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INTRODUCTION 
 

It has been suggested that the process of aging, and the 

concomitant manifestation of aging-related disease, is 

subject to both genetic and non-genetic factors 

impacting the regulatory networks (and subsequent 

behaviors) of aging cells [1, 2]. Nongenetic regulation 

of aging refers to epigenetics; chemical changes to the 

genome (e.g., at the chromatin level) that impact 

transcriptional programs [1], and which have been 
shown to accumulate with age [3–5]. The epigenetic 

state of chromatin can be broadly classified into 

activating or repressing modifications [6], referring, in 

part, to the increased/decreased accessibility of DNA to 

gene-regulatory machinery (e.g., transcription factors), 

and is established, maintained, and reset to switch 

between states [6]. Ample evidence suggests a causal 

relationship between changes in epigenetic state with 

age and hallmarks of aging in cells [3, 5]. Much recent 

work has focused on elucidating this relationship and 

how, ultimately, this contributes to age-related tissue 

decline and adult diseases [7]. 

 

As aging can also be considered a continuation of 

development [8], the epigenetic changes that are retained 

from early-life development may have important 
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consequences for the adult epigenome – establishing the 

context within which epigenetic aging occurs [9]. A 

‘fetal programming’ model has been suggested whereby 

early epigenetic plasticity in response to environmental 

and nutritional stimuli, while being adaptive and 

beneficial to fetal and early post-natal growth, has 

deleterious consequences later in life by contributing to 

adult disease risk [9–12]. This serves as one possible 

mechanism for the theorized consequences of selection 

favoring early-life development at the cost of late-life 

function [9, 13, 14]. Evidence supporting this model has 

been largely limited to DNA methylation [9, 15–17], 

though replication of important loci findings has been 

difficult [18]. 

 

Epigenetic marks established during development can 

persist into adulthood [9], but they do so in the context 

of shifts in epigenetic states (see below) as tissues 

transition into their adult forms and functions. This 

transition process has been characterized with respect to 

DNA methylation, chromatin state, and gene expression 

across multiple tissues [19–21]. Furthermore, these  

fetal to adult epigenetic shifts can be compounded  

by additional modifications through aging-associated 

epigenetic changes. Such epigenetically-regulated 

biological pathways involved in development, such as 

Wnt signalling, subsequently take on a role in tissue 

homeostasis in adults and are implicated in age-related 

tissue decline [22, 23] – suggesting a molecular link 

between processes mediating growth and aging [8, 24]. 

Thus, an important component of understanding the 

contributions of fetal programming as well as epigenetic 

aging to disease biology and risk is characterizing the 

epigenetic changes between fetal and adult tissues and 

how these might interact with subsequent aging-

associated modifications. 

 

While epigenomes vary between cell types [25, 26] and 

changes to epigenetic state with age may be expected to 

manifest differently, similar aging epigenetic have been 

repeatedly observed across tissues epigenetic shifts have 

been repeatedly observed across tissues [1, 5, 20, 27, 28]. 

Similarly, while age-related expression changes do 

exhibit tissue-specificity, there is evidence of potential 

synchronized changes across different sets of tissues [29], 

particularly for certain sets of genes and pathways [29, 

30], and these changes may integrate at multiple different 

epigenetic levels [31]. Together, these findings suggest 

that a central trajectory for epigenetic state that reflects 

innate aging processes may exist [20], upon which 

extrinsic and cell-type effects are layered. Similarly, 

studies between fetal and adult tissues have found that, 

while epigenetic change is observed within individual 
tissues, there are also common trends of development 

(e.g., chromatin restriction, particularly at loci involved 

in early development) [21, 32, 33]. 

Importantly, the epigenetic state of genetic variants 

(e.g., single nucleotide polymorphisms) influences 

their regulatory effects, and subsequent association 

with heritable disease risk [34]. Thus, general 

epigenetic trends across early development and later 

aging may influence the phenotypic effects of 

regulatory mutations, albeit the extent to which this 

occurs is unknown. These phenotypes, if impacting an 

individual’s fitness, may be acted upon by natural 

selection. Evolutionary theories have been proposed 

which suggest that mutations contributing to aging 

pathologies are ‘allowed’ to accumulate due to the 

reduced fitness consequences of disease in older, post-

reproductive individuals [35], or that beneficial 

mutations selected for early development become 

deleterious with age [36–38]. Studying the added 

dimension of epigenetic context may provide a fresh 

perspective on theories of aging and selection. For 

example, deleterious mutations that change epigenetic 

context later in life may have different regulatory 

effects, and thus different fitness consequences, which 

alter the selective pressures acting on them. 

 

In the present study, we seek to characterize common 

epigenetic trends between fetal and adult tissues, and 

subsequently examine the potential interaction of these 

developmental changes with later changes associated 

with epigenetic aging in adult tissues. We utilize our 

findings to propose a model for how evolutionary forces 

may have acted at these loci in humans, and how these 

forces in turn influence the distribution of mutations 

conferring heritable disease risk across a number of age-

associated pathologies. 

 

RESULTS 
 

Defining chromatin accessibility change, its genomic 

context, and loci subject to change 

 

To investigate epigenetic changes occurring over the 

course of post-natal development and aging, we focused 

on chromatin accessibility, as it reflects the regulatory 

potential of a genetic locus and can be considered a 

property of the epigenome which integrates a number of 

possible epigenetic phenomena (e.g., regulatory factor 

binding, chromatin remodelling, etc.) [39]. We thus 

consider regions with altered chromatin accessibility as 

being indicative of epigenetic modifications or ‘shifts’ 

in context. As a read-out of accessibility we analyzed 

DNase-I hypersensitivity datasets acquired from 

primary human tissue, and obtained fetal/adult sample 

pairs for eight distinct primary tissues (spleen, lung, 

muscle, stomach, kidney, brain, heart, and skin; see 

Supplementary Table 1) [6, 40]. For each tissue at each 

time-point, called accessible or “open” chromatin 

regions were consolidated across biological replicates, 
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then further aggregated by tissue and stage (see 

Supplementary Methods). 

 

We first identified chromatin regions exhibiting 

recurrent accessibility changes between fetal and adult 

samples across tissue types (see Supplementary 

Methods, Figure 1A, 1B and Supplementary Figures 1, 

2). We define regions as ‘adult-biased’ if they exhibit 

increased differential accessibility in adults compared to 

in fetuses. Conversely, we define regions as ‘fetal-

biased’ if they exhibited decreased differential 

accessibility in adults compared to in fetuses. These 

‘pan-tissue’ altered regions were compared to those 

defined in individual tissue comparisons, showing 

substantial but not complete overlap (Figure 1C) – 

suggesting that our approach captures cross-tissue 

signals of broader developmental changes and not 

tissue-specific effects. We next explored possible 

signals of epigenetic aging occurring in the context of 

fetal to adult changes, by further dividing our adult 

tissue samples into ‘younger’ and ‘older’ age 

categories (Methods, Supplementary Figure 3). We 

then assessed accessibility change between young and 

old occurring within the ‘adult-biased’ and ‘fetal-

biased’ regions defined above (Figure 1D). This 

approach identified regions for which young-old 

differences mirrored fetal-adult differences, as well as 

regions where aging changes appear to counter 

developmental patterns. We observed a tendency for 

shared directionality in gains or losses of accessibility; 

i.e., adult-biased regions tended to also have increased 

accessibility in older adult samples, while regions 

losing accessibility in adult samples (i.e., are fetal-

biased) continued this trend in older samples (chi-sq 

 

 
 

Figure 1. Cross-tissue accessibility. (A) Representative heatmap of Dnase-I accessibility for regions significantly different between 

fetal/adult tissues. Color scale indicates magnitude of chromatin accessibility signal (see Supplementary Methods). Horizontal lines denote 
defined fetal-biased (left) and adult-biased regions. (B) Genomic distribution of regions changing accessibility in fetal and adult comparison. 
Red/blue: density of defined differentially-accessible regions. Solid black line: relative proportion of regions more accessible in adult (top) or 
fetal (bottom) tissues. First five autosomes shown (see Supplementary Figure 2). (C) The proportion of defined altered-accessibility regions 
between adult and fetal samples for indicated tissues which are unique to that tissue, or captured in the pan-tissue set. (D) Overlaps between 
regions defined as differentially-accessible in fetal/adult comparison and those defined in the young/old-age comparison. Directionality in 
accessibility change is significantly shared (see Supplementary Table 1). Related content can be found in Supplementary Information, 
Supplementary Figures 1–6 and Supplementary Tables 1, 2. 
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test, p < 0.05, Supplementary Table 1). In this text, we 

therefore refer to regions with greater accessibility in 

older samples as ‘old-biased’ and regions with lower 

accessibility in older samples as ‘young-biased’. As 

described in the Supplementary Information, we 

considered histone mark and DNA methylation 

changes, key features of developmental [21, 26, 33] 

and aging epigenetic changes [3, 20] as additional 

means to validate the behavior of these region sets 

(see also Supplementary Table 1). 

 

To gain insights into the roles these region sets have in 

transcriptional regulation, we next characterized the 

genomic distribution of our adult-biased and fetal-biased 

region sets using adult tissue epigenetic states [26] 

(Supplementary Methods). We found that our region sets 

preferentially fell within different epigenetic states (e.g., 

enhancers, heterochromatin) depending on the nature of 

their accessibility shift (e.g., adult-biased, old-biased), 

suggesting that these shifts may be associated with 

altered regulatory biology at different loci, and that  

the interaction between fetal and adult shifts as well as 

young and old-age shifts heavily favors developmental  

changes to accessibility (see Supplementary Figures 4, 5, 

Supplementary Information). 

 

As accessible chromatin regions often serve to regulate 

gene expression [39] by acting as cis-regulatory 

sequences, we next sought to identify the potential  

role of our regions in regulatory changes occurring 

during development and aging. We did this by 

considering promoter-level accessibility (see Methods, 

Supplementary Figure 6), promoter-capture (Hi-C) 

interactions [41], and regulatory-domain annotations 

[42] for genes which may be subject to control by these 

regulatory regions. We found a general pattern for 

enrichment of immune-related gene sets with the adult-

biased set, while development-related (e.g., cellular 

proliferation) terms were enriched with fetal-biased 

regions, patterns echoed when considering old-biased 

and young-biased region sets, respectively (see 

Supplementary Information, Supplementary Table 2). 

 

We next incorporated tissue expression datasets looking 

for general gene expression trends between fetal and 

adult tissues (see Methods). We observe similar 

enrichment terms as well as significant overlaps with 

gene sets defined on the regulatory level (see 

Supplementary Information, Supplementary Table 2). 

Similarly, we utilized GTEx (gene tissue expression) 

datasets [43] to look for corresponding shifts in gene 

expression with age, similar to previous work [44] (see 

Methods)(Supplementary Table 2). While we did not 
observe significant overlaps between these aging-

expression gene sets and those defined using aging-

accessibility changes, we did see significant overlaps 

with the fetal/adult expression comparisons, along with 

enriched gene sets with relevance to aging biology (see 

Supplementary Information, Supplementary Table 2). 

 

As development and aging are phenomena subjected to 

the actions of random and directed evolutionary forces 

[13, 45, 46], we next develop expectations for how 

these epigenetically-altered regions may have evolved 

over time. 

