell apoptosis [34]. 

 

 
 

Figure 8. Validation of the bioinformatics results using RT-qPCR and immunohistochemistry assay. (A–D) Comparison of LEP (A), 
TERT (B), PON1 (C), and SSTR3 (D) mRNA expression levels in normal brain tissue (NBT), lower-grade glioma (LGG), and glioblastoma (GBM) 
tissues by RT-qPCR assay. (E–H) Comparison of the protein expression of LEP (E), TERT (F), PON1(G) and SSTR3 (H) in NBT and glioma tissue by 
immunohistochemistry assay. Non-significant (ns) P > 0.05, * P < 0.05, ** P < 0.01, and *** P < 0.001. 
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Interestingly, our Gene Ontology (GO) analysis results 

showed that neutrophil activation involved in immune 

response, neutrophil activation and neutrophil mediated 

immunity were enriched in cluster2. Neutrophils have 

been shown to have important functions for the innate 

immune response and to be involved in immune cell 

functions [35–37]. Therefore, we explored the 

association of risk score with immune score, PD-L1 

expression, and compositional fraction of 22 types of 

immune cells in patients with glioma based on TCGA 

datasets. The PD-L1 expression levels and immune 

score of the high-risk subtypes were crucially higher 

than those of the low-risk subtypes, and positive 

associations between the risk score and the levels of 

most of the immune cells were observed: high-risk 

subtypes contained higher fractions of CD8 T cells, 

CD4 memory resting T cells, CD4 memory activated T 

cells, regulatory T cells, resting NK cells, M0 

macrophages, M1 macrophages, M2 macrophages, 

activated dendritic cells, resting mast cells, eosinophils 

and neutrophils than did the low-risk subtypes. Our 

study also showed a significant positive association of 

the risk score with immune cell infiltration, and its 

correlation with the growth and differentiation of 

macrophages and T cells. Some SASP components play 

a crucial role in the development of inflammation, 

which is relevant to the potential functions of senescent 

cells in tumor malignancy [25, 38], and the 

proinflammatory factors of the SASP can influence the 

immune cell infiltration levels [39, 40]. So we also 

substantiated a crucially positive correlation of the risk 

score with IL-1α, IL-1β, IL-6, IL-8, and IL-18 expression 

levels in patients with glioma. We substantiated the idea 

of TERT and LEP being the risk factors, and LEP and 

PON1 as protective factors, affecting the immune cell 

infiltration level and the levels of proinflammatory 

factors in glioma. Jiang et al. showed a correlation 

between TERT alterations and tumor immune 

microenvironment, and thus suggested that TERT can 

serve as potential biomarkers for individualized 

immunotherapy [41]. LEP, shown to play a crucial role in 

the initiation of the immune system, had also been 

indicated to be one of the mediators of inflammation 

responsible [42, 43]. Aharoni et al. showed PON1  

to have an important function as an anti-inflammatory, 

which could reduce sustained pro-inflammatory 

responses [44]. While there are few studies reported the 

association between the SSTR3 expression and immune 

microenvironment in human cancer. 

 

In our study, we developed a risk model with four 

selected AGs, and the results revealed that the risk score 

had a prognostic value and was associated with tumor 
immune microenvironment in glioma. Nevertheless, 

there were still some limitations of our study that 

needed to be overcome. First, the bioinformatics results 

were validated based on the TCGA and CGGA datasets 

The relationship between the risk signature of four 

survival-associated AGs and clinical prognostic value of 

patient with glioma were not subjected to external 

verification due to the lack of our own adequate 

available data; external validation should be performed 

based on our own data in the future. Second, we only 

performed the RT-qPCR and immunohistochemistry 

assay to substantiate our bioinformatics results; we 

should further perform more laboratory experiments to 

confirm this conclusion. 
 

In conclusion, we established a risk model with four 

selected AGs, which showed potential function as 

immune checkpoint inhibitors and hence promise as 

targets for developing individualized immunotherapy 

for patient with glioma. 

 

MATERIALS AND METHODS 
 

Data collection and acquisition 
 

The mRNA expression files and related 

clinicopathological data were acquired from the TCGA 

(n = 628) (https://portal.gdc.cancer.gov/) and CGGA 

(https://www.cgga.org.cn/) (n = 620)) datasets 

(Supplementary Table 2). A list of AGs was acquired 

from the human aging genome resource dataset 

(http://genomics.senescence.info/genes/) [45], and copy 

number alterations data were acquired from cBioPortal 

websites (http://www.cbioportal.org/) [46]. 

