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INTRODUCTION 
 

Acute myeloid leukemia (AML) is a highly 

heterogeneous hematological malignancy that seriously 

harms human health, and it is also the most common 

type of adult acute leukemia. The incidence of AML is 

about 3.7/100000, but the disease is progressing rapidly, 

and the age-related mortality is about 2.7/100000 to 

18/100000 [1]. With the rapid development of 

microarray gene chip and NGS high-throughput 

sequencing technology, it is possible to accurately 

predict patients' diagnosis and prognosis with acute 

myeloid leukemia and provide an objective basis for 

more effective individualized treatment of leukemia [2]. 
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ABSTRACT 
 

Acute myeloid leukemia (AML) is a group of heterogeneous hematological malignancies. We identified key 
genes as ITGAM and lncRNA ITGB2-AS1 through different bioinformatics tools. Furthermore, qPCR was 
performed to verify the expression level of essential genes in clinical samples. Retrospective research on 179 
AML cases was used to investigate the relationship between the expression of ITGAM and the characteristics 
of AML. The critical gene relationship with immune infiltration in AML was estimated. The clinical validation 
and prognostic investigation showed that ITGAM, PPBP, and ITGB2-AS1 are highly expressed in AML 
(P < 0.001) and significantly associated with the overall survival in AML. Moreover, the retrospective research 
on 179 clinical cases showed that positive expression of ITGAM is substantially related to AML classification 
(P < 0.001), higher count of white blood cells (P < 0.01), and poor chemotherapy outcome (P < 0.05). 
Furthermore, based on grouping ITGAM as the high and low expression in TCGA-LAML profile, we found that 
genes in the highly expressed ITGAM group are mainly involved in immune infiltration and inflammation-
related signaling pathways. Finally, we discovered that the expression level of ITGAM and lncRNA ITGB2-AS1 
are not just closely related to the immune score and stromal score (P < 0.001) but also significantly positively 
correlated with various Immune signatures in AML (P < 0.001), indicating the association of these genes with 
immunosuppression in AML. The prediction of candidate drugs indicated that certain immunosuppressive 
drugs have potential therapeutic effects for AML. The critical genes could be used as potential biomarkers to 
evaluate the survival and prognosis of AML. 
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In recent years, with the extensive research on the 

pathogenesis of AML, it has been confirmed that a 

variety of abnormal gene expressions may play an 

essential role in the occurrence and development of 

AML [3, 4]. 

 

Bioinformatics analysis is a method that is increasingly 

used to explore target genes and proteins. Weighted 

gene co-expression network analysis (WGCNA) is a 

systematic biological method to describe the association 

patterns between genes in micro-array sequencing 

samples. It can identify highly related gene clusters 

(modules) to study potential functions [5]. Recent 

studies have shown that WGCNA has been widely used 

to screen and identify AML susceptibility genes and 

candidate targets [6]. 

 

In the past two decades, many biological information 

data databases have been widely used in tumor-related 

research. The Gene expression Omnibus (GEO) 

database is a public bioinformatics database provided 

by the National Center for Biotechnology Information 

(NCBI) to store, query, and download the gene chip 

results NGS and another high-throughput sequencing. 

It is one of the largest gene chip databases in the 

world [7]. The Cancer Genome Atlas (TCGA) 

database is a comprehensive multi-dimensional map 

of fundamental genomic changes in 33 cancers, 

jointly provided by The National Cancer Institute 

(NCI) and The National Human Genome Research 

Institute (NHGRI). It can give the researchers 

comprehensive cancer genome data sets related to 

tumor stage, metastasis, survival rate, patient 

information, and so on [8]. In recent years, many 

research centers have developed online visual analysis 

databases for TCGA tumor-related information. The 

online databases such as GEPIA have processed RNA 

sequencing expression data from 9736 tumors and 

8587 standard samples from TCGA and GTEx 

projects. And the online database can further achieve 

according to different tumor types or pathological 

stages of survival analysis, similar gene detection, 

correlation analysis, and other functions [9]. 

 

The tumor microenvironment (TME) is the cellular 

environment in which tumor lesions exist [10]. It 

comprises immune cells, stromal cells, endothelial 

progenitor cells, extracellular matrix, growth 

factors, and cytokines [11]. In recent years, studies 

have found that the bone marrow microenvironment 

plays a vital role in the homing and survival of 

leukemia cells [12, 13]. Besides, the interaction 

between leukemia cells and the bone marrow 
microenvironment affects the survival of acute 

myeloid leukemia cells [14, 15]. It also has a 

specific impact on chemotherapy drugs' sensitivity 

and resistance [16, 17]. At present, the ESTIMATE 

program is a beneficial method to explore the 

microenvironment in many tumors [18]. It has been 

used to investigate the prognostic genes in the 

microenvironment of AML patients [19]. 

 

In this study, we utilized the transcriptome sequencing 

data of adult AML to identify the differentially 

expressed genes and construct the co-expression 

network. And that we have screened the essential genes 

that significantly affect the survival and prognosis of 

AML. Besides, we have validated the expression of 

critical genes in clinical samples, investigating the 

relationship between the expression of essential genes 

and patients' characteristics in retrospective research. 

Furthermore, we have predicted the potential drugs 

targeting critical genes and the impact of essential genes 

on the immune infiltration of AML. 
 

RESULTS  
 

Identification of differentially expressed genes 

related to acute myeloid leukemia 

 

This study obtained an expression profile data matrix 

that includes 67758 genes in 214 samples, the R 

software to process the GSE114868 transcriptome data. 

The workflow of the analysis procedure in this study 

was shown in Figure 1. Based on the screening criteria 
as |FC| > 2 and P < 0.05, 3893 differentially expressed 

genes (DEGs) were identified in total. These DEGs 

include 1657 up-regulated genes and 2236 down-

regulated genes. We used R software to draw the 

volcano plot and heatmap of differentially expressed 

genes (Figure 2). 

 

Weighted co-expression network construction and 

identification of the critical module 

 

To find the co-expressed gene modules (Module), 

explore the relationship between the gene network 

and the phenotype of interest, and the core genes in 

the network, we used the WGCNA method to 

construct a weighted gene co-expression network. In 

the process of network construction, we selected the 

soft threshold β = 8 (R2 = 0.85) to establish a 

topological matrix whose gene distribution conforms 

to the scale-free network. The topological matrix was 

clustered with co-expressed genes through the 

coefficient of dissimilarity between genes. The gene 

co-expression network was divided into nine 

modules, and the topological overlap of adjacent 

modules was used to select characteristic functional 
modules. Finally, it determined that the Blue module 

has the highest module importance and containing 

75 genes (Figure 3). 
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Gene ontology (GO) functional annotation and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment analysis 

 

We performed the GO functional annotations on 75 

characteristic genes in the Blue module, including 

biological process (BP), Cellular Component (CC), and 

Molecular Function (MF) analysis. BP analysis showed 

that the co-expressed genes were mainly annotated in 

neutrophil degranulation, neutrophil activation, and 

neutrophils participating in the immune activation 

response. CC analysis showed that the co-expressed 

 

 
 

Figure 1. The overall analysis process of the present study. 