 

Sequence evolution of epigenetically-altered regions 

 

Development and aging are simultaneously very ancient 

and variable [45, 47] biological processes and are 

particularly divergent in key species [48]. Thus, it may be 

the case that both development and age-associated 

regions have been shaped by a mix of evolutionary forces 

acting to either maintain or modify genetic sequences 

(e.g., regulatory enhancers). To address this possibility, 

we examined patterns of sequence conservation in our 

epigenetic datasets using phyloP [49], a measure of 

nucleotide conservation and/or acceleration across 

species (Figure 2A). Across primates, we observed that 

fetal-biased regions tended to have greater sequence 

conservation than adult-biased regions, and furthermore 

that both sets differed significantly from those regions 

not defined as developmentally-altered (Supplementary 

Table 3). These patterns were similarly observed when 

comparing age-associated regions (Supplementary Table 

3). These findings of conservation differences between 

sets suggests that the greater regulatory and 

developmental role associated with fetal-biased and 

young-biased regions (e.g., enriched for enhancer 

elements) exerts functional sequence constraint while 

adult-biased and old-biased regions (e.g., enriched for 

repressed segments) are less conserved across species. 

 

Within this broader context of species diversity and 

evolution, humans and chimpanzees display marked and 

obvious differences in development and longevity [45, 

50]. This relatively recent divergence is thought to be 

driven largely by non-coding changes to cis-regulation 

[51]. We therefore next looked for evidence of 

regulatory modifications to biological processes that 

may contribute to these human/chimp differences. To 

do this, we intersected our regions sets with sequences 

demonstrating significant divergence along the human 

lineage (e.g., ‘human accelerated regions’ [52]). We 

found that fetal-biased regions were enriched for  

signals of acceleration while adult-biased regions were 

depleted (Figure 2B). Similar patterns were seen for 

young versus old-biased regions (Figure 2B and 

Supplementary Table 3). We found a number of genes 
involved in development and aging processes with 

putative nearby regulatory elements intersecting 

accelerated regions, two examples of which are shown 
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in Supplementary Figure 7 (see also Supplementary 

Information). 

 

To gauge the evolutionary interaction between sequence 

constraint across species and within-species variation, 

we next assessed modern-day human diversity within 

region sets (Methods). We found that genetic diversity 

in fetal-biased regions was markedly reduced (i.e., 

constrained) compared to genomic backgrounds, as well 

as to intronic and promoter-TSS elements (Figure 2C 

and Supplementary Table 3). Conversely, adult-biased 

regions were enriched for sequence diversity, at the 

level of annotated repeat elements. These patterns were 

accentuated when examining young- and old-biased 

region datasets, and comparing region sets directly 

(Supplementary Table 3, Supplementary Information). 

Importantly, when we considered sequence diversity 

within other ape species, we also observed a decrease in 

fetal-biased, and young-biased sequence diversity 

(relative to adult-biased and old-biased, respectively). 

This latter finding further suggests that fetal-biased 

regions are associated with conserved regulatory 

 

 
 

Figure 2. Sequence evolution of age-altered regions. (A) Distribution of average per-region sequence conservation (phyloP20ways) in 

differentially-accessible regions (see color legend). (B) Overlaps of developmental and age-related region sets and human acceleration 
regions. Overlaps shown relative to set size (per bp of sequence) for background (gray) and target (colored) sets; labels correspond to 
Supplementary Table 3. (C) Intersections of common human variants (per bp of sequence) for target (colored) and randomized (grey) region 
sets; labels correspond to results in Supplementary Table 3. (D) Diagram summarizing results of evolutionary sequence analyses. Accessible 
regions, here diagrammed as an upstream enhancer element (thick blue box), which either gain or lose accessibility over development (left) 
or ageing (right) exhibit different patterns of evolutionary sequence behavior. Created with BioRender.com. See also Supplementary  
Figures 7, 8. 
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function that discourages mutation and/or drift 

(Supplementary Figure 8 and Supplementary Table 3). 

 

Overall, natural selection appears to have acted upon 

regions subject to accessibility shifts in development and 

aging, modifying some loci (i.e., accelerated divergence 

indicative of ancient positive selection) while protecting 

others (i.e., reduced variation indicative of more recent 

negative selection) (Figure 2D). 

 

Importantly, selective forces, both positive and negative, 

manifest phenotypically through the effects of random 

genetic mutations, which act to modify gene regulatory 

networks to varying degrees. We next examine this 

relationship. 

 

Epigenetic shifts in age-associated trait associations 

 

In our above analyses, the observed signals of consistent 

inter- and intra-species conservation in regions most 

associated with early development (i.e., the fetal-biased 

set) follows with the expectation that variants negatively 

impacting early-life would be subject to stronger 

purifying selection [9, 53, 54]. Conversely, variants with 

later-manifesting effects, i.e., those within regions 

increasing in local accessibility with age (i.e., the adult-

biased set), would be subjected to substantially weaker 

selection and may therefore be ‘tolerated’ [55, 56]. To 

test expectations of the possible deleterious effects of 

variants subject to accessibility change over development 

and aging, we utilized GWAS datasets available from the 

UK Biobank [57]. We extracted summary-statistics  

for a collection of 127 complex diseases/pathologies 

falling into aging-related categories [58], including 

metabolic disorders, cancers, cardiovascular disease, and 

musculoskeletal impairment (Supplementary Table 4, 

Methods). We similarly analyzed a set of developmental 

trait GWAS to act as a control for our fetal/adult 

accessibility comparisons, and finally considered 

longevity GWAS data (Supplementary Table 4, see 

Supplementary Information). 

 

It has been suggested that the highly polygenic nature 

of complex traits and diseases reflects cumulative 

regulatory modification to a ‘core’ set of genes which 

functions most proximately in relevant biology [59]. 

Across age-associated diseases, this may reflect 

general aging processes, and regulatory variants 

impacting these would be expected to contribute to 

heritable aging-disease risk broadly. Given this 

rationale, we first considered the behavior of 

individual SNPs nearby accessibility-altered regions 

across diseases, and subsequently these behaviors at 
the gene-locus level (below). We aggregated per-SNP 

associations across diseases as a singular cross-set 

metric of risk association (Supplementary Methods). 

We confirmed that ClinVar variants, variants for 

which possible clinical significance have been 

described [60], tended to be more risk-associated by 

this metric, as we would expect (Supplementary Table 

4). Additionally, across all diseases we individually 

performed enrichment tests for strongly-associated 

variants nearby our region sets, which corroborated  

the cross-disease results described below (Figure 3A, 

see Supplementary Information). 

 

As variants in accessible non-coding regions likely 

have regulatory impacts generally [39], we confirmed 

that variants within or nearby regions not classified  

as strictly developmental nor age-altered tended  

to have greater association than non-accessible 

variants. However, this control set had significantly 

less association than variants nearby sets of  

both developmentally- and age-altered regions (i.e., 

fetal/adult-biased, and young/old-biased regions) 

(Supplementary Table 4). 

 

Considering first developmental change, we found that 

variants in regions gaining nearby accessibility in adults 

(i.e., adult-biased) have greater association with disease 

than those in regions losing nearby accessibility (i.e., 

fetal-biased) (Figure 3B). Unexpectedly, when looking at 

aging accessibility changes, we observed that variants in 

regions gaining nearby accessibility in older-samples 

actually have lower cross-disease associations than those 

in regions becoming more accessible in younger samples 

(Figure 3B and Supplementary Table 4). Furthermore, we 

found that for intersections of development and age-

altered regions that the increased disease association  

with adult-biased regions was abrogated when intersected 

with old-biased regions. The magnitude of region-set 

differences in disease associations was also greater  

in the young/old-biased comparisons (see Figure 3B, 

Supplementary Information). 

 

Taken together, these results would suggest that those 

variants most accessible in younger adults stand to have 

the greatest impact (in terms of association p-value) on 

late-life disease risk – a finding that may have important 

implications for understanding the development of 

disease over adulthood (see Figure 3C, Discussion). 

 

We next considered these disease-association patterns at 

the gene-locus level. Briefly, for a given disease we 

assign the most significant nearby SNP to all genes, and 

subsequently rank genes based on their assigned GWAS 

signal. Gene ranks are then aggregated across diseases, 

looking for genes consistently ranked higher across sets 

(Supplementary Methods). To confirm the behavior of 
this gene-ranking method, we compared the cross-set 

ranking of genes associated with homeostatic processes 

(based on GO annotations) to randomized gene sets, 
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Figure 3. Epigenetic context and heritable disease associations. (A) Adjusted p-values for hypergeometric tests showing 
enrichment/depletion (positive/negative) for GWAS variants nearby regions increasing (blue) or decreasing (red) accessibility across adult 
tissues for a number of age-associated diseases (see Supplementary Table 4). (B) Cross-set disease associations, and additional per-SNP 
metrics, for variants nearby developmental and age-altered region sets along with unaltered DNase sites and variants not nearby accessible 
regions. See Supplementary Table 4 and Methods. (C) Model for the effects of epigenetic context on disease association and sequence 
evolution. (Top): Example enhancer elements more accessible in fetal, adult, and old-adult tissues (left-right) which have been modified by 
mutations. (Left): Deleterious mutations disrupting regulation in development stand to have the biggest impact on fitness, while having a 
moderate effect on tissue homeostasis. (Middle): Mutations disrupting regulation in young-adult tissues have a moderate impact on fitness, 
but a larger effect on tissue homeostasis (particularly over adulthood). (Right): Mutations disrupting regulation in old-adult tissues have weak 
impacts on fitness, and a weak effect on tissue homeostasis (which has already deteriorated with age). (Bottom): Illustrating patterns of 
accessibility, disease association, sequence constraint and variant allele age for these sets of regions changing accessibility over time. 
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finding that these gene loci tend to harbor stronger 

genetic variants across a larger number of diseases than 

expected (compared to randomized sets), but not so for 

genes involved in reproductive organ development (see 

Supplementary Information, Supplementary Table 4). 

 

We applied this method to the sets of development 

and age-associated genes we defined above and asked 

whether they tended to have more or less cross-

disease GWAS signals than expected. Our sets 

defined by accessibility-region contacts supported our 

earlier findings on strong GWAS signals nearby 

development and age-altered regions – namely, loci of 

both adult-biased and young-biased gene sets were 

enriched for strong GWAS signals across diseases, 

while fetal-biased and old-biased gene sets were 

associated with relatively weaker GWAS signals 

(Supplementary Table 4). Sets defined by RNA-seq 

data showed more of a mix of enriched/depleted 

GWAS signals across developmental and age 

comparisons, reflecting the possibility that a mixture 

of genes increasing and decreasing expression over 

time may additively contribute to aging disease 

biology (see Supplementary Information). 