 

Selected survival-associated AGs and investigation 

of their potential cellular biological effects 
 

We identified differentially expressed genes between 

LGG and GBM samples, and selected the differentially 

expressed AGs from differentially expressed genes based 

on TCGA datasets, according to the standards of | 

log2(Fold change) | > 1 and P < 0.05. We selected 

survival-associated AGs according to the standard of P < 

0.01 and | hazard ratio | > 1 by univariate Cox analysis 

using the R package “survival”. Then we sorted patients 

with glioma into two clusters basing on the four selected 

AGs expression profiles of samples from TCGA datasets 

using the R package “ConsensusClusterPlus”. The 

Euclidean distance was used to compute the similarity 

distance between patients with glioma, and the k-means 

method was utilized for clustering based on 50 iterations, 

which each iteration included 80% of patients. The 

optimal number of clusters was identified by CDF and 

consensus matrices. Then we validated the classification 

results by performing PCA. The molecular mechanisms 
of selected survival-associated AGs were explored by 

performing GO pathway analyses, KEGG pathway 

analyses, and GSEA. 

https://portal.gdc.cancer.gov/
https://www.cgga.org.cn/
http://genomics.senescence.info/genes/
http://www.cbioportal.org/


 

www.aging-us.com 16210 AGING 

Establishing a risk model and exploring the prognostic 

value of risk score 

 

To further investigate the biological functions of the 

four selected survival-associated AGs, we performed 

Lasso Cox regression algorithm based on the expression 

levels of survival-associated AGs, and four selected 

AGs were identified based on the minimum criteria  

to establish the risk score (Supplementary Figure 2). 

Each risk score was defined by the coefficients  

derived from Lasso algorithm, and the formula was as 

followed: risk score = [TERT expression * (0.226371)] 

+ [LEP expression * (0.30102)] + [PON1 expression *  

(-0.34145)] + [SSTR3 expression * (-0.08439)]. We 

calculated the risk score for glioma sample both in 

training and validation datasets. We then sorted the 

glioma samples into two high-risk and low-risk 

subtypes. A cluster heat map was constructed to 

display the correlations between candidate genes  

and risk scores. And ROC curves were constructed  

to evaluate the prediction efficiency of the risk  

model. We also constructed nomograms using the R 

package “rms” and evaluated their performance. The 

relationships between clinical characteristics and risk 

score were explored both in training and validation 

datasets. 

 

Determination of associations between the  

level of immune infiltrates, PD-L1 expression, 

proinflammatory factors, and the prognostic model 

 

We evaluated immune scores of glioma samples using 

the estimate formula [47]. We calculated the immune 

and estimate scores according to gene expression 

profiles and determined their associations with the risk 

score and the four selected AGs. An estimation of the 

compositional fraction of 22 types of immune cells of 

each sample was calculated using CIBERSORT 

(http://cibersort.stanford.edu/), a tool developed to 

calculate cellular compositions of tumors according to 

gene expression data in the TCGA datasets [48]. The 

relationship between the prognostic model, PD-L1 

expression and some proinflammatory factors were 

investigated based on TCGA datasets, and we 

normalized the gene expression in the TCGA datasets 

using formula: log2 (N+1). 

 

Use of RT-qPCR and immunohistochemistry assay 

to validate bioinformatics results 

 

We collected NBT and glioma tissues specifically 6 

NBTs, 10 LGG tissues and 9 GBM tissues from the 

Second Affiliated Hospital of Nanchang University from 
May 2017 to June 2020 (Supplementary Table 3). Our 

study was approved by the Ethics Committee of this 

hospital. RT-qPCR was conducted using a LightCycler® 

480 real-time PCR System based on the manufacturer’s 

instructions. The expression levels of the four selected 

AGs were calculated using the 2-ΔΔCt method. Primer 

sequences for the four AGs were as follows: LEP 

forward 5’-GCAGTTGCGCAAGTTGTGAT-3’ and 

reverse 5’-GATGGGCTTCTTGGGCCTTG-3’; TERT 

forward 5’- CTTGCGGAAGACAGTGGTGA -3’ and 

reverse 5’-TCCGGGCATAGCTGGAGTA-3’; PON1 

forward 5’-CACCCGATGGCAAGTATGTCT-3’ and 

reverse 5’-GGCATCCAACCCAAAGGTCT-3’; SSTR3 

forward 5’-CCCCATGGGCAGGCAAATA-3’ and 

reverse 5’-CGAGGAGGCATTCTCAGGTT-3’. We 

performed the immunohistochemistry assay on human 

tissues by methods described previously [49]. 

 

Statistical analyses 

 

KM curves were used to contrast OS between pairs of 

subtypes. The Lasso Cox regression formula was used 

to establish a risk model. Wilcoxon test was used to 

compare the risk score and four AGs between pairs of 

subtypes in the different clinical characteristics and  

PD-L1 expression. Univariate and multivariate Cox 

regression analyses were used to determine the 

independent prognostic value of the risk score and the 

nomogram. The statistical analyses were carried out 

using R programming language v3.6.3, SPSS Statistics 

software 26.0, and Prism 8.0. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. The consensus score matrix of the four survival-associated AGs expression in glioma samples based 
on TCGA datasets. The consensus score matrix of the four survival-associated AGs expression in glioma samples based on TCGA datasets. 