 

 
 

Figure 2. The volcano and heatmap of the differentially expressed genes. (A) In the DEGs' volcano plot, red dots are up-regulated 

genes, blue is down-regulated, and grey is no different; (B) DEGs clustering heatmap, pink indicates healthy, and blue indicates AML. DEGs: 
differentially expressed genes. 
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genes were significantly annotated in the cell components 

such as secretory granule membrane, ficolin granule, 

secretory granule lumen, and cytoplasmic cyst. MF 

analysis shows that the co-expressed genes are mainly 

related to carbon-nitrogen bond hydrolase activity, SH3-

domain binding, and RAGE receptor binding. KEGG 

pathway enrichment analysis results show that the co-

expressed genes mainly involve neutrophil migration, 

tumor carbon metabolism, iron death, FcγR-mediated 

phagocytosis, HIF-1, and NF-κB signaling pathway. 

These results indicate that the co-expressed genes in the 

necessary modules are mainly involved in cellular 

immune and inflammatory processes (Figure 4). 

 

Recognition of module driver genes based on PPI 

network 

 

To further study the function of the characteristic genes 

in the Blue module at the protein level after the 

WGCNA analysis, we used the STRING database 

(https://string-db.org/) to screen 75 of the Blue modules 

co-expression of genes constructs a protein-protein 

interaction (PPI) network (Figure 5A). 

 

The PPI network consists of 45 nodes and 66 edges, and 

we used the "MCODE" program in Cytoscape software 

to further identify the module driver genes (MDGs) in 

the PPI network. The cut-off value is set as K-core = 2. 

Finally, two functional clusters were screened out. 

Cluster 1 contains 10 MDGs (S100A9, S100A8, NCF2, 
CYBB, ITGAM, FCER1G, FPR1, FCN1, HK3, VNN2) 

(Figure 5B), and cluster 2 includes 4 MDGs (HCAR3, 
HCAR2, C5AR1, P2RY13) (Table 1).  

 

Identification of core differentially expressed 

mRNAs (DEmRNAs) in the whole transcriptome 

 

To further verify the regulatory function of the obtained 

MDGs in the whole transcriptome, we also identified 

745 DEmRNAs in the transcriptome data with more 

stringent screening conditions (|logFC ≥ 2|, P < 0.05), 

and using the STRING database constructed a PPI 

 

 
 

Figure 3. Identification of modules related to clinical features of acute myeloid leukemia. (A) Analysis of the soft threshold (β) 

through the scale-free fitting index and mean connectivity; (B) Clustering dendrogram of the DEGs through dissimilarity coefficient, which 
shows nine gene co-expression modules AML. Gray modules indicate no co-expression between genes; (C) The correlation heat map of 
WGCNA adjacent modules. The rectangles in each row and each column represent a module characteristic gene. Light blue represents low 
adjacency, and red represents high adjacency; (D) The TOM visualized the gene co-expression network's heat map in the module. In the TOM 
map, light colors indicate topological overlap. Dark colors indicate a higher degree of topological overlap. The gene tree diagram and 
corresponding modules are displayed on the upper left of the TOM diagram. The intersection of the two rectangles indicates the topological 
overlap in the Blue module. DEGs: differentially expressed genes; TOM: topological overlap matrix. 

https://string-db.org/
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network, which contains 392 nodes and 2357 edges 

(Figure 6A). Besides, we also use the "cytoHubba" 

program in Cytoscape software to calculate the degree 

of contribution (Degree) in the PPI network, then obtain 

the ten core DEmRNAs (FPR2, PPBP, ITGB2, ITGAM, 

APP, CEACAM8, STOM, CKAP4, ORM2, FPR1) with 

the highest degree of contribution (Degree) in the global 

network (Figure 6B). Then the obtained top 10 

DEmRNAs are compared with the MDGs in the module 

(Blue). The results show that ITGAM and FPR1 are 

common genes, and these two common genes show 

vital global regulatory functions. They may play an 

essential role in the pathogenesis of AML. 

 

Screening and correlation analysis of differentially 

expressed lncRNAs (DElncRNAs) 

 

To further determine the potential regulatory 

relationship between differentially expressed lncRNAs 

(DElncRNAs) and core DEmRNAs in AML and clarify 

the regulatory function of DElncRNAs. We screened 

474 DElncRNAs from the transcriptome data and 

displayed the volcano plot of DElncRNAs by the R 

software (Figure 7A).  

 

After that, we used the PCC method to evaluate the 

correlation between core DEmRNAs and DElncRNAs, 

then screened the noteworthy DElncRNA-mRNA pairs 

(PCC > 0.8, P < 0.05). The results showed that the 

expression of 7 lncRNAs (SIRPAP1, ITGB2-AS1, 

FAM157B, FAM157A, CASP1P2, SMIM25, IL10RB-
DT) significantly correlated with the expression of core 

mRNAs (Figure 7B). Among them, the expression of 

DElncRNAs includes FAM157A and SIRPAP1 that are 

mainly related to the expression of ITGAM. 

Furthermore, DElncRNAs as FAM157A, FAM157B, 
SMIM25, ITGB2-AS1, and SIRPAP1 are significantly 

associated with the expression of FPR1. 

 

Prognostic evaluation of critical mRNAs and co-

expressed lncRNA 

 

To verify the prognostic value of the screened essential 

genes and co-expressed DElncRNAs, we conducted 

 

 
 

Figure 4. GO functional enrichment analysis and KEGG pathway analysis of characteristic genes in the Blue module. (A) Top 20 

enriched biological process terms; (B) Top 20 enriched cell component enrichment; (C) The results of Molecular function enrichment analysis; 
(D) The results of the KEGG pathway enrichment analysis. Abbreviations: GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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prognostic verification on the 18 important genes 

(including two common genes) and 7 lncRNAs selected 

based on the TCGA-LAML clinical data in the GEPIA 

online database (http://gepia2.cancer-pku.cn). 

 

The univariate Cox regression analysis showed that 

both the critical genes as S100A9, S100A8, NCF2, 

ITGAM, HK3, VNN2, PPBP, ITGB2 (Figure 8A), and 

co-expressed DElncRNA as ITGB2-AS1 (Figure 8B) 

are the risk factors affecting the prognosis of AML 

patients (P < 0.05). The results of K-M survival 

analysis showed that AML patients with high 

expression of ITGAM, PPBP, and ITGB2-AS1 had a 

poor prognosis (P < 0.05). In contrast, the common 

gene expression as FPR1 did not significantly affect 

AML patients' prognosis. It is worth noting that, 

combining the results of the two prognostic analyses, 

we found that ITGAM, PPBP, and ITGB2-AS1 both 

significantly impact AML patients' prognosis (Figure 

8C). Finally, The Nomogram (Figure 8D) shows the 

probability of these three genes influencing the 

prognostic outcome. 

 

Quantitative real-time PCR (qRT-PCR) validated 

the expression level of critical genes in initial 

diagnosis patients with AML 

 

We used 20 clinical samples to verify the different 

expression levels of essential genes between AML (15 

bone marrow samples from initial diagnosis of AML) 

and health group (15 peripheral blood samples from 

anonymized healthy individuals). The validation result 

showed that ITGB2-AS1, ITGAM, and PPBP were 

significantly higher expressed in the AML group 

(Figure 9).  