 

Given our results, found at both genome-wide and 

gene-locus set levels, we finally sought to take an 

unbiased approach to identify relevant ‘core’ aging-

related genes solely on the basis of aggregate GWAS 

signals (see Supplementary Methods, Supplementary 

Information). Overall, we had limited success in 

defining a set of genes with clear, pan-tissue biological 

relevance, suggesting that, if such a core does exist, 

that it may be too broad, or the per-locus signals too 

moderate, for our method to robustly detect. However, 

since our results suggest the importance of altered 

epigenetics in modifying GWAS associations, we 

performed a similar gene-prioritization analysis using 

variants occurring nearby altered-accessibility regions 

(Supplementary Methods). This yielded markedly 

different enrichments for terms relating to immune 

processes and gene regulation (see Supplementary 

Information, Supplementary Table 4). One particular 

set of genes, involved in histone deacetylation, has 

repeatedly been linked to aging and epigenetics [61, 

62] and was identified using our set of young-age 

regions (see Figure 4). We explore this set in more 

detail below. 

 

Sequence evolution and disease association 

 

Our previous analyses found that patterns of inter- and 

intra-species sequence conservation depended on 
epigenetic status (i.e., degree of accessibility) of 

regulatory elements. Subsequently, we found that the 

risk association of variants across a number of age-

associated diseases also varied based on accessibility 

change in the vicinity of the variant. Much work has 

been done on understanding the relationship between 

sequence conservation and disease risk [63–66]. For 

example, a transcription factor (TF) binding site may be 

subjected to negative selection to conserve its sequence 

and hence function. Mutations that occur within this site 

would more likely impact cis-regulatory biology, and 

therefore manifest an association with disease. If this 

disease impacts fitness, then over time, such mutations 

will be eliminated, so that genetically ‘older’ mutations 

are less prevalent [65, 67]. Given our interest in the 

evolution of development and aging processes, we 

wanted to investigate the role that epigenetics has on this 

disease-evolution relationship - and whether this holds 

with our data. By comparing the cross-trait associations 

of variants falling within and outside primate-conserved 

sequences (phastCons) [68] (Supplementary Methods), 

we found that variants within conserved sequences  

tend to have greater disease associations, along with 

younger estimated allele age (Supplementary Table 4). 

These patterns also hold true for phastCons sequences 

within age- and developmentally-altered regions 

(Supplementary Table 4), and follow with previously 

observed enrichments for GWAS associations of 

conserved, younger (allele age) variants [65, 67, 69]. 

 

We next considered primate conservation, estimated 

allele age, and cross-set association of variants, looking 

for the effects of nearby accessibility change on these 

metrics (Supplementary Methods). As an additional 

metric for predicted fitness consequences, particularly 

of non-coding variants, we also included per-bp 

LINSIGHT scores [70], which integrates data on 

chromatin accessibility, TF binding motifs, and 

comparative genomics. 

 

First, we found that variants falling near fetal-biased 

regions were more conserved, younger, and had lower 

cross-set association, while variants near adult-biased 

regions behaved oppositely (Figure 3B and 

Supplementary Table 4). We also found that the 

predicted functional consequences associated with fetal-

biased regions were greater than with adult-biased 

regions, despite the lower cross-set association with 

aging-associated diseases (Figure 3C, see Discussion). 

Variants falling near old-biased regions were less 

conserved, had older allele age, and had lower cross-set 

association than their young-biased counterparts 

(Supplementary Table 4). These old-biased regions 

were also associated with the lowest predicted 

functional consequences (in aggregate) of any set, while 

the set of young-biased regions had the second-highest 
average. To compare these behaviors with variants of 

annotated clinical significance we independently 

examined ClinVar variants, which while demonstrating 
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increased cross-set association, tended to also be more 

conserved, younger, and have stronger predicted fitness 

consequences (Supplementary Table 4). 

 

Collectively, our results indicate that variants stratified 

by nearby accessibility change violate the expected 

relationship between sequence conservation and disease 

association (behaviors instead observed for ClinVar 

variants). Namely, those regions exhibiting the highest 

sequence constraint (Figure 3C, left) do not also exhibit 

the strongest aging-disease associations, nor do those 

regions exhibiting the weakest constraint, as might be 

expected in a ‘mutation accumulation’ theory of aging 

[35]. However, when considering predicted functional 

consequences (LINSIGHT), which are not defined 

based on aging demographic data, this pattern is 

reversed (i.e., the most constrained set, fetal-biased 

regions, had the strongest predicted consequences 

despite weaker aging-disease associations). This 

unexpected behavior may have important implications 

for evolutionary models of late-onset complex disease 

genetics. Based on our results, we propose such a model 

suggesting the outsized impact of regulatory sequences 

active in early adulthood on genetic contributions  

to aging-associated disease risk (see Figure 3C, 

Discussion). 

 

 
 

Figure 4. Altered-accessibility regions identify relevant aging biology. (A) (Left) Distribution of cross-disease ranks for all protein-

coding genes, when ranking by local variants independent of accessibility data (see Supplementary Methods). Red lines indicate genes within 
the ‘histone deacetylation’ (HDAC) GO term; top ranked genes (by geometric mean) are indicated. (Right) Similar distribution of cross-disease 
ranks, ranking genes with variants nearby young-biased regions. Red lines indicate top HDAC genes by rank. (B) (Left) Fold-change of normal 
cumulative distribution function (CDF) p-values of variants within HDAC gene loci associated with different region sets, relative to CDF test 
performed using all variants, for cross-disease Z-score metric (see Supplementary Methods). (Right) Similar plot for per-variant LINSIGHT 
scores. See Supplementary Table 4. (C) Variants directly intersecting young-biased regions which interact with the SIRT6 promoter. (Top) 
Visualized promoter-capture data [41] across multiple cell-types. (Bottom) Tracks indicating variants which overlap young-biased regions 
within the SIRT6 gene locus. 
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Our proposed model suggests that focusing on disease 

risk loci containing such putative regulatory sequences 

(i.e., young-biased regions), should implicate sets of 

genes involved in aging biological processes. Our gene-

level GWAS analyses using young-biased regions 

identified genes involved with histone deacetylation as 

being more consistently associated with aging-disease 

GWAS signal, a pattern which was diminished when 

considering gene-level associations in the absence of 

this epigenetic information (Figure 4A), and when using 

other region sets (e.g., old-biased regions) (Figure 4B). 

Histone deacetylation enzymes have known impacts on 

epigenetic aging biology [7, 61, 62] and aging diseases 

[71]. Within our young-biased enriched gene set we 

identified SIRT6 and SIRT7 as having multiple variants 

falling nearby young-biased regions which contacted 

their respective gene promoters (Figure 4C). Both these 

enzymes have been associated with maintaining 

heterochromatin during aging [72–74]; SIRT7 decreases 

expression with age, and antagonizes hMSC epigenetic 

aging [73], while SIRT6 loss manifests an aging-like 

state [75]. It may be possible that decreased 

accessibility of regulatory regions controlling the 

expression of these genes are involved in decreases in 

sirtuin expression and heterochromatin [72]. 

 

DISCUSSION 
 

In this study we sought to describe how changing 

epigenetic context, defined here as changes to 

chromatin accessibility over both development and 

subsequent aging, influences the behavior of 

evolutionary forces and genetic disease risk at the 

sequence level. To address this question, we defined 

genomic regions whose chromatin accessibility 

consistently shift over the course of development and 

aging. Our approach to identify epigenetic shifts relies 

on the observation that chromatin accessibility 

broadly reflects the regulatory capacity at a given 

locus [39], though we acknowledge that more  

subtle epigenetic changes (e.g., post-translational 

modifications, CpG methylation) may not be well 

captured by this accessibility-based definition of 

epigenetic context. 

 

We performed several analyses suggesting that these 

regions reflect developmental and aging signatures from 

previous literature, including genomic features (e.g., 

repeat elements, CpG sites), epigenetic states (e.g., 

euchromatin/heterochromatin) and histone mark data. 

Gene sets associated with developmentally-altered 

regions were enriched for immune system function and 

cellular proliferation terms, echoing an earlier study of 

fetal to adult epigenetic changes [21]. Furthermore, we 

found correspondence between these gene sets and 

genes whose RNA-seq expression generally shifted 

between fetal and adult tissues. Incorporating an 

independent RNA-seq dataset of adult age-stratified 

tissues we did not observe the same level of 

correspondence with age-altered regions – it is possible 

that some aspects of epigenetic aging (e.g., global de-

repression [3, 5, 76]) may account for this disconnect, 

whereby local accessibility changes are less-directly 

linked to local expression changes. Interestingly, 

comparing patterns of expression change in our fetal-

adult and young-old comparisons, we saw similar gene-

set enrichments (i.e., cell-cycling biased towards fetal 

and younger-age samples, immune responses biasing 

towards adult and older-age samples), suggesting that 

the continuation of epigenetic shifts we observed across 

development and aging (Figure 1D) may be mirrored at 

the expression level. 

 

Given that epigenetic state impacts the potential 

regulatory effects of deleterious variants [34], we 

looked to see if local development and/or ageing 

changes to epigenetic context impacts the strength of 

association between variants and aging-associated 

diseases. While it is possible that a number of these 

aging diseases share genetic correlations [77], that these 

variants are associated with multiple age-associated 

diseases is also a key expectation for the functional 

relevance of age-altered regions. In other words, it is the 

change in epigenetic context that modifies the 

regulatory potential of these variants, and this has direct 

impacts on individual associations with multiple 

diseases. 

 

According to the fetal programming model, we would 

expect that regulatory regions most active during early 

development, both dictating developmental processes as 

well as responding to environmental perturbations [9], 

would have an out-sized impact on the manifestation of 

adult-onset diseases. This would be evident in the 

increased associations of nearby variants with heritable 

risk for these diseases. However, we found that such 

fetal-biased regions were not those having the greatest 

impact with regards to aging disease associations, 

despite having greater predicted fitness consequences – 

finding instead that fetal-biased regions are depleted for 

aging disease GWAS signals, and associated more with 

developmental diseases/traits (Supplementary Table 4). 

A recent study of fetal chromatin accessibility at the 

single-cell level similarly found genetic associations 

with developmental traits (e.g., height) using regions 

accessible in different cell-types [78]. We suggest that 

the ‘fetal programming’ of epigenetic status during 

early development, genome-wide, has a more moderate 

impact on aging disease biology than has been 
previously suggested – though we note that certain 

developmental loci (e.g., Wnt genes) can and do play a 

role in aging [8, 24]. 
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According to a model wherein epigenetic aging 

influences the phenotypic effects of regulatory 

mutations, we would expect that mutations with 

increased local accessibility in adult tissues, particularly 

aged adult tissues, would have stronger impacts on 

aging disease biology in these tissues (reflected in 

increased association with heritable disease risk). Here, 

we found that variants gaining nearby accessibility (i.e., 

adult-biased regions) have stronger associations across a 

number of aging-related diseases including several 

kinds of neoplasms, arthritis, and atherosclerosis. This 

finding suggests that the regulatory effects of 

deleterious variants may become ‘uncovered’ as tissues 

mature and follows with proposed links between 

development and ageing processes [8, 20, 24]. 

However, we also found that regions most accessible 

later in life, when these diseases manifest, are actually 

associated with weaker GWAS variants. This young/old 

bias in aging-disease GWAS signal was far stronger 

than the fetal/adult bias (i.e., the young-biased set was 

more strongly enriched than adult-biased, and vice-

versa). Taken together, these results suggest that (1) 

accessibility changes in aging tissues have a greater 

effect on aging tissue diseases, but (2) that variants 

more accessible earlier in adult life play a bigger 

regulatory role in contributing to disease risk than do 

those which gain accessibility later on. Disruptions to 

regulation in younger tissues may act to set tissues 

down a path of increasing dysfunction and decline, 

especially if deleterious variants are able to 

(cumulatively) contribute to dysfunction as they 

gradually lose activity with age. In other words, by the 

time an individual reaches old-age their tissues have had 

sufficient time to accumulate these dysfunctional 

effects, ‘setting the stage’ for disease manifestation. 