(A–E) at K = 2 (A), 3 (B), 4 (C), 5 (D), and 6 (E), the correlation between groups, the consensus score matrix for the four selected AGs in the 
TCGA datasets. 
 

 
 

Supplementary Figure 2. Risk model derived from expression patterns of four survival-associated AGs. (A) Partial likelihood 

deviance for tuning the parameter selection in the Lasso regression model in the TCGA datasets. (B) Lasso coefficient profiles of the four 
survival-associated AGs in the TCGA datasets. 
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Supplementary Figure 3. The expressing features of interferons and chemokines based on expression levels of the four 
selected AGs and the risk score. (A–E) Distribution of interferons and chemokines (IL-1α, IL-1β, IL-6, IL-8, and IL-18) expression levels 

based on expression levels of the four selected AGs (TERT (A), PON1(B), LEP (C), and SSTR3 (D)) of patients with glioma and the risk score  
(E) in the TCGA datasets. 
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Supplementary Tables 
 

Supplementary Table 1. Clinicopathological features of the clusters  
included in this study. 

TCGA dataset 

 Cluster1 Cluster2 P-value 

Total cases 317 311  

Sex   0.742 

Male 179 183  

Female 138 128  

Age   <0.001 

<50 229 121  

>=50 88 190  

Grade   <0.001 

II 182 37  

III 123 120  

IV 12 154  

IDH   <0.001 

Mutation 276 108  

Wildtype 39 196  

NA 2 7  

1p19q   <0.001 

Codel 110 42  

Non-codel 207 262  

NA 0 6  

Survival state   <0.001 

Alive 50 149  

Dead 267 162  
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Supplementary Table 2. Clinicopathological features of patients included in this study. 

 TCGA dataset CGGA dataset 

Number Percentage Number Percentage 

Total 628 100% 620 100% 

Age 14-89 (47)  11-76 (43)  

<median 308 49.04% 320 51.61% 

≥median 320 50.96% 299 48.22% 

NA 0 0% 1 0.17% 

Gender     

Female 266 42.36% 264 42.58% 

Male 362 51.91% 356 57.42% 

NA 0 0% 0 0% 

Grade     

WHO II 219 34.87% 173 27.9% 

WHO III 243 38.69% 232 37.42% 

WHO IV 156 24.84% 215 34.68% 

NA 0 0% 0 0% 

IDH     

Wildtype 235 37.42% 258 41.61% 

Mutation 384 61.15% 317 51.13% 

NA 9 1.43% 45 7.26% 

1p/19q     

Non-codel 470 74.84% 428 69.03% 

Codel 152 24.20% 128 20.65% 

NA 6 0.96% 64 10.32% 
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Supplementary Table 3. Clinical data of the patients that used in the RT-qPCR and immunohistochemistry assay. 

Number Age-ranges (years old) Gender paired/unpaired type of tissue Hospitalization date 

1 40-50 Male unpaired NBT 2019.05.25 

2 70-80 Female unpaired NBT 2018.09.12 

3 60-70 Male unpaired NBT 2018.03.12 

4 30-40 Male unpaired NBT 2020.02.19 

5 60-70 Female unpaired NBT 2017.07.08 

6 70-80 Male unpaired NBT 2018.04.29 

7 60-70 Female unpaired LGG 2019.09.17 

8 50-60 Male unpaired LGG 2018.07.12 

9 30-40 Female unpaired LGG 2019.01.27 

10 70-80 Female unpaired LGG 2018.10.14 

11 40-50 Male unpaired LGG 2018.03.28 

12 20-30 Male unpaired LGG 2020.02.02 

13 50-60 Male unpaired LGG 2018.01.23 

14 40-50 Female unpaired LGG 2017.11.29 

15 60-70 Female unpaired LGG 2017.09.27 

16 50-60 Male unpaired LGG 2019.05.18 

17 30-40 Male unpaired GBM 2017.12.21 

18 40-50 Female unpaired GBM 2019.02.17 

19 50-60 Male unpaired GBM 2019.01.07 

20 50-60 Female unpaired GBM 2018.11.28 

21 60-70 Male unpaired GBM 2018.04.19 

22 40-50 Female unpaired GBM 2017.10.14 

23 70-80 Male unpaired GBM 2018.07.27 

24 60-70 Male unpaired GBM 2019.02.13 

25 60-70 Female unpaired GBM 2018.12.25 

 