 

The ROC curve analysis of the diagnostic value 

between MDGs, core DEmRNAs and co-expressed 

DElncRNAs 

 

To further verify the diagnostic value between MDGs, 

core DEmRNAs and co-expressed DElncRNAs in 

AML, we used receiver operating characteristic (ROC) 

curve analysis to evaluate these genes. The study results 

showed that the area under the curve (AUC) of MDGs, 

core DEmRNAs and co-expressed DElncRNAs were 

both ≥ 0.7 (Figure 10), indicating that the critical genes 

that were screened in this study are good diagnostic 

value for AML.  

 

Retrospective research about the relationship 

between the expression of ITGAM and AML 

patient's characteristics  

 

To understand the correlation between the expression 

level of ITGAM and the clinical characteristics of AML 

patients, we also investigated the clinical data of 179 

AML patients and analyzing the impact of ITGAM 
expression on patient's features through a retrospective 

study. We have reported the general information of 

AML patients with differentially expressed ITGAM in 

Table 2. The study results show that the positive 

 

 
 

Figure 5. The module driver genes identified in the PPI network. (A) The PPI network consists of 45 nodes and 66 edges, and 75 of 
the Blue module's co-expression of genes constructs a PPI network; (B) Clusters of driver genes in the Blue module, and the squares marked 
in yellow to red indicate the top 10 module driver genes in sub-function cluster 1, and the blue squares represented the other related genes 
in cluster 1. Abbreviation: PPI: protein-protein interaction. 

http://gepia2.cancer-pku.cn/
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Table 1. The cluster calculated by MCODE score in PPI network. 

MCODE_Cluster MCODE_Score Gene Name 

Cluster 1 6 NCF2 

Cluster 1 6 HK3 

Cluster 1 5.785714 S100A9 

Cluster 1 5.785714 S100A8 

Cluster 1 5.785714 CYBB 

Cluster 1 5.785714 ITGAM 

Cluster 1 5.785714 FCER1G 

Cluster 1 5.785714 FPR1 

Cluster 1 5 FCN1 

Cluster 1 5 VNN2 

Cluster 2 4 HCAR3 

Cluster 2 4 HCAR2 

Cluster 2 4 C5AR1 

Cluster 2 4 P2RY13 

 

expression of ITGAM is substantially related to AML 

classification (P < 0.001) and a higher count of white 

blood cells (P < 0.01). It is noteworthy that the 

complete response (CR) rate of AML patients, 

received primary chemotherapy with negative 

expression of ITGAM was significantly higher than the 

positive expression of ITGAM (P < 0.05). Still, there 

was no remarkable difference in the no remission (NR) 

rate or the partial remission (PR) between the two 

groups. 

Pathway analysis based on grouping ITGAM as high 

and low expression in TCGA-LAML 

 

Based on the substantial relationship between positive 

ITGAM expression and AML classification and clinical 

features, we further analyzed the pathway enrichment in 

the high versus low ITGAM expression group using 

TCGA-LAML expression profile data. The results show 

that highly expressed ITGAM is mainly enriched in 

cytokine-cytokine receptor interactions, cell adhesion 

 

 
 

Figure 6. The core DEmRNAs identified in the PPI network. (A) The darker the color (red) of the genes, the higher degree of 

contribution in the PPI network; (B) The darker color (red) of the DEmRNA represents the gene with a higher degree. Abbreviations: 
DEmRNAs, differentially expressed lncRNAs. PPI: protein-protein interaction. 
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molecules (CAMs), lysosomes, and hematopoietic cell 

lineages, while a large number of highly expressed 

ITGAM group genes are involved in immune 

infiltration and inflammation-related signaling 

pathways, such as Intestinal immune network for IgA 

production, antigen processing and presentation, Fc 

gamma R-mediated phagocytosis, Toll-like receptor 

signaling pathway, NOD-like receptor signaling 

pathway, Natural killer cell-mediated cytotoxicity, 

MAPK signaling pathway, Fc epsilon RI signaling 

pathway, and TGF-beta signaling pathway, etc. 

(Figure 11). 

 

Association of prognostic genes expression levels 

with immune score and stroma score in TCGA-

LAML cohort 

 

Since the highly expressed ITGAM, PPBP, and 

LncRNA ITGB2-AS1 are highly expressed in our 

internal cohort, we investigated the association of these 

three prognostic genes expression levels with immune 

score and stroma score. Interestingly, we found that the 

expression level (log2 transformation) of LncRNA 

ITGB2-AS1 was strongly correlated with the immune 

score (Spearman's correlation test, R = 0.81, P < 0.001) 

and moderately correlated with stroma score 

(Spearman's correlation test, R = 0.49, P < 0.001) 

(Figure 12A and 12B). Besides, the expression level 

(log2 transformation) of ITGAM was also strongly 

correlated with the immune score (Spearman's 

correlation test, R = 0.82, P < 0.001) and moderately  

correlated with the stroma score (Spearman's correlation 

test, R = 0.64, P < 0.001) (Figure 12C and 12D). 

However, we did not find significant correlations 

between the expression level of PPBP and immune 

scores and stromal scores in the TCGA-LAML cohort 

(R < 0.30, P < 0.01). This result indicated that the 

expression levels of ITGB2-AS1 and ITGAM are 

associated with the modulation of immune and stromal 

activity in LAML. 

 

Association of ITGAM and LncRNA ITGB2-AS1 

expression levels with immune infiltrations in the 

TCGA-LAML cohort  

 

Since ITGAM and LncRNA ITGB2-AS1 expression 

levels are correlated with immune and stromal scores 

in the TCGA-LAML cohort, we investigated the 

correlations of ITGAM and LncRNA ITGB2-AS1 with 

the various immune signatures. We revealed 

significant positive correlations of the ITGAM 

expression levels with the enrichment levels (ssGSEA 

scores) of immune inhibitory cells, including Tregs, 

Th17, MDSC, macrophages, TAM, and M2 

macrophages (Spearman's correlation test, P < 0.001) 

(Figure 13A) but not correlated with other immune 

cells including B cell, CD8+ T cells, CD4+ regulatory 

T cells, NK cells, and CAFs. In addition, LncRNA 

ITGB2-AS1 expression levels are correlated with the 

enrichment levels (ssGSEA scores) of CD4 regulatory 

T cells, MDSC, macrophages, TAM, and M2 

macrophages (Figure 13B).  

 

 

 
Figure 7. Identification of DElncRNAs and the co-relationship of core DEmRNAs and DElncRNAs. (A) In the volcano plot of the 