Variants more active in old-age, by contrast, have less 

of an impact on disease manifestation, as their 

regulatory effects have had less time to integrate. It may 

be that the time at which disease prevention and/or 

intervention would be most effective is, perhaps non-

intuitively, early in adult life rather than once 

phenotypes manifest. 

 

We cannot rule out the effects of cell-type specific 

epigenetic (accessibility) shifts influencing the 

phenotypic impacts of regulatory sequence 

modifications on aging-associated disease risk. 

Similarly, it has been suggested that a facet of aging is 

‘epigenetic drift’ – the accumulation of epigenomic 

aberrations that contribute to mis-regulation of gene 

regulatory networks, a component of which is tissue-

specific [79, 80]. However, the pan-signals which we do 

observe with respect to evolutionary forces, disease 
associations, and sets of implicated gene loci indicates 

the relevance of our approach in understanding the 

broader components of development and aging-

accessibility changes, which may be complemented 

with future research focusing on those more tissue-

specific components. 

 

Regulation of general aging-related mechanisms, as 

well as increases in heritable disease risk, represent 

phenotypes upon which evolutionary forces may act to 

modify aging and mortality rates. We found that young-

biased regions were enriched for signals of positive 

selection, a number of which implicated relevant aging-

associated genes, and exhibited increased phylogenetic 

and within-human sequence constraint. Given that these 

behaviors are intermediate between those observed with 

regions more accessible in fetal and older-adult tissues, 

we suggest the following model (Figure 3D). 

 

Regulatory sequences most active during development 

are subjected to strong negative selection, both to 

maintain human-derived functional sequences and 

discourage subsequent modifications, as dysregulation 

of development would have the largest fitness 

consequences. Similarly, sequences most active during 

early adulthood are subjected to negative selection to 

maintain proper tissue maintenance and discourage 

disease. However, the strength of this selection is 

reduced, as we expect fitness benefits/costs to diminish 

with age as individuals reproduce less frequently [53–

55]. Thus, despite the fact that mutations within or 

nearby these functional sequences stand to have the 

greatest impact on disease risk (as noted above) they are 

less efficiently purged, and are allowed to accumulate 

over generations [35]. Finally, sequences most active in 

older adults are under relaxed selective pressures and 

allowed to drift – mutations are permitted and retained, 

particularly due to the reduced associations that these 

mutations have with heritable disease risk. Overall, this 

model suggests that considering the changing epigenetic 

context of disease-associated variants may help in 

prioritizing GWAS signals to loci involved in disease 

biology (e.g., as we saw for histone deacetylases) and, 

ultimately, the aging processes driving tissue decline 

and eventual manifestation of aging-associated disease. 

 

MATERIALS AND METHODS 
 

Accessibility datasets 

 

DNase-I hypersensitivity datasets were obtained from 

ENCODE [40] for eight different fetal and adult tissues 

(adrenal gland, brain, heart, lung, muscle, skin, spleen 

and stomach) (see Supplementary Table 1 for 

accessions and metadata). Raw data was processed as 

described in the Supplementary Methods, with called 

open-chromatin regions consolidated across replicates 

and tissues in order to define a final set of reproducible 

regions. This aggregated set of peaks was then used to 
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assess both pan-tissue, as well as per-tissue, 

accessibility changes between fetal and adult datasets 

using the limma package (version 3.46) in R [81, 82]. 

Differentially-accessible regions were defined using a 

Benjamini-Hochberg FDR [83] cutoff of < 0.05. 

 

Adult DNase samples were further stratified in order to 

define age-altered chromatin regions, splitting samples 

used in the above analysis into those individuals 

younger than 50 (‘young-adult’) and those older than 50 

(‘old-adult’), this age representing a roughly equal split 

of sample numbers. Not all tissues used in the initial 

fetal/adult comparison were represented in these age-

stratified sets – thus we restricted the tissue 

comparisons to brain, heart, lung, muscle and stomach 

tissues. A similar computational method as that used in 

defining fetal- and adult-biased regions was applied 

here (see Supplementary Methods). We compared 

accessibility changes between young and old-adult 

samples within those regions exhibiting fetal/adult 

biases, defining young-biased and old-biased regions 

(again, using an FDR cutoff of < 0.05). 

 

Promoter accessibility change 

 

All hg19 Refseq gene TSS were obtained from the 

UCSC Genome Browser [84] and padded 1kb 

up/downstream to define promoter regions. For each 

promoter region, DNase read coverage was compared 

between adult and fetal samples, with resulting data 

processed using a similar differential-accessibility 

method as that used above (see Supplementary 

Methods). Significantly differentially-accessible 

promoters were defined using an FDR cut-off of 0.05. 

As an additional, more stringent analysis, we also 

defined differentially-accessible promoters based on 

intersections with the above defined region sets (see 

Supplementary Methods). 

 

Promoter capture datasets: Promoter-capture data was 

obtained from Jung et al., 2019 [41]; this dataset was 

generated from promoter-capture assays across a 

number of different tissues and cell-types. Given our 

pan-tissue approach, we considered all data (with the 

exception of OV2, as we excluded sex-specific tissues 

from all previous obtained datasets). To generate a set 

of genomic regions which show evidence of contacting 

gene promoters, we filtered interacting regions to those 

which contacted their respective promoters in at least 

two different tissues/cell-types. This moderate filter was 

used to exclude those regions for which interactions 

appear to be exclusive to one dataset, while allowing for 

regions that do not show such exclusivity. 
 

Gene-set enrichment analyses: Gene sets generated in 

our analyses were tested for enrichment in different GO 

Biological Process terms using the ‘enrichGO’ function 

from the clusterProfiler [85] package version 3.16.1, 

with semantically-similar GO terms collapsed and 

significantly-enriched terms defined as adjusted p-value 

< 0.05. 

 

ENCODE RNA-seq datasets: Processed per-gene 

quantification files, as generated by the ENCODE 

pipeline were obtained from the ENCODE web portal 

[40] (see Supplementary Table 2 for file accessions and 

metadata). Given the limited availability of adult tissue 

samples for use in differential-expression analysis, we 

instead defined a less-stringent method to identify broad 

changes in gene expression which demonstrate 

consistency across tissues (see Supplementary 

Methods). 

 

GTEx RNA-seq processing: Processed RNA-seq 

quantification files were obtained from the GTEx web 

portal [43] for the following tissues (matching the above 

young/old-age accessibility comparison): brain (Brain - 

Cerebellum), heart (Heart – Left Ventricle), lung 

(Lung), muscle (Muscle - Skeletal) and stomach 

(Stomach). Similar to the processing performed in 

Benayoun et al [44], we applied quality filters to 

remove lowly-expressed and non-coding genes, and 

subsequently used the same definitions of ‘young-age’ 

and ‘old-age’ (as in the above analyses) to calculate 

differential expression using limma-voom (see 

Supplementary Methods). 

 

Human sequence variation datasets: Variation data from 

the 1000 Genomes Project phase 3 (1KGP) [86] (n = 

2504 individuals) in .vcf.gz format was obtained and 

intersected with our region sets using tabix [87] (version 

1.9) to obtain variants occurring within these altered-

accessibility regions. Common variants were defined 

using a minor allele frequency (MAF) threshold of >= 

0.05. These sets of intersected variants were 

subsequently used to compare sequence variation across 

region sets, as well as comparing region-intersected 

variation to genomic backgrounds and feature sets (see 

Supplementary Methods). 

 

GWAS summary statistics data: To define a set of 

aging-associated diseases for use in our analyses, we 

first used broadly-defined categories as described in 

Chang et al., 2019 [58]. This study described 92 age-

related diseases grouped into broader disease categories 

based on analyses of large-scale demographic datasets. 

We took these classifications and manually extracted 

relevant GWAS phenotypes assessed by the UK 

Biobanks study [57], obtaining pre-processed summary 
statistics for these phenotypes provided by the  

Neale lab [77] (https://nealelab.github.io/UKBB_ldsc/ 

downloads.html). These data were subsequently utilized 

https://nealelab.github.io/UKBB_ldsc/downloads.html
https://nealelab.github.io/UKBB_ldsc/downloads.html
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across several bioinformatic analyses (see Supplementary 

Methods). 

 

Additional computational methods, including 

implementations of statistical tests described in the 

Results, are described in detail in the Supplementary 

Methods document. The datasets supporting the 

findings of this study are publicly-available – accession 

codes and URLs are provided in the Supplementary 

Methods and Tables. Computational code for processing 

these datasets is available upon reasonable request from 

the Lead Contact. 

 

AUTHOR CONTRIBUTIONS 
 

DR: Conceptualization, Data curation, Formal analysis, 

Investigation, Visualization, Methodology, Manuscript 

Writing; TDC: Conceptualization, Supervision, Funding 

acquisition, Investigation, Manuscript Writing, Project 

administration. 

 

ACKNOWLEDGMENTS 
 

We thank Dr. Anne Brunet for meaningful discussions 

relating to concepts of aging, development and 

epigenetics. We thank three anonymous reviewers for 

their excellent insights into our work. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest. 

 

FUNDING 
 

Research reported in this publication was supported by 

The American School of Prehistoric Research, Harvard 

University. 

 

REFERENCES 
 
1. Brunet A, Berger SL. Epigenetics of aging and aging-

related disease. J Gerontol A Biol Sci Med Sci. 2014 
(Suppl 1); 69:S17–20. 

 https://doi.org/10.1093/gerona/glu042 
PMID:24833581 

2. Rodríguez-Rodero S, Fernández-Morera JL, 
Menéndez-Torre E, Calvanese V, Fernández AF, 
Fraga MF. Aging genetics and aging. Aging Dis. 2011; 
2:186–95. 