DElncRNAs, red dots are up-regulated lncRNAs, blue is down-regulated, and grey is no different; (B) The expression relevance of DEmRNAs 
and DElncRNAs. The darker the color (red) of the circle, the stronger the correlation. Abbreviations: DEmRNAs: differentially expressed 
mRNAs; DElncRNAs: differentially expressed lncRNAs. 
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Figure 8. Prognostic analysis results of essential mRNAs and co-expressed DElncRNAs. (A) The result of univariate Cox 

regression analysis showed that the key genes such as S100A8 (HR:1.119, 95% CI:1.01–1.16), S100A9 (HR:1.08, 95% CI:1.00–1.16), NCF2 
(HR:1.19, 95% CI:1.05–1.35), ITGAM (HR:1.19, 95% CI:1.05–1.36), HK3 (HR:1.09, 95% CI:1.01–1.08), VNN2 (HR:1.12, 95% CI:1.01–1.24), 
PPBP (HR:1.10, 95% CI:1.02–1.19), and ITGB2 (HR:1.33, 95% CI:1.14–1.56) both have significant impact on the prognosis of AML patients 
(P < 0.05). (B) The development of the research showed that the expression of DElnRNAs as ITGB2-AS1 (HR:1.24, 95% CI:1.10–1.41) has a 
significant impact on the prognosis of AML patients (P < 0.05). (C) The results of K–M survival analysis showed that AML patients with 
high expression of ITGAM, PPBP, and ITGB2-AS1 had a poor prognosis (P < 0.05). (D) The Nomogram was established based on the clinical 
information of TCGA-LAML. The points for 11 factors (gender, cytogenetics risk category, age, leukocyte, hemoglobin, monocyte, platelet, 
FAB classification, and the expression level of ITGAM, PPBP, or ITGB2-AS1) were listed in the Nomogram. The score for each factor in the 
Nomogram was read out by drawing a straight line from the predictor to the point axis, and then the survival rates of 1, 3, and 5 years  
could be estimated by adding the points corresponding to each factor in the bottom scale. Abbreviations: DElncRNAs: differentially 
expressed lncRNAs; HR: hazard ratio; CI: confidence interval. 

 

 

 
 

Figure 9. The differential expression of critical genes in clinical samples between AML and healthy individuals. The result 
of clinical validation showed that ITGB2-AS, ITGAM, and PPBP are significantly higher in the initial diagnosed AML. ***P < 0.001; 
*P < 0.05. 
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Furthermore, we investigated the survival differences 

between high and low infiltrated cellular groups of all 

positively correlated immune signatures. We found 

that the increased infiltration of M2 macrophage 

groups had a more insufficient survival time than the 

lower infiltration group (Figure 13C). In contrast, 

Tregs, Th17, MDSC, macrophages, TAM, and CD4+ 

regulatory T cells are not correlated with the survival 

differences. 

 

Finally, the ratios of pro-/anti-inflammatory cytokines 

are significantly lower in AML with highly expressing 

of ITGAM and lncRNA ITGB2-AS1 (expression levels > 

median) than in those lowly expressing of ITGAM and 

lncRNA ITGB2-AS1 (expression levels < median) 

(P < 0.001) (Figure 13D). 

 

Altogether, these results suggest that higher expression 

of ITGAM and lncRNA ITGB2-AS1 are related to the 

prognosis and immune inhibition in AML. It also could 

explain that ITGB2-AS1 and ITGAM play a specific role 

in immune inhibition in AML. 

 

Identification of candidate drugs targeting hub genes  

 

We screened these two essential genes (ITGAM and 

PPBP) and co-expressed lncRNA (ITGB2-AS1) for 

drug-gene interactions by using DGIdb 4.0 database 

[20]. The prediction results showed that we obtained 

many candidate drugs that potentially target two 

essential genes. Still, most of the interaction types 

between target genes and drugs are uncertain 

(Table 3). Some of the immunosuppressive drugs as 

rovelizumab and clarithromycin had been identified 

as a potential medicine for AML treatment. However, 

as far as we know, the copper target's inhibitory 

effects on PPBP have not been tested for the 

treatment of AML. Our data suggest that these genes 

may be promising targets for developing anticancer 

drugs to treat patients with AML. 
 

DISCUSSION 
 

AML is a group of heterogeneous hematological 

malignancies, and the morphology, immunology, 

cytogenetics, molecular biology, and clinical 

manifestations in AML patients were different. Recent 

studies have confirmed that AML is caused by multiple 

gene mutations involving cell proliferation, 

differentiation, and apoptosis, so abnormal gene 

expression plays a vital role in the occurrence and 

development of AML [21]. However, most of the 

abnormally expressed genes involved in the 

pathogenesis of AML were unclear, and their role in 

risk stratification and prognosis is still not fully 

understood [22]. To understand the biological functions 

of abnormally expressed genes related to adult AML 

patients' prognosis, we have performed a 

comprehensive analysis to identify the essential genes 

such as ITGAM, PPBP, and lncRNA ITGB2-AS1 are 

play an indispensable role associated with the prognosis 

of AML.  

 

 
 

Figure 10. Weights of the key mRNAs and co-expressed DElncRNAs were determined by the AUC values of the ROC curves 
in AML. (A) ROC analysis revealed that the AUC for 18 mRNAs was ≥ 0.7; (B) ROC curve analysis shows that the AUC for 7 co-expressed 
DElncRNAs was also ≥ 0.7. Abbreviations: ROC: receiver operating characteristic; AUC: area under the curve; DElncRNAs: differentially 
expressed lncRNAs. 
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Table 2. The general information distinguished by ITGAM expression and the characteristics of AML patients. 

General information 
ITGAM 

Positive (N = 46) Negative (N = 133) 

Age 46.78 ± 16.99 46.62 ± 15.43 

Gender 
Female (19, 41.30%)  

Male (27, 58.70%) 

Female (72, 54.14%)  

Male (61, 45.86%) 

Race 
Han (31, 67.39%)  

Uyghur (15, 32.61%) 

Han (102, 76.69%)  

Uyghur (31, 23.31%) 

WBC** 62.99 ± 71.05 34.81 ± 59.55 

Hb 81.28 ± 22.88 80.99 ± 22.80 

PLT 58.59 ± 57.76 79.71 ± 153.08 

Diagnosis   

M1 4 (8.70%) 7 (5.26%) 

M2*** 18 (39.13%) 100 (75.19%) 

M4 8 (17.39%)- 10 (7.52%) 

M5** 16 (34.78%) 15 (11.28%) 

M6 – 1 (0.75%) 

Prognostic generate   

WT-1 33 (71.74%) 94 (70.68%) 

ASXL1 13 (28.26%) 25 (18.80%) 

TET-2 11 (23.91%) 22 (16.54%) 

DNMT3A 6 (13.04%) 13 (9.77%) 

CEBPA 4 (8.70%) 12 (9.02%) 

TP53 6 (13.04%) 5 (3.76%) 

NPM1 4 (8.70%) 15 (11.28%) 

FLT3 4 (8.70%) 13 (9.77%) 

IDH1/IDH2 0/3 (6.52%) 3 (2.26%)/2 (1.50%) 

C-kit 3 (6.52%) 10 (7.52%) 

RUNX1 2 (4.35%) 3 (2.26%) 

NRAS 2 (4.35%) 3 (2.26%) 

Regimens   

Un-Treatment 8 (17.39%) 11 (8.15%) 

IA 23 (50.00%) 73 (54.89%) 

DA 9 (19.57%) 38 (28.57%) 

CAG 4 (8.70%) 3 (2.22%) 

HMAs 2 (4.35%) 8 (5.93%) 

Treatment outcomes (N = 38) (N = 122) 

CR* 20 (52.63%) 90 (73.77%) 

PR 4 (10.53%) 5 (4.10%) 

NR 8 (21.05%) 21 (17.21%) 

Death 6 (15.79%) 6 (4.92%) 

***P < 0.001; **P < 0.01; *P < 0.05. Abbreviations: CR: complete remission; PR: partial remission; NR: no response; WBC: white blood 
cells; Hb: hemoglobin; PLT: platelet; IA: idarubicin, cytarabine; DA: daunorubicin, cytarabine; CAG: cytarabine, aclacinomycin, and 
granulocyte colony-stimulating factor; HMAs: hypomethylating agents mainly contain azacytidine or decitabine. 
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In the present study, we performed a WGCNA on the 

DEGs and constructed 8 AML-related functional 

modules, among which the Blue module has the highest 

correlation with AML. GO and KEGG enrichment 

analyses showed that the module genes mainly involved 

neutrophil migration, tumor carbon metabolism, iron 

death, FcγR-mediated phagocytosis, HIF-1 signaling 

pathway, and NF-κB signaling pathway [23–25]. These 

results indicate that many cellular immune and 

inflammatory processes are nearly related to the 

occurrence and development of AML. Currently, the 

WGCNA method has been widely used to analyze 

large-scale datasets [6]. In this study, we used WGCNA 

to construct a free-scale gene co-expression network 

and identify highly simulated modules characterizing 

AML. Investigating the association between AML 

genomic and clinical features, we identified candidate 

biomarkers, which provides a practical scheme to find 

the characteristic biomarkers more efficiently in the 

complex disease pattern of AML. 

Furthermore, based on the PPI network analysis, we 

screened out the top 10 MDGs (S100A9, S100A8, 

NCF2, CYBB, ITGAM, FCER1G, FPR1, FCN1, HK3, 
VNN2) in the Blue module. Also, we identified the 

DEmRNAs in the transcriptome further, and the top 10 

core DEmRNAs as FPR2, PPBP, ITGB2, ITGAM, APP, 
CEACAM8, STOM, CKAP4, ORM2, and FPR1 were 

identified. We found that the ITGAM and FPR1 are the 

two common genes between MDGs and DEmRNAs, 

and the 7 co-expressed DElncRNAs are estimated as 

correlated with the essential genes. It is worth noting 

that the prognosis analysis results showed that AML 

patients with high expression of ITGAM, PPBP, and 

lncRNA ITGB2-AS1 have a poor prognosis. Simul-

taneously, the Nomogram also indicates that the 

expression of these three essential genes could predict 

the 1, 3, and 5 years overall survival of AML. In 

addition, we verified these three genes' expression 

levels in an independent cohort of our clinical samples. 

We also get the results that the expression levels of 

 

 
 

Figure 11. The pathway enrichment in the high versus low ITGAM expression group is based on the TCGA-LAML expression 
profiles. The significant enriched KEGG pathways were confirmed as an enrichment when FDR < 0.05. 
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these three genes in AML are significantly up-regulated. 

ROC analysis has shown that these three genes have an 

excellent diagnostic value for AML.  

 

ITGAM, also known as integrin αM, CD11 antigen-

like family member B (CD11B), is responsible for 

encoding the integrin αM chain involved in monocytes' 

various adhesion interactions, macrophages, and 

granulocytes and mediates complement the ingestion 

process of coated particles [26, 27]. It has been found 

that the expression of ITGAM in AML is associated 

with an unfavorable prognosis [28]. Many studies 

have reported that ITGAM could be a cell surface 

receptor selectively expressed in leukocytes, and 

positive expression of ITGAM could predict a poor 

prognosis for AML patients [29]. It also plays 

multiple functions in the activation, chemotaxis, and 

cytotoxicity of the tumor microenvironment leukemia 

cells [19]. Current studies have found that ITGAM 

is a major non-human leukocyte antigen related to 

the pathogenesis of autoimmune diseases such as 

systemic lupus erythematosus (SLE) IgA 

nephropathy [27, 30, 31]. Studies have also reported 

that ITGAM is related to AML gene methylation and 

can be used as a differentiation marker for myeloid 

monocytic cell lines [32]. It can participate in bone 

marrow differentiation and involve in the lysine-

specific demethylase 1 (LSD-1) that caused the 

immune escape of leukemia cells [33]. Our study 

further found that the expression of ITGAM was 

correlated with MDSC, Treg, TAM, M2 

Macrophages, Macrophages, and Thr17. This result 

will provide us with a deep understanding of the 

immune inhibition of ITGAM.  

 

 
 

Figure 12. Association of prognostic genes expression levels with the tumor microenvironment (TME). (A) Strong positive 

correlation between ITGAM expression (log2 transformation) and immune score. (B) A moderate correlation between ITGAM expression 
(log2 transformation) and stroma score. (C) Strong positive correlation between LncRNA ITGB2-AS1 expression (log2 transformation) and 
immune score. (D) A moderate correlation between LncRNA ITGB2-AS1 expression (log2 transformation) and stroma score. R, Spearman’s 
correlation coefficient; ***P < 0.001. 
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Moreover, we have obtained another exciting discovery 

during the procession of clinical verification. When 

ITGAM expression is negative in newly-treated AML 

patients, the CR ratio was significantly higher than the 

positive group. Also, the expression of ITGAM could 

positive relative to many immune cells, which 

participate in the process of immune inhibition in AML. 

Furthermore, studies have found that the expression of 

ITGAM impacts AML chemotherapy resistance, and 

higher expression of ITGAM/CD56 combined with 

lower expression of Smac/DIABLO's can be an 

essential predictor of AML chemotherapy resistance 

[34, 35]. Similarly, some studies have found that 

ITGAM has a higher prognostic value in AML patients 

[29]. This study found that increased expression of 

ITGAM predicted poor overall survival in AML patients 

and showed lower initial therapy efficacy. In addition, 

we grouped the TGCA-LAML samples according to the 

high or low expression of ITGAM and performed 

differential gene analysis and pathway enrichment 

analysis further, and the DEGs in the high ITGAM 

expression group were enriched in immune infiltration 

and inflammation-related signaling pathways. This 

further confirms the vital role of ITGAM in AML-

related immune regulation and provides new insights 

into the role of ITGAM in the pathogenesis of AML. 

 

PPBP (platelet photo basic protein) is the gene 

responsible for encoding platelet-derived growth 

factors. It plays a vital role in the effective chemo-

attractant and activation of sex granulocytes [36]. 

Studies have found that PPBP can stimulate various 

cellular processes, including DNA synthesis, mitosis, 

glycolysis, intracellular cAMP accumulation, prost-

aglandin E2 secretion, and hyaluronic acid synthesis 

sulfated glycosaminoglycans [37]. Besides, it has been 

 

 
 

Figure 13. Association of ITGAM and LncRNA ITGB2-AS1 expression level with immune signature in AML. (A) The expression of 

ITGAM exhibit a significant positive correlation with six immune cells (M2 Macrophages, Macrophages, Treg, MDSC, TAM, and Thr17). The 
Spearman's correlation test P values are shown; (B) The expression of LncRNA ITGB2-AS1 exhibit a significant positive correlation with five 
immune cells (M2 Macrophages, Macrophages, MDSC, TAM, and CD4 regulatory T cells). The Spearman's correlation test P values are shown; 
(C) High infiltration levels (ssGSEA scores) of M2 macrophages associated with shorter survival time in LAML patients. (D) the ratios of 
pro-/anti-inflammatory cytokines are significantly lower in AML with highly expressing of ITGAM and LncRNA ITGB2-AS1 (expression levels > 
median) than in those lowly expressing of ITGAM and LncRNA ITGB2-AS1 (expression levels < median). The mean expression (log2 
transformed) ratio of the marker genes levels was defined as pro-inflammatory cytokines representing immune-stimulatory signature with 
marker genes as IFN-γ, IL-1, and IL-2. The anti-inflammatory cytokines represent with immune-inhibitory signature with marker genes as 
TGFB1, IL-10, IL-4, and IL-11. Abbreviations: Treg: The regulatory T cells, TAM: Tumour-associated macrophages, MDSC: Myeloid-derived 
suppressor cells, TGFB: transforming growth factor–β1. ***P < 0.001. 
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Table 3. Candidate drugs targeting essential genes. 