 PMID:22396873 

3. Booth LN, Brunet A. The Aging Epigenome. Mol Cell. 
2016; 62:728–44. 

 https://doi.org/10.1016/j.molcel.2016.05.013 
PMID:27259204 

4. Criscione SW, Teo YV, Neretti N. The Chromatin 
Landscape of Cellular Senescence. Trends Genet. 2016; 
32:751–61. 

 https://doi.org/10.1016/j.tig.2016.09.005 
PMID:27692431 

5. López-Otín C, Blasco MA, Partridge L, Serrano M, 
Kroemer G. The hallmarks of aging. Cell. 2013; 
153:1194–217. 

 https://doi.org/10.1016/j.cell.2013.05.039 
PMID:23746838 

6. ENCODE Project Consortium. An integrated 
encyclopedia of DNA elements in the human genome. 
Nature. 2012; 489:57–74. 

 https://doi.org/10.1038/nature11247  
PMID:22955616 

7. Zhang W, Qu J, Liu GH, Belmonte JC. The ageing 
epigenome and its rejuvenation. Nat Rev Mol Cell Biol. 
2020; 21:137–50. 

 https://doi.org/10.1038/s41580-019-0204-5 
PMID:32020082 

8. Blagosklonny MV, Hall MN. Growth and aging: a 
common molecular mechanism. Aging (Albany NY). 
2009; 1:357–62. 

 https://doi.org/10.18632/aging.100040 
PMID:20157523 

9. Hanson M, Godfrey KM, Lillycrop KA, Burdge GC, 
Gluckman PD. Developmental plasticity and 
developmental origins of non-communicable disease: 
theoretical considerations and epigenetic mechanisms. 
Prog Biophys Mol Biol. 2011; 106:272–80. 

 https://doi.org/10.1016/j.pbiomolbio.2010.12.008 
PMID:21219925 

10. Gicquel C, El-Osta A, Le Bouc Y. Epigenetic regulation 
and fetal programming. Best Pract Res Clin Endocrinol 
Metab. 2008; 22:1–16. 

 https://doi.org/10.1016/j.beem.2007.07.009 
PMID:18279777 

11. Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, 
Hanson MA. Non-imprinted epigenetics in fetal and 
postnatal development and growth. Nestle Nutr Inst 
Workshop Ser. 2013; 71:57–63. 

 https://doi.org/10.1159/000342552  
PMID:23502139 

12. Rinaudo P, Wang E. Fetal programming and metabolic 
syndrome. Annu Rev Physiol. 2012; 74:107–30. 

 https://doi.org/10.1146/annurev-physiol-020911-
153245 PMID:21910625 

13. Kirkwood TB. Understanding ageing from an 
evolutionary perspective. J Intern Med. 2008; 
263:117–27. 

 https://doi.org/10.1111/j.1365-2796.2007.01901.x 
PMID:18226090 

https://doi.org/10.1093/gerona/glu042
https://pubmed.ncbi.nlm.nih.gov/24833581
https://pubmed.ncbi.nlm.nih.gov/22396873
https://doi.org/10.1016/j.molcel.2016.05.013
https://pubmed.ncbi.nlm.nih.gov/27259204
https://doi.org/10.1016/j.tig.2016.09.005
https://pubmed.ncbi.nlm.nih.gov/27692431
https://doi.org/10.1016/j.cell.2013.05.039
https://pubmed.ncbi.nlm.nih.gov/23746838
https://doi.org/10.1038/nature11247
https://pubmed.ncbi.nlm.nih.gov/22955616
https://doi.org/10.1038/s41580-019-0204-5
https://pubmed.ncbi.nlm.nih.gov/32020082
https://doi.org/10.18632/aging.100040
https://pubmed.ncbi.nlm.nih.gov/20157523
https://doi.org/10.1016/j.pbiomolbio.2010.12.008
https://pubmed.ncbi.nlm.nih.gov/21219925
https://doi.org/10.1016/j.beem.2007.07.009
https://pubmed.ncbi.nlm.nih.gov/18279777
https://doi.org/10.1159/000342552
https://pubmed.ncbi.nlm.nih.gov/23502139
https://doi.org/10.1146/annurev-physiol-020911-153245
https://doi.org/10.1146/annurev-physiol-020911-153245
https://pubmed.ncbi.nlm.nih.gov/21910625
https://doi.org/10.1111/j.1365-2796.2007.01901.x
https://pubmed.ncbi.nlm.nih.gov/18226090


 

www.aging-us.com 15712 AGING 

14. Kirkwood TB. Evolution of ageing. Mech Ageing Dev. 
2002; 123:737–45. 

 https://doi.org/10.1016/s0047-6374(01)00419-5 
PMID:11869731 

15. Conradt E, Adkins DE, Crowell SE, Raby KL, Diamond 
LM, Ellis B. Incorporating epigenetic mechanisms to 
advance fetal programming theories. Dev 
Psychopathol. 2018; 30:807–24. 

 https://doi.org/10.1017/S0954579418000469 
PMID:30068415 

16. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, 
Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, 
Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, 
et al. Epigenetic differences arise during the lifetime of 
monozygotic twins. Proc Natl Acad Sci USA. 2005; 
102:10604–09. 

 https://doi.org/10.1073/pnas.0500398102 
PMID:16009939 

17. Ollikainen M, Smith KR, Joo EJ, Ng HK, Andronikos R, 
Novakovic B, Abdul Aziz NK, Carlin JB, Morley R, 
Saffery R, Craig JM. DNA methylation analysis of 
multiple tissues from newborn twins reveals both 
genetic and intrauterine components to variation in 
the human neonatal epigenome. Hum Mol Genet. 
2010; 19:4176–88. 

 https://doi.org/10.1093/hmg/ddq336 PMID:20699328 

18. Saffery R, Novakovic B. Epigenetics as the mediator 
of fetal programming of adult onset disease: what is 
the evidence? Acta Obstet Gynecol Scand. 2014; 
93:1090–98. 

 https://doi.org/10.1111/aogs.12431 PMID:24835110 

19. Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, 
McKnight R, Lane RH. Developmental origins of disease 
and determinants of chromatin structure: maternal 
diet modifies the primate fetal epigenome. J Mol 
Endocrinol. 2008; 41:91–102. 

 https://doi.org/10.1677/JME-08-0025  
PMID:18515302 

20. Horvath S, Raj K. DNA methylation-based biomarkers 
and the epigenetic clock theory of ageing. Nat Rev 
Genet. 2018; 19:371–84. 

 https://doi.org/10.1038/s41576-018-0004-3 
PMID:29643443 

21. Yan L, Guo H, Hu B, Li R, Yong J, Zhao Y, Zhi X, Fan X, 
Guo F, Wang X, Wang W, Wei Y, Wang Y, et al. 
Epigenomic Landscape of Human Fetal Brain, Heart, 
and Liver. J Biol Chem. 2016; 291:4386–98. 

 https://doi.org/10.1074/jbc.M115.672931 
PMID:26719341 

22. Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling 
pathway: aging gracefully as a protectionist? 
Pharmacol Ther. 2008; 118:58–81. 

 https://doi.org/10.1016/j.pharmthera.2008.01.004 
PMID:18313758 

23. Salminen A, Kaarniranta K. Insulin/IGF-1 paradox of 
aging: regulation via AKT/IKK/NF-kappaB signaling. Cell 
Signal. 2010; 22:573–77. 

 https://doi.org/10.1016/j.cellsig.2009.10.006 
PMID:19861158 

24. de Magalhães JP. Programmatic features of aging 
originating in development: aging mechanisms beyond 
molecular damage? FASEB J. 2012; 26:4821–26. 

 https://doi.org/10.1096/fj.12-210872 PMID:22964300 

25. Rivera CM, Ren B. Mapping human epigenomes. Cell. 
2013; 155:39–55. 

 https://doi.org/10.1016/j.cell.2013.09.011 
PMID:24074860 

26. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, 
Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, 
Ziller MJ, Amin V, Whitaker JW, Schultz MD, et al, and 
Roadmap Epigenomics Consortium. Integrative 
analysis of 111 reference human epigenomes. Nature. 
2015; 518:317–30. 

 https://doi.org/10.1038/nature14248 PMID:25693563 

27. Day K, Waite LL, Thalacker-Mercer A, West A, Bamman 
MM, Brooks JD, Myers RM, Absher D. Differential DNA 
methylation with age displays both common and 
dynamic features across human tissues that are 
influenced by CpG landscape. Genome Biol. 2013; 
14:R102. 

 https://doi.org/10.1186/gb-2013-14-9-r102 
PMID:24034465 

28. Kubben N, Misteli T. Shared molecular and cellular 
mechanisms of premature ageing and ageing-
associated diseases. Nat Rev Mol Cell Biol. 2017; 
18:595–609. 

 https://doi.org/10.1038/nrm.2017.68 PMID:28792007 

29. Yang J, Huang T, Petralia F, Long Q, Zhang B, Argmann 
C, Zhao Y, Mobbs CV, Schadt EE, Zhu J, Tu Z, and GTEx 
Consortium. Synchronized age-related gene expression 
changes across multiple tissues in human and the link 
to complex diseases. Sci Rep. 2015; 5:15145. 

 https://doi.org/10.1038/srep15145  
PMID:26477495 

30. Frenk S, Houseley J. Gene expression hallmarks of 
cellular ageing. Biogerontology. 2018; 19:547–66. 

 https://doi.org/10.1007/s10522-018-9750-z 
PMID:29492790 

31. Bou Sleiman M, Jha P, Houtkooper R, Williams RW, 
Wang X, Auwerx J. The Gene-Regulatory Footprint of 
Aging Highlights Conserved Central Regulators. Cell 
Rep. 2020; 32:108203. 

 https://doi.org/10.1016/j.celrep.2020.108203 
PMID:32997995 

https://doi.org/10.1016/s0047-6374(01)00419-5
https://pubmed.ncbi.nlm.nih.gov/11869731
https://doi.org/10.1017/S0954579418000469
https://pubmed.ncbi.nlm.nih.gov/30068415
https://doi.org/10.1073/pnas.0500398102
https://pubmed.ncbi.nlm.nih.gov/16009939
https://doi.org/10.1093/hmg/ddq336
https://pubmed.ncbi.nlm.nih.gov/20699328
https://doi.org/10.1111/aogs.12431
https://pubmed.ncbi.nlm.nih.gov/24835110
https://doi.org/10.1677/JME-08-0025
https://pubmed.ncbi.nlm.nih.gov/18515302
https://doi.org/10.1038/s41576-018-0004-3
https://pubmed.ncbi.nlm.nih.gov/29643443
https://doi.org/10.1074/jbc.M115.672931
https://pubmed.ncbi.nlm.nih.gov/26719341
https://doi.org/10.1016/j.pharmthera.2008.01.004
https://pubmed.ncbi.nlm.nih.gov/18313758
https://doi.org/10.1016/j.cellsig.2009.10.006
https://pubmed.ncbi.nlm.nih.gov/19861158
https://doi.org/10.1096/fj.12-210872
https://pubmed.ncbi.nlm.nih.gov/22964300
https://doi.org/10.1016/j.cell.2013.09.011
https://pubmed.ncbi.nlm.nih.gov/24074860
https://doi.org/10.1038/nature14248
https://pubmed.ncbi.nlm.nih.gov/25693563
https://doi.org/10.1186/gb-2013-14-9-r102
https://pubmed.ncbi.nlm.nih.gov/24034465
https://doi.org/10.1038/nrm.2017.68
https://pubmed.ncbi.nlm.nih.gov/28792007
https://doi.org/10.1038/srep15145
https://pubmed.ncbi.nlm.nih.gov/26477495
https://doi.org/10.1007/s10522-018-9750-z
https://pubmed.ncbi.nlm.nih.gov/29492790
https://doi.org/10.1016/j.celrep.2020.108203
https://pubmed.ncbi.nlm.nih.gov/32997995


 

www.aging-us.com 15713 AGING 

32. Yuen RK, Neumann SM, Fok AK, Peñaherrera MS, 
McFadden DE, Robinson WP, Kobor MS. Extensive 
epigenetic reprogramming in human somatic tissues 
between fetus and adult. Epigenetics Chromatin. 
2011; 4:7. 

 https://doi.org/10.1186/1756-8935-4-7 
PMID:21545704 

33. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, 
Durham T, Miri M, Deshpande V, De Jager PL, Bennett 
DA, Houmard JA, Muoio DM, et al. Genome-wide 
chromatin state transitions associated with 
developmental and environmental cues. Cell. 2013; 
152:642–54. 