Target gene Drug Interaction types Sources PMIDs 

ITGAM DIMETHYL SULFOXIDE N/A NCI 15839205 

ITGAM THEOPHYLLINE N/A NCI 9762784 

ITGAM LIAROZOLE N/A NCI 9603657 

ITGAM FENTANYL N/A NCI 15098168 

ITGAM PHENYLEPHRINE N/A NCI 10973693 

ITGAM MORPHINE N/A NCI 15098168 

ITGAM ATORVASTATIN N/A NCI 18333374 

ITGAM ROVELIZUMAB Antagonist ChemblInteractions 

ITGAM CLARITHROMYCIN N/A NCI 12167449 

ITGAM HYDROCORTISONE N/A NCI 18028766 

PPBP COPPER N/A DrugBank 23896426 

Note: The analysis results were obtained from the cancer-relevant drug-gene interactions database. Abbreviation: NCI: 
national cancer institute. 
 

confirmed that many diseases, such as essential 

thrombocythemia are closely related to the abnormal 

expression of PPBP. The corresponding signaling 

pathways include chemokines, and NF-κB pathways 

have been reported to be related to leukemia 

occurrence and development [38, 39]. In an mRNA 

analysis study of the expression profile difference 

between AML and healthy controls, the results showed 

that the expression of PPBP in AML patients was 

significantly higher than in healthy controls [40]. 

Another study found that PPBP is highly expressed in 

AML patients and negatively correlates with NPM1 

mutations, affecting patients' OS [38]. Studies have 

also shown that after the secreted protein IGFBP7 was 

used to stimulate the primary CD45 cells of AML 

patients for 48 hours, the DNA sequencing results 

showed that PPBP was significantly high expression 

(log2FC > 2). However, it is worth considering 

whether these genes' abnormal expression directly 

affects leukemia stem cells' proliferation and 

differentiation. The sensitivity of chemotherapy 

treatment also needs further research to confirm [41]. 

Besides, a study found that the PPBP was highly 

expressed when the super-enhancer identified the 

megakaryocytes' specific epigenetic state. Still, its 

particular regulation. The functional mechanism 

remains to be further studied [42]. It should be noted 

that, on the contrary, current studies have also found 

that the expression of PPBP in different types of 

leukemia may also be significantly different, and PPBP 

may be lower-expressed in AML-M4 [43]. Therefore, 

the above studies only partially reveal the critical role 

of PPBP in the occurrence and development of AML. 

However, these vital genes' specific expression types 

still need to be verified in more extensive clinical 

studies. Their particular molecular regulation 

mechanisms are also worth further in-depth analysis. 

During the identification and screening of co-expressed 

lncRNAs, we found that ITGB2-AS1 (ITGB2 antisense 

RNA 1) has a significant expression correlation with the 

expression of critical genes. Current studies have found 

that ITGB2-AS1 is closely related to the occurrence and 

development of various tumors, including the abnormal 

expression of ITGB2-AS1 is significantly associated 

with astrocytoma [44]. ITGB2-AS1 is up-regulated in 

osteosarcoma tissue and associated with the poor 

prognosis of osteosarcoma patients. The molecular 

mechanism studies have shown that ITGB2-AS1 plays a 

vital role in osteosarcoma development and progression 

through Wnt/β-catenin signaling [45]. Studies have also 

found that ITGB2-AS1 can increase the expression of 

ITGB2 and activate integrin-related FAK signaling, 

thereby promoting breast cancer migration and invasion 

[46, 47]. Furthermore, a study has found that ITGB2-

AS1 is generally overexpressed in pancreatic ductal 

adenocarcinoma cell lines, and inhibiting the expression 

of ITGB2-AS1 can inhibit cell proliferation, invasion, 

and migration process [48]. Similarly, studies based on 

bioinformatics analysis show that increased expression 

of ITGB2-AS1 is also related to patients' poor prognosis 

with ovarian cancer [49]. 

 

In recent years, with the rapid development of CTLA-4, 

PD-1, and other immune checkpoint therapies used in 

AML, such as immune cells, extracellular matrix 

molecules, and stromal cells as critical cells in TME are 

getting more and more attention [50]. In our current 

study, to further study the molecular biological 

characteristics of TME in AML, we used the 

ESTIMATE algorithm [18] to study the immune cells 

closely related to the expression of ITGAM, PPBP, and 

lncRNA ITGB2-AS1 in the TCGA-LAML dataset. Also, 

we calculated the immune score, stromal score, and 

ESTIMATE score for each AML sample extracted from 
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the TCGA database by applying the ESTIMATE 

algorithm. The results show that the immune scores and 

stromal are statistically higher and are associated with 

the expression of ITGAM and lncRNA ITGB2-AS1. 

Besides, we found that the expression of ITGAM and 

lncRNA ITGB2-AS1 are significantly positively 

correlated to immune inhibitory cells, including CD4+ 

regulatory T cells, M2 Macrophages, Macrophages, 

Treg, MDSC, TAM, and Thr17. Interestingly, we also 

found that the increased infiltration of M2 macrophage 

groups had a more insufficient survival time than the 

lower infiltration group. In contrast, Tregs, Th17, 

MDSC, macrophages, TAM, and CD4+ regulatory T 

cells are not correlated with the survival differences. 

These findings strongly suggest that ITGAM and 

lncRNA ITGB2-AS1 play a specific role in prognosis 

and immune inhibition in LAML. Furthermore, we 

found that the ratios of pro-/anti-inflammatory 

cytokines are significantly lower in AML with highly 

expressing ITGAM and lncRNA ITGB2-AS1 than in 

those lowly expressing ITGAM and lncRNA ITGB2-

AS1. However, there are separate reports on the critical 

role of ITGAM in the pathogenesis of AML currently 

[51, 52]. Still, as we know, the research on lncRNA 

ITGB2-AS1 mediated immune microenvironment in 

AML and its influence on the expression of pro/anti-

inflammatory factors in AML is still unreported. These 

results indicated that ITGAM and lncRNA ITGB2-AS1 

could be an essential oncogene in AML, and it is likely 

involved in the pathogenesis of AML through 

involvement in the immunosuppressive TME. 

 

Targeted therapy is a cancer treatment that uses drugs to 

target specific genes and proteins involved in cancer 

cells' growth and survival [53]. Looking for targeted 

drugs with anti-leukemia effect is the crucial way to 

treat AML [54]. This research has predicted the 

candidate drugs mainly targeting the critical genes in 

the DGIdb database. The results show that some of the 

immunosuppressive drugs as Rovelizumab and 

Clarithromycin may target the ITGAM gene [55, 56]. 

However, the pharmacological mechanism of these 

drugs on genes and the specific regulation mode are still 

unclear. It needs further research to explore the potential 

application value of these drugs. Similarly, as 

oncogenes discovered in AML, these genes' functions 

and mechanisms will gradually be revealed, providing 

new perspectives on developing and applying drugs.  