 https://doi.org/10.1016/j.cell.2012.12.033 
PMID:23333102 

34. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, 
Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, 
Cherry JM, Snyder M. Annotation of functional 
variation in personal genomes using RegulomeDB. 
Genome Res. 2012; 22:1790–97. 

 https://doi.org/10.1101/gr.137323.112 
PMID:22955989 

35. Charlesworth B. Patterns of age-specific means and 
genetic variances of mortality rates predicted by the 
mutation-accumulation theory of ageing. J Theor Biol. 
2001; 210:47–65. 

 https://doi.org/10.1006/jtbi.2001.2296 
PMID:11343430 

36. Kirkwood TB, Rose MR. Evolution of senescence: late 
survival sacrificed for reproduction. Philos Trans R Soc 
Lond B Biol Sci. 1991; 332:15–24. 

 https://doi.org/10.1098/rstb.1991.0028 
PMID:1677205 

37. Richard D, Liu Z, Cao J, Kiapour AM, Willen J, 
Yarlagadda S, Jagoda E, Kolachalama VB, Sieker JT, 
Chang GH, Muthuirulan P, Young M, Masson A, et al. 
Evolutionary Selection and Constraint on Human Knee 
Chondrocyte Regulation Impacts Osteoarthritis Risk. 
Cell. 2020; 181:362–81.e28. 

 https://doi.org/10.1016/j.cell.2020.02.057 
PMID:32220312 

38. Rodríguez JA, Marigorta UM, Hughes DA, Spataro N, 
Bosch E, Navarro A. Antagonistic pleiotropy and 
mutation accumulation influence human senescence 
and disease. Nat Ecol Evol. 2017; 1:55. 

 https://doi.org/10.1038/s41559-016-0055 
PMID:28812720 

39. Klemm SL, Shipony Z, Greenleaf WJ. Chromatin 
accessibility and the regulatory epigenome. Nat Rev 
Genet. 2019; 20:207–20. 

 https://doi.org/10.1038/s41576-018-0089-8 
PMID:30675018 

40. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, 
Gabdank I, Hilton JA, Jain K, Baymuradov UK, 
Narayanan AK, Onate KC, Graham K, Miyasato SR, et al. 
The Encyclopedia of DNA elements (ENCODE): data 
portal update. Nucleic Acids Res. 2018; 46:D794–801. 

 https://doi.org/10.1093/nar/gkx1081 PMID:29126249 

41. Jung I, Schmitt A, Diao Y, Lee AJ, Liu T, Yang D, Tan C, 
Eom J, Chan M, Chee S, Chiang Z, Kim C, Masliah E, et 
al. A compendium of promoter-centered long-range 
chromatin interactions in the human genome. Nat 
Genet. 2019; 51:1442–49. 

 https://doi.org/10.1038/s41588-019-0494-8 
PMID:31501517 

42. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, 
Lowe CB, Wenger AM, Bejerano G. GREAT improves 
functional interpretation of cis-regulatory regions. Nat 
Biotechnol. 2010; 28:495–501. 

 https://doi.org/10.1038/nbt.1630 PMID:20436461 

43. GTEx Consortium. The Genotype-Tissue Expression 
(GTEx) project. Nat Genet. 2013; 45:580–85. 

 https://doi.org/10.1038/ng.2653 PMID:23715323 

44. Benayoun BA, Pollina EA, Singh PP, Mahmoudi S, Harel 
I, Casey KM, Dulken BW, Kundaje A, Brunet A. 
Remodeling of epigenome and transcriptome 
landscapes with aging in mice reveals widespread 
induction of inflammatory responses. Genome Res. 
2019; 29:697–709. 

 https://doi.org/10.1101/gr.240093.118 
PMID:30858345 

45. Carroll SB. Evo-devo and an expanding evolutionary 
synthesis: a genetic theory of morphological evolution. 
Cell. 2008; 134:25–36. 

 https://doi.org/10.1016/j.cell.2008.06.030 
PMID:18614008 

46. Kirkwood TB, Holliday R. The evolution of ageing and 
longevity. Proc R Soc Lond B Biol Sci. 1979; 205: 
531–46. 

 https://doi.org/10.1098/rspb.1979.0083 PMID:42059 

47. Jones OR, Scheuerlein A, Salguero-Gómez R, Camarda 
CG, Schaible R, Casper BB, Dahlgren JP, Ehrlén J, García 
MB, Menges ES, Quintana-Ascencio PF, Caswell H, 
Baudisch A, Vaupel JW. Diversity of ageing across the 
tree of life. Nature. 2014; 505:169–73. 

 https://doi.org/10.1038/nature12789  
PMID:24317695 

48. Ferris E, Abegglen LM, Schiffman JD, Gregg C. 
Accelerated Evolution in Distinctive Species Reveals 
Candidate Elements for Clinically Relevant Traits, 
Including Mutation and Cancer Resistance. Cell Rep. 
2018; 22:2742–55. 

 https://doi.org/10.1016/j.celrep.2018.02.008 
PMID:29514101 

https://doi.org/10.1186/1756-8935-4-7
https://pubmed.ncbi.nlm.nih.gov/21545704
https://doi.org/10.1016/j.cell.2012.12.033
https://pubmed.ncbi.nlm.nih.gov/23333102
https://doi.org/10.1101/gr.137323.112
https://pubmed.ncbi.nlm.nih.gov/22955989
https://doi.org/10.1006/jtbi.2001.2296
https://pubmed.ncbi.nlm.nih.gov/11343430
https://doi.org/10.1098/rstb.1991.0028
https://pubmed.ncbi.nlm.nih.gov/1677205
https://doi.org/10.1016/j.cell.2020.02.057
https://pubmed.ncbi.nlm.nih.gov/32220312
https://doi.org/10.1038/s41559-016-0055
https://pubmed.ncbi.nlm.nih.gov/28812720
https://doi.org/10.1038/s41576-018-0089-8
https://pubmed.ncbi.nlm.nih.gov/30675018
https://doi.org/10.1093/nar/gkx1081
https://pubmed.ncbi.nlm.nih.gov/29126249
https://doi.org/10.1038/s41588-019-0494-8
https://pubmed.ncbi.nlm.nih.gov/31501517
https://doi.org/10.1038/nbt.1630
https://pubmed.ncbi.nlm.nih.gov/20436461
https://doi.org/10.1038/ng.2653
https://pubmed.ncbi.nlm.nih.gov/23715323
https://doi.org/10.1101/gr.240093.118
https://pubmed.ncbi.nlm.nih.gov/30858345
https://doi.org/10.1016/j.cell.2008.06.030
https://pubmed.ncbi.nlm.nih.gov/18614008
https://doi.org/10.1098/rspb.1979.0083
https://pubmed.ncbi.nlm.nih.gov/42059
https://doi.org/10.1038/nature12789
https://pubmed.ncbi.nlm.nih.gov/24317695
https://doi.org/10.1016/j.celrep.2018.02.008
https://pubmed.ncbi.nlm.nih.gov/29514101


 

www.aging-us.com 15714 AGING 

49. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. 
Detection of nonneutral substitution rates on 
mammalian phylogenies. Genome Res. 2010; 
20:110–21. 

 https://doi.org/10.1101/gr.097857.109 
PMID:19858363 

50. Kirkwood TB. The origins of human ageing. Philos Trans 
R Soc Lond B Biol Sci. 1997; 352:1765–72. 

 https://doi.org/10.1098/rstb.1997.0160 
PMID:9460059 

51. Varki A, Altheide TK. Comparing the human and 
chimpanzee genomes: searching for needles in a 
haystack. Genome Res. 2005; 15:1746–58. 

 https://doi.org/10.1101/gr.3737405 PMID:16339373 

52. Hubisz MJ, Pollard KS. Exploring the genesis and 
functions of Human Accelerated Regions sheds light on 
their role in human evolution. Curr Opin Genet Dev. 
2014; 29:15–21. 

 https://doi.org/10.1016/j.gde.2014.07.005 
PMID:25156517 

53. Carnes BA, Olshansky SJ. Evolutionary Perspectives on 
Human Senescence. Popul Dev Rev. 1993; 19:793. 

 https://doi.org/10.2307/2938414 

54. Ricklefs RE. The evolution of senescence from a 
comparative perspective. Funct Ecol. 2008; 22:379–92. 
https://doi.org/10.1111/j.1365-2435.2008.01420.x 

55. Williams GC. Pleiotropy, natural selection, and the 
evolution of senescence. Evolution. 1957; 11:398–411. 
http://doi.wiley.com/10.1111/j.1558-
5646.1957.tb02911.x 

56. Wright A, Charlesworth B, Rudan I, Carothers A, 
Campbell H. A polygenic basis for late-onset disease. 
Trends Genet. 2003; 19:97–106. 

 https://doi.org/10.1016/s0168-9525(02)00033-1 
PMID:12547519 

57. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, 
Danesh J, Downey P, Elliott P, Green J, Landray M, Liu 
B, Matthews P, Ong G, et al. UK biobank: an open 
access resource for identifying the causes of a wide 
range of complex diseases of middle and old age. PLoS 
Med. 2015; 12:e1001779. 

 https://doi.org/10.1371/journal.pmed.1001779 
PMID:25826379 

58. Chang AY, Skirbekk VF, Tyrovolas S, Kassebaum NJ, 
Dieleman JL. Measuring population ageing: an analysis 
of the Global Burden of Disease Study 2017. Lancet 
Public Health. 2019; 4:e159–67. 

 https://doi.org/10.1016/S2468-2667(19)30019-2 
PMID:30851869 

59. Boyle EA, Li YI, Pritchard JK. An Expanded View of 
Complex Traits: From Polygenic to Omnigenic. Cell. 

2017; 169:1177–86. 
 https://doi.org/10.1016/j.cell.2017.05.038 

PMID:28622505 

60. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, 
Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, 
Karapetyan K, Katz K, Liu C, et al. ClinVar: improving 
access to variant interpretations and supporting 
evidence. Nucleic Acids Res. 2018; 46:D1062–67. 

 https://doi.org/10.1093/nar/gkx1153 PMID:29165669 

61. Hall JA, Dominy JE, Lee Y, Puigserver P. The sirtuin 
family’s role in aging and age-associated pathologies. J 
Clin Invest. 2013; 123:973–79. 

 https://doi.org/10.1172/JCI64094 PMID:23454760 

62. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic 
Mechanisms of Longevity and Aging. Cell. 2016; 
166:822–39. 

 https://doi.org/10.1016/j.cell.2016.07.050 
PMID:27518561 

63. Cooper GM, Goode DL, Ng SB, Sidow A, Bamshad MJ, 
Shendure J, Nickerson DA. Single-nucleotide 
evolutionary constraint scores highlight disease-
causing mutations. Nat Methods. 2010; 7:250–51. 

 https://doi.org/10.1038/nmeth0410-250 
PMID:20354513 

64. Cooper GM, Shendure J. Needles in stacks of needles: 
finding disease-causal variants in a wealth of genomic 
data. Nat Rev Genet. 2011; 12:628–40. 

 https://doi.org/10.1038/nrg3046 PMID:21850043 

65. Hujoel ML, Gazal S, Hormozdiari F, van de Geijn B, Price 
AL. Disease Heritability Enrichment of Regulatory 
Elements Is Concentrated in Elements with Ancient 
Sequence Age and Conserved Function across Species. 
Am J Hum Genet. 2019; 104:611–24. 

 https://doi.org/10.1016/j.ajhg.2019.02.008 
PMID:30905396 

66. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, 
Shendure J, Abecasis GR, Adams DR, Altman RB, 
Antonarakis SE, Ashley EA, Barrett JC, Biesecker LG, 
Conrad DF, et al. Guidelines for investigating causality 
of sequence variants in human disease. Nature. 2014; 
508:469–76. 

 https://doi.org/10.1038/nature13127  
PMID:24759409 

67. Gazal S, Finucane HK, Furlotte NA, Loh PR, Palamara 
PF, Liu X, Schoech A, Bulik-Sullivan B, Neale BM, Gusev 
A, Price AL. Linkage disequilibrium-dependent 
architecture of human complex traits shows action of 
negative selection. Nat Genet. 2017; 49:1421–27. 

 https://doi.org/10.1038/ng.3954  
PMID:28892061 

68. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, 
Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards 

https://doi.org/10.1101/gr.097857.109
https://pubmed.ncbi.nlm.nih.gov/19858363
https://doi.org/10.1098/rstb.1997.0160
https://pubmed.ncbi.nlm.nih.gov/9460059
https://doi.org/10.1101/gr.3737405
https://pubmed.ncbi.nlm.nih.gov/16339373
https://doi.org/10.1016/j.gde.2014.07.005
https://pubmed.ncbi.nlm.nih.gov/25156517
https://doi.org/10.2307/2938414
https://doi.org/10.1111/j.1365-2435.2008.01420.x
http://doi.wiley.com/10.1111/j.1558-5646.1957.tb02911.x
http://doi.wiley.com/10.1111/j.1558-5646.1957.tb02911.x
https://doi.org/10.1016/s0168-9525(02)00033-1
https://pubmed.ncbi.nlm.nih.gov/12547519
https://doi.org/10.1371/journal.pmed.1001779
https://pubmed.ncbi.nlm.nih.gov/25826379
https://doi.org/10.1016/S2468-2667(19)30019-2
https://pubmed.ncbi.nlm.nih.gov/30851869
https://doi.org/10.1016/j.cell.2017.05.038
https://pubmed.ncbi.nlm.nih.gov/28622505
https://doi.org/10.1093/nar/gkx1153
https://pubmed.ncbi.nlm.nih.gov/29165669
https://doi.org/10.1172/JCI64094
https://pubmed.ncbi.nlm.nih.gov/23454760
https://doi.org/10.1016/j.cell.2016.07.050
https://pubmed.ncbi.nlm.nih.gov/27518561
https://doi.org/10.1038/nmeth0410-250
https://pubmed.ncbi.nlm.nih.gov/20354513
https://doi.org/10.1038/nrg3046
https://pubmed.ncbi.nlm.nih.gov/21850043
https://doi.org/10.1016/j.ajhg.2019.02.008
https://pubmed.ncbi.nlm.nih.gov/30905396
https://doi.org/10.1038/nature13127
https://pubmed.ncbi.nlm.nih.gov/24759409
https://doi.org/10.1038/ng.3954
https://pubmed.ncbi.nlm.nih.gov/28892061


 

www.aging-us.com 15715 AGING 

S, Weinstock GM, Wilson RK, Gibbs RA, et al. 
Evolutionarily conserved elements in vertebrate, 
insect, worm, and yeast genomes. Genome Res. 2005; 
15:1034–50. 

 https://doi.org/10.1101/gr.3715005 PMID:16024819 

69. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, 
Reshef Y, Loh PR, Anttila V, Xu H, Zang C, Farh K, Ripke 
S, Day FR, Purcell S, et al, and ReproGen Consortium, 
Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, and RACI Consortium. 
Partitioning heritability by functional annotation using 
genome-wide association summary statistics. Nat 
Genet. 2015; 47:1228–35. 

 https://doi.org/10.1038/ng.3404 PMID:26414678 

70. Huang YF, Gulko B, Siepel A. Fast, scalable prediction of 
deleterious noncoding variants from functional and 
population genomic data. Nat Genet. 2017; 49:618–24. 

 https://doi.org/10.1038/ng.3810 PMID:28288115 

71. Tang J, Yan H, Zhuang S. Histone deacetylases as 
targets for treatment of multiple diseases. Clin Sci 
(Lond). 2013; 124:651–62. 

 https://doi.org/10.1042/CS20120504 PMID:23414309 

72. Benayoun BA, Pollina EA, Brunet A. Epigenetic 
regulation of ageing: linking environmental inputs to 
genomic stability. Nat Rev Mol Cell Biol. 2015; 
16:593–610. 

 https://doi.org/10.1038/nrm4048  
PMID:26373265 

73. Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, 
Zhang W, Song M, Liu GH, Qu J. SIRT7 antagonizes 
human stem cell aging as a heterochromatin stabilizer. 
Protein Cell. 2020; 11:483–504. 

 https://doi.org/10.1007/s13238-020-00728-4 
PMID:32504224 

74. Tasselli L, Zheng W, Chua KF. SIRT6: Novel Mechanisms 
and Links to Aging and Disease. Trends Endocrinol 
Metab. 2017; 28:168–85. 

 https://doi.org/10.1016/j.tem.2016.10.002 
PMID:27836583 

75. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, 
Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, 
Murphy MM, Mills KD, Patel P, Hsu JT, et al. Genomic 
instability and aging-like phenotype in the absence of 
mammalian SIRT6. Cell. 2006; 124:315–29. 

 https://doi.org/10.1016/j.cell.2005.11.044 
PMID:16439206 

76. Tsurumi A, Li WX. Global heterochromatin loss: a 
unifying theory of aging? Epigenetics. 2012; 7:680–88. 

 https://doi.org/10.4161/epi.20540  
PMID:22647267 

77. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day 
FR, Loh PR, Duncan L, Perry JR, Patterson N, Robinson 

EB, Daly MJ, Price AL, Neale BM, and ReproGen 
Consortium, and Psychiatric Genomics Consortium, 
and Genetic Consortium for Anorexia Nervosa of the 
Wellcome Trust Case Control Consortium 3. An atlas of 
genetic correlations across human diseases and traits. 
Nat Genet. 2015; 47:1236–41. 

 https://doi.org/10.1038/ng.3406 PMID:26414676 

78. Domcke S, Hill AJ, Daza RM, Cao J, O’Day DR, Pliner HA, 
Aldinger KA, Pokholok D, Zhang F, Milbank JH, Zager 
MA, Glass IA, Steemers FJ, et al. A human cell atlas of 
fetal chromatin accessibility. Science. 2020; 
370:eaba7612. 

 https://doi.org/10.1126/science.aba7612 
PMID:33184180 

79. Teschendorff AE, West J, Beck S. Age-associated 
epigenetic drift: implications, and a case of epigenetic 
thrift? Hum Mol Genet. 2013; 22:R7–15. 

 https://doi.org/10.1093/hmg/ddt375 PMID:23918660 

80. Zampieri M, Ciccarone F, Calabrese R, Franceschi C, 
Bürkle A, Caiafa P. Reconfiguration of DNA methylation 
in aging. Mech Ageing Dev. 2015; 151:60–70. 

 https://doi.org/10.1016/j.mad.2015.02.002 
PMID:25708826 

81. R Development Core Team. R: A Language and 
Environment for Statistical Computing. Vienna, Austria; 
2008. http://www.r-project.org 

82. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 

 https://doi.org/10.1093/nar/gkv007  
PMID:25605792 

83. Benjamini Y, Hochberg Y. Controlling the false 
discovery rate: a practical and powerful approach to 
multiple testing. J R Stat Soc Ser B (Methodological). 
1957; 57:289–300. 
http://www.jstor.org/stable/2346101 

84. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, 
Sugnet CW, Haussler D, Kent WJ. The UCSC Table 
Browser data retrieval tool. Nucleic Acids Res. 2004; 
32:D493–96. 

 https://doi.org/10.1093/nar/gkh103  
PMID:14681465 

85. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–87. 

 https://doi.org/10.1089/omi.2011.0118 
PMID:22455463 

86. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, 
Korbel JO, Marchini JL, McCarthy S, McVean GA, 
Abecasis GR, and 1000 Genomes Project Consortium. A 
global reference for human genetic variation. Nature. 

https://doi.org/10.1101/gr.3715005
https://pubmed.ncbi.nlm.nih.gov/16024819
https://doi.org/10.1038/ng.3404
https://pubmed.ncbi.nlm.nih.gov/26414678
https://doi.org/10.1038/ng.3810
https://pubmed.ncbi.nlm.nih.gov/28288115
https://doi.org/10.1042/CS20120504
https://pubmed.ncbi.nlm.nih.gov/23414309
https://doi.org/10.1038/nrm4048
https://pubmed.ncbi.nlm.nih.gov/26373265
https://doi.org/10.1007/s13238-020-00728-4
https://pubmed.ncbi.nlm.nih.gov/32504224
https://doi.org/10.1016/j.tem.2016.10.002
https://pubmed.ncbi.nlm.nih.gov/27836583
https://doi.org/10.1016/j.cell.2005.11.044
https://pubmed.ncbi.nlm.nih.gov/16439206
https://doi.org/10.4161/epi.20540
https://pubmed.ncbi.nlm.nih.gov/22647267
https://doi.org/10.1038/ng.3406
https://pubmed.ncbi.nlm.nih.gov/26414676
https://doi.org/10.1126/science.aba7612
https://pubmed.ncbi.nlm.nih.gov/33184180
https://doi.org/10.1093/hmg/ddt375
https://pubmed.ncbi.nlm.nih.gov/23918660
https://doi.org/10.1016/j.mad.2015.02.002
https://pubmed.ncbi.nlm.nih.gov/25708826
http://www.r-project.org/
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
http://www.jstor.org/stable/2346101
https://doi.org/10.1093/nar/gkh103
https://pubmed.ncbi.nlm.nih.gov/14681465
https://doi.org/10.1089/omi.2011.0118
https://pubmed.ncbi.nlm.nih.gov/22455463


 

www.aging-us.com 15716 AGING 

2015; 526:68–74. 
 https://doi.org/10.1038/nature15393  

PMID:26432245 

87. Li H. Tabix: fast retrieval of sequence features from 
generic TAB-delimited files. Bioinformatics. 2011; 
27:718–19. 

 https://doi.org/10.1093/bioinformatics/btq671 
PMID:21208982  

https://doi.org/10.1038/nature15393
https://pubmed.ncbi.nlm.nih.gov/26432245
https://doi.org/10.1093/bioinformatics/btq671
https://pubmed.ncbi.nlm.nih.gov/21208982


 

www.aging-us.com 15717 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Information (SI) Text 
 

Comparing altered accessibility regions to genomic 

annotations, epigenetic states, and additional 

epigenetic datasets 

 

As past studies have found that altered distribution of 

certain histone marks (e.g., H3K27ac) are a key feature 

of fetal to adult epigenetic changes [1–3] as well as 

epigenetic aging [4], the changes in chromatin 

accessibility we observe likely also reflects, in part, 

histone mark modification. 