 

Finally, this research result is still worthy of further 

study, and it also provides a scientific hypothesis for 

us. Whether the patient's positive expression with 

ITGAM and lncRNA ITGB2-AS1 is the treatment 
target and whether the choice of initial treatment 

drugs is different due to ITGAM and lncRNA ITGB2-

AS1 primary expression, and these research findings 

and speculations will also be what we will verify in 

the next step. 

 

CONCLUSIONS 
 

In summary, this study proves that ITGAM, PPBP, and 

ITGB2-AS1 play an essential role in adult AML. 

ITGAM may participate in the pathogenesis of AML 

through AML related gene methylation and increase the 

immune escape of leukemia cells. PPBP may affect the 

occurrence and development of AML and the drug 

resistance of AML cells by participating in chemokine 

and NF-κB signaling pathways. Besides, lncRNA 

ITGB2-AS1 can also be used as a potentially vital 

biomarker to predict the survival and risk stratification 

of adult AML patients. However, many prognostic-

related AML-related genes, including FLT3, IDH1/2, 

etc., were excluded from the analysis. Therefore, the 

biological functions of these critical genes and lncRNAs 

need to identify and verify further. It is also necessary 

to study the physical characteristics of ITGAM, PPBP, 
and ITGB2-AS1 and find their clinical application value 

in a larger cohort of AML patients.  
 

MATERIALS AND METHODS 
 

Acquisition and process the multi-omics data from 

different databases 

 

The transcriptome profiling of GSE114868 contributed by 

Cheng et al. [57] was download from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GS

E114868). GSE114868 was a gene expression profile 

based on the GPL17586 platform (Affymetrix Human 

Transcriptome Array 2.0) containing 194 AML samples 

and 20 normal samples from the National Taiwan 

University Hospital. "Limma" [58] program in R software 

(version 4.0.3) was performed to background correction, 

normalization, and probe annotation. The DEG screening 

criteria were set as FC > 2 and P < 0.05. "Pheatmap" [59] 

and "ggrepel" [60] programs in R software (version 4.0.3) 

were used to draw DEGs volcano plot and heatmap. 

 

Also, we downloaded the gene expression profiles and 

clinical data of 151 AML patients from the UCSC Xena 

[61] database (http://xena.ucsc.edu/) for further 

analysis. GEPIA [9] database was used to verify 

selected genes' effect on TCGA-LAML patients' OS. 

The TCGA-LAML lncRNA data was downloaded 

from The Cancer Genome Atlas (TCGA) database 

(https://portal.gdc.cancer.gov/). Furthermore, we 

validated the expression level of selected genes in an 

independent cohort based on our 20 clinical samples. 

We also investigated the relationship between patients' 

clinical characters and the expression level of a crucial 

gene in retrospective research based on 179 cases. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114868
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114868
http://xena.ucsc.edu/
https://portal.gdc.cancer.gov/
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Finally, we predicted the candidate drugs that target hub 

genes in the DGIdb 4.0 database (https://dgidb.org/). 

 

Construction of co-expression gene network 

 

After we obtained the DEGs in the GSE114868 

transcriptome data, R software (version 4.0.3) 

"WGCNA" program [62] was further used to perform a 

weighted gene co-expression network analysis 

(WGCNA). We adopted a soft threshold β to ensure the 

scale-free network's stability during the co-expression 

gene network construction. In the scale-free co-

expression network, genes with high correlation were 

clustered in the same module. The hierarchical 

clustering of the weighted coefficient adjacency matrix 

was used to identify the functional modules. The 

topological overlap matrix (TOM) has been calculated 

further. 

 

The PPI network analysis and identification of 

crucial module driver genes 

 

After performing WGCNA on the transcriptome data, 

we established a total of 8 AML related dysfunctional 

modules. The R software (version 4.0.3) 

"ClusterProfiler" program [63] was used to annotate 

the GO function of DEGs in the Blue module. At the 

same time, we used Cytoscape software (version 

3.8.0) "ClueGO" program [64] to perform KEGG 

pathway enrichment analysis in Blue module genes. 

Besides, we also used the STRING database [65] to 

analyze the PPI in Blue module genes; the interaction 

network was constructed by interaction relationship 

score > 0.9. Finally, we used Cytoscape software 

(version 3.8.0) "MCODE" program [66] to screen for 

the MDGs, and the top 10 module genes with the 

highest scores were defined as MDGs. The PPI 

network and MDRs were both visualized in 

Cytoscape software (version 3.8.0). 

 

Screening of core differentially expressed mRNAs in 

whole transcriptome and identification of co-

expressed differentially expressed lncRNAs 

 

To further verify the DEmRNAs and co-expressed 

lncRNAs in the transcriptome. We firstly screened the 

DElncRNAs and using R software (version 4.0.3) 

"pheatmap" [59] programs to draw the heatmap of 

DElncRNAs. Secondly, we used more stringent 

screening criteria (|logFC ≥ 2|, P < 0.05) to identify 

DEmRNAs, and perform PPI analysis in the STRING 

[65] database (score > 0.9). Then, we used Cytoscape 

software (version 3.8.0) "cytoHubba" [67] program 
screened the core DEmRNAs, and the top 10 

DEmRNAs with the highest contribution (Degree) were 

defined as the core DEmRNAs in the whole 

transcriptome. The Cytoscape (version 3.8.0) displays 

the PPI network and the regulatory network of core 

DEmRNAs across the entire transcriptome. Finally, the 

Person correlation coefficient (PCC) [68] was used to 

analyze the correlation between core DEmRNAs and 

DElncRNAs. The DElncRNAs-mRNAs pair with a 

strong correlation (PCC > 0.8, P < 0.05) were selected 

for the further two-way clustering, the R software 

(version 4.0.3) "corrplot" [69] program performed to 

draws a heatmap of the expression correlation between 

the core DEmRNAs and DElncRNAs. 

 

Prognostic analysis of critical genes in TCGA-

LAML 

 

To further verify the prognostic value of both the 

MDGs, core DEmRNAs, and co-expressed DElncRNAs 

in AML, we used the GEPIA database to perform 

clinical verification of TCGA-LAML patients' overall 

survival (OS) for these critical genes. Moreover, by 

using the downloaded clinical data of TCGA-LAML 

from the UCSC Xena [61] database and the "survival" 

[70] and "nomogramEx" [71] programs in R software 

(version 4.0.3), we have analyzed the univariate Cox 

risk proportional model and the Nomogram 

respectively. Survival analysis uses the Log-rank test 

for hypothesis testing. A Cox proportional hazard model 

was used to estimate the essential genes' hazard ratio 

and 95% confidence interval. P < 0.05 is considered 

statistically significant. 

 

The ROC curve analysis of the diagnostic value in 

core DEmRNAs and co-expressed DElncRNAs 

 

Only to verify the diagnostic value of core DEmRNAs 

and co-expressed DElncRNAs in AML. ROC curve 

analysis was used for these genes to determine the 

AUC. AUC ≤ 0.50 indicates no, 0.8 ≤ AUC ≤ 1.0 shows 

good diagnostic value. Statistical analysis and 

visualization are based on R software (version 4.0.3) 

"ROCR" [72] program. 

 

qRT-PCR validated the expression of critical genes 

in initial diagnosis patients with AML 

 

To further increase the research results' reliability, we 

verified the expression level of three essential genes 

in bone marrow mononuclear cells of newly 

diagnosed AML patients (WHO-AML criteria 

confirmed the diagnosis [73], cases with AML-M3 

were excluded) by qPCR. The bone marrow samples 

were collected in heparinized tubes before treatment 

and shipped to the laboratory within 24 to 36 hours. 
The leukemic cells were isolated by density gradient 

centrifugation using 1.077 g/mL Ficoll-Isopaque 

(Pharmacia). The proportion of leukemic cells was 

https://dgidb.org/
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Table 4. The primers for qRT-PCR. 

Target Sequence (5′–3′) 

ITGB2-AS (human)-RT-F AAGGCAGGTGAGTGTAGGAAGGAG 

ITGB2-AS (human)-RT-R GGAAGGCAGAGGAGGGAGGAAC 

ITGAM (human)-RT-F CTGTTTACCTGTTTCACGGAAC 

ITGAM (human)-RT-R GATTGCCTTGACTCTCAGTACT 

PPBP (human)-RT-F AGACAGTGACTTGTATGCTGAA 

PPBP (human)-RT-R TTTCTTGATTCTGGGAGCATCT 

GAPDH (human)-RT-F AGAAGGCTGGGGCTCATTTG 

GAPDH (human)-RT-R AGGGGCCATCCACAGTCTTC 

 

estimated using May-Grünwald- Giemsa-stained 

cytocentrifuge preparations and light microscopy. The 

cell samples selected for analysis contained at least 

90% blasts after separation. Pellets of 2 to 10 million 

cells were stored in TRIzol (Invitrogen, Carlsbad, CA, 

USA) and immediately frozen at –80°C. Peripheral 

blood mononuclear cells from 15 anonymized healthy 

volunteers were included as control samples. 

 

cDNA was generated using the Reverse Transcription 

Kit (Foregene, Chengdu, China). The expression 

levels of ITGAM, PPBP, and ITGB2-AS1 were 

quantified using SYBR Green Master Mix (SYBR 

GREEN, Beijing, China), and the housekeeping gene 

GAPDH was used as an internal control. The 

following primers used in Table 4. qRT-PCR 

performed on ViiATM 7 System software (Thermo 

Fisher Scientific, ABI7500, USA). The results were 

normalized to the expression of GAPDH and 

presented as the fold change (2−ΔΔCT). 

 

Evaluation of the impact of critical genes on patient's 

clinical characteristics through a retrospective study 

 

Also, to further study the effect of ITGAM on the 

patient's clinical characteristics with AML, we have 

retrospectively investigated 179 cases of newly 

diagnosed with AML admitted to the First Affiliated 

Hospital of Xinjiang Medical University from March 

2019 to September 2020. The patients included in 

this study all received Immunophenotyping tests 

according to WHO diagnostic criteria. The test 

process followed the manufacturer's indication as 

these steps: we obtained 1–2 ml bone marrow from 

patients with initial diagnosed AML and collecting 

in an anticoagulated tube (1–10 × 105 cells/ml). 

Mixed the bone marrow (50μL) with fluorescein 

(FITC, PE, PerCP, and APC; BD Bioscience, USA) 

labeled antibodies (5–20 μL). Incubate for 15 

minutes without light at room temperature. Add 1ml 

hemolysin at room temperature for 10 minutes 

without light. Centrifuge at 1500 rpm for 5 minutes, 

then discarded the supernatant. After that, the 

precipitation was washed twice with PBS, and the 

cells were analyzed using a flow cytometer 

(FACSCalibur, BD Bioscience, USA). 

 

Finally, we analyzed the relationship between the 

expression of these essential genes and the clinical 

characteristics and chemotherapy efficacy of AML 

patients. The outcomes of chemotherapy presented as 

CR, PR, NR, and death. The statistical analyses used 

GraphPad Prism 8.0 software (CA, USA) as 

appropriate. Comparing patient characteristics and 

chemotherapy outcomes between ITGAM positive and 

negative groups adopts Student t and Chi-square test. 

The features with P < 0.05 were considered a significant 

difference between the two groups. 

 

Pathway analysis based on grouping ITGAM with 

high and low expression in TCGA-LAML 

 

To explore the pathway enrichment after grouping 

ITGAM with high and low expression, we downloaded 

the expression profile files of AML samples (n = 151) 

from the TCGA database and performed DEGs analysis 

after grouping them with the median ITGAM 

expression. Then the GSEA [74] analysis was used to 

identify the enriched KEGG pathways, and the 

significant pathways were confirmed as an enrichment 

when FDR < 0.05. 

 

Evaluation of the ESTIMATE scores and immune 

signature enrichment levels  

 

ESTIMATE is an algorithmic tool based on the R 

package for predicting tumor purity, which uses the 

gene expression profiles of 141 immune genes and 141 

stromal genes to generate ESTIMATE scores, immune 

scores, and stromal scores [18]. The presence of 

infiltrated immune cells and stromal cells in tumor 

tissues were calculated using related gene expression 

matrix data, represented by immune and stromal scores. 
 

We also identified the immune signature's enrichment 

level in the TCGA-LAML sample as the single-sample 
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gene-set enrichment analysis (ssGSEA) score [75]. The 

gene set contains the collection of all marker genes of 

an immune signature. We included 11 immune 

signatures: B cell, CD8+ T cells, CD4+ regulatory T 

cells, NK cells, Tregs, MDSC, TAM, macrophages, M2 

macrophages, CAFs, and Th17. The threshold is the 

absolute value of R is not less than 0.30 and P < 0.01. 

The marker genes set of individual immune signatures 

displayed in Supplementary Table 1. 

 

Furthermore, we used the Wilcoxon test to compare the 

ratio of pro-inflammatory cytokines and anti-

inflammatory cytokines between the TCGA-LAML 

with high expression levels of the ITGAM and lncRNA 

ITGB2-AS1 (expression levels > median) and the 

TCGA-LAML with low expression levels of the 

ITGAM and lncRNA ITGB2-AS1 (expression levels < 

median). Besides, the ratio of mean expression (log2 

transformed) of the marker genes levels defined as the 

ratio of pro-inflammatory cytokines (IFN-γ, IL-1, IL-2) 

and anti-inflammatory cytokines (TGFB1, IL-10, IL-4, 

IL-11) in AML [76].  

 

In addition, to investigate the survival differences 

between high and low infiltrated cellular groups of all 

positively correlated immune signatures, the immune 

cells infiltrate data, and the TCGA-LAML survival data 

(n = 151) were used in the K-M survival analysis, 

"survival" programs [70] in R software (version 4.0.3) 

were used to analyze and visualize the results. 

 

Prediction of candidate drugs target on essential 

genes 

 

We identified the drugs that target the hub genes using 

DGIdb 4.0 [20]. DGIdb collects drug-gene interaction 

data from 30 disparate sources, including ChEMBL, 

DrugBank, Ensembl, NCBI Entrez, PharmGKB, 

PubChem, Clinical Trial Databases, and literature in 

NCBI PubMed. The drug-gene interactions supported 

by at least one database or PubMed reference were 

identified. From the identified drug-gene interactions, 

we selected the drugs that have been shown in the 

DGIdb database. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. The marker genes set of individual immune signatures. 
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