 

To define the epigenetic context within which our 

development- and age-altered regions fall, we utilized 

genome-wide assignments of epigenetic state as defined 

by the Roadmap Epigenomics Project Consortium [3], 

which employs a Hidden Markov Model to assign one 

of several possible epigenetic annotations to 200bp 

segments of the genome, integrating both chromatin-

modification and accessibility datasets to define state 

probabilities, for different epigenomes (e.g., skin, brain 

tissues, etc.). Given that our altered regions were 

defined using a pan-tissue approach, for each 200bp 

segment we subset those epigenetic states defined for 

adult tissue samples, and took the state definition 

recurrent in the majority of samples as an ‘adult-

majority’ assignment (see Supplementary Methods). We 

next intersected our region sets with these assigned 

segments, comparing the distribution of regions falling 

within different epigenetic states to the genome-wide 

distribution of these states to look for biases 

(Supplementary Figure 4). Adult-biased regions were 

enriched for epigenetic states associated with 

transcription, heterochromatin, and repressed Polycomb 

regions (Supplementary Table 1). Conversely, fetal-

biased regions were enriched for states associated with 

enhancers, promoters, and ‘primary DNase’, while also 

showing a more moderate enrichment for repressed 

Polycomb regions. Likewise, old-biased regions were 

enriched for heterochromatin and quiescent states, while 

young-biased regions were enriched for all other  

states (Supplementary Table 1). By intersecting the  

fetal and adult as well as young and old-biased regions, 

we saw that the enrichments for different fetal and  

adult sets - i.e., adult-biased with heterochromatic  

states, fetal-biased with euchromatic states - overrode 

the young-biased and old-biased enrichment patterns 

(Supplementary Figure 4). Utilizing publicly-available 

epigenetic datasets and annotations through the  

LOLA [5] software (see Supplementary Methods), we  
again saw overlaps of the adult-biased region set for 

genomic annotations of ‘repressed segments’ and repeat 

sequences in this set, similar to the Roadmap epigenetic 

state results above (Supplementary Figure 4). Considering 

fetal-biased regions, we observed enrichments for TSS 

segments, Promoter/enhancer segments, and Vista 

enhancers, along with annotated CpG islands. We also 

saw similar enrichments for young- and old-biased  

sets (relative to their Roadmap enrichment results),  

and again saw the overriding fetal and adult patterns  

of enrichments in intersection sets (Supplementary 

Figure 5). 

 

We next sought to validate the expected correspondence 

between development-associated chromatin accessibility 

and histone modifications, first using an independent 

dataset of fetal ChIP-seq experiments [1]. This study 

defined fetal bivalent promoter regions, which are 

thought to poise expression of developmental genes for 

rapid induction upon appropriate signaling [6]. Bivalent 

promoters tended to not be intersected by adult-biased 

regions, while fetal-biased regions were enriched in 

these sets (p < 1e-16, hypergeometric test, see 

Supplementary Methods). That these marked promoters 

responding to developmental signals lose accessibility 

in adult tissues would be expected [6], suggesting that 

our approach is capturing signals of epigenetic change 

in development. As additional validation of 

correspondence between development-, and potentially 

age-, associated chromatin accessibility and regions 

subject to histone modification, we again used LOLA 

enrichments, along with histone-mark ChIP-seq datasets 

acquired from primary tissues samples processed by 

ENCODE [7, 8]. 

 

ChIP-seq analyses 

 

Given our use of DNA accessibility datasets, which 

should reflect the state of local chromatin with  

respect to chemical modifications increasing/decreasing 

accessibility, there is an expected concordance  

between open-chromatin regions defined by DNase-I 

hypersensitivity and the presence of nearby marks for 

histone post-translational modifications (i.e., histone 

ChIP-seq data). To first confirm this expected behavior 

in our accessibility data obtained from ENCODE, we 

further obtained ChIP-seq datasets from fetal and adult 

tissues matching those used in our accessibility analyses 

(see Supplementary Table 1 for accessions and 

metadata). Datasets included H3K27ac (an active, 

euchromatin mark), H3K27me3 and H3K9me3 

(facultative and constitutive heterochromatin marks, 

respectively). Replicable open-chromatin regions in 

fetal and adult tissues were compared to their respective 

called ChIP-seq peak datasets looking for adjacency 

between accessibility and chromatin marks (within 1kb, 

see Supplementary Methods). For H3K27ac marks in 
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adult tissues, between 33-82% of replicable DNase 

peaks in a given tissue had adjacent ChIP-seq peak 

calls. For H3K27ac in fetal tissues, between 37-71% of 

replicable DNase peaks had adjacent ChIP-seq peak 

calls. For H3K27me3 in adult tissues, between 0.6-10% 

of replicable DNase peaks in a given tissue had adjacent 

ChIP-seq peak calls. For H3K27me3 in fetal tissues, 

between 4-27% of replicable DNase peaks had adjacent 

ChIP-seq peak calls. For H3K9me3 in adult tissues, 

between 0.05-4% of replicable DNase peaks in a given 

tissue had adjacent ChIP-seq peak calls. For H3K9me3 

in fetal tissues, between 0.19-22% of replicable DNase 

peaks had adjacent ChIP-seq peak calls. The increased 

adjacency of DNase regions with H3K27ac (an active 

mark) compared to H3K27me3 and H3K9me3 

(repressive marks) may be expected, given that DNase 

hypersensitivity should denote more accessible, active 

regions of chromatin. 

 

We next asked whether the patterns of accessibility 

change we observed between fetal and adult tissue 

samples were also evident at the level of histone 

modifications. We thus applied a similar pipeline to  

that used in defining altered accessibility to define 

altered signals for histone marks (using ChIP-seq read 

coverage as an approximate, continuous metric) (see 

Supplementary Methods). This resulted in sets of 

H3K27ac, H3K27me3, and H3K9me3 peaks whose 

ChIP-seq signal significantly changed across tissues in 

comparing fetal and adult samples. Conditioning on 

the above DNase/ChIP-seq adjacency, we first asked 

whether significantly-DA DNase peaks tended to be 

adjacent to altered H3K27ac ChIP-seq peaks, above 

the general expectation for DNase peaks nearby 

H3K27ac peaks. We observed a 1.21 fold-change (FC) 

increase in the adjacency of altered DNase and ChIP-

seq peaks (hypergeometric test p-value < 1e-16). 

Given this, we next asked whether, for these adjacent 

pairs, directionality was shared (i.e., DNase peaks 

gaining accessibility are adjacent to H3K27ac peaks 

gaining signal). We found that, of these adjacent  

pairs, those sharing direction (i.e., adult-biased  

DNase, adult-biased H3K27ac ChIP-seq) pairs were 

significantly over-represented (1.72 FC and 1.19  

FC for adult/adult-biased and fetal/fetal-biased, 

respectively, hypergeometric tests comparing overlaps 

of sets, adjusted p-values < 1e-16). 

 

We similarly checked this adjacency with H3K9me3 

peaks changing signal across fetal/adult tissues. We 

did see a significantly-greater adjacency between 

significantly-DA DNase peaks and these altered 

H3K9me3 peaks, above general DNase/H3K9me3 
adjacency (1.13 FC increase, hypergeometric test p-value 

< 1e-16). Of these adjacent pairs, those sharing direction 

(i.e., adult-biased DNase, adult-biased H3K9me3 ChIP-

seq) were significantly under-represented, while those 

opposing direction were over-represented (1.152 FC and 

1.212 FC for adult-biased DNase/fetal-biased H3K9me3 

and fetal-biased DNase/adult-biased H3K9me3, 

respectively, hypergeometric tests comparing overlaps  

of sets, adjusted p-value < 1e-16). This follows  

with an expectation that regions gaining constitutive 

heterochromatic marks should lose local DNA 

accessibility, and vice-versa. 

 

Next, we considered the adjacency of H3K27me3 

changing signal across fetal/adult tissues. We did 

observe a slight, but significant, increased adjacency 

between significantly-DA DNase peaks and altered 

H3K27me3 peaks, above general DNase/H3K27me3 

adjacency (1.03 FC increase, hypergeometric test p-

value < 1e-16). Of these, those sharing direction (i.e., 

adult-biased DNase, adult-biased H3K27me3 ChIP-

seq) were significantly over-represented (1.20 FC and 

1.38 FC for adult/adult-biased and fetal/fetal-biased, 

respectively, hypergeometric tests comparing overlaps 

of sets, adjusted p-values < 1e-16). 

 

Finally, we compared adjacent/overlapping (i.e., within 

1 kb) developmentally-altered histone signals across 

different marks. For a given developmentally-altered 

H3K27ac peak, adjacent H3K27me3 peaks tended to 

also change (1.24 FC enrichment, hypergeometric test 

p-value < 1e-16), with regions gaining H3K27ac signal 

tending to lose adjacent H3K27me3 signal over 

development and vice-versa (1.59 FC and 1.09 FC for 

adult-biased H3K27ac/fetal-biased H3K27me3 and 

fetal-biased H3K27ac/adult-biased H3K27me3, 

respectively, adjusted p-values < 1e-16 and 1.9e-6, 

respectively). Comparing adjacent H3K27me3 and 

H3K9me3 developmentally-altered peaks, we observed 

opposing patterns, which may reflect their associations 

with predominantly facultative and constitutive 

heterochromatin, respectively. Altered H3K27ac  

and H3K9me3 peaks showed a small but significant 

degree of adjacency (~3%, 1.19 FC enrichment, 

hypergeometric test p-value < 1e-16), though the 

direction change of adjacent peaks were not consistently 

biased between adult/adult-biased, fetal/fetal-biased, 

etc., which may reflect the limited number of adjacent 

pairs (data not shown). 

 

We also considered the LOLA enrichments for external 

histone-mark datasets, observing that adult-biased 

regions showed strong enrichments with ChIP-seq 

datasets for repressive histone modifications H3K36me3, 

H3K9me3, and H3K27me3 (see Supplementary Figure 

5). Conversely, fetal-biased regions showed enrichments 
for both active (including H3K4me2/3, H3K9ac) and 

repressive (including H3K9me3 and H3K27me3) histone 

modifications. 
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Clock sites analysis 

 

Given the substantial literature on changes in DNA-

level methylation across both development and aging, 

and the observed enrichments for annotated CpG sites 

in the above LOLA analyses, we next looked for 

correspondence between our development- and age-

altered region sets and CpG sites. In particular, we 

considered so-called ‘clock sites’ capable of predicting 

age across the entire lifespan [9–11]. Firstly, we re-

confirmed the enrichment of CpG sites within 

developmental and age-altered DNase regions using 

UCSC annotated CpG sites (see Supplementary 

Methods), then confirmed that this enrichment held for 

clock sites, observing a small but significant capturing 

of these sites by developmentally-altered regions (40 of 

353 clock sites, p-value < 1e-3 against 1000 randomized 

region sets). Of these regions, we saw that the fetal-

biased set were enriched for overlaps with both clock 

sites losing methylation with age (hypo-methylated 

sites) and those gaining methylation with age (hyper-

methylated sites), while the adult-biased set was not 

enriched for either set. We also saw a significant 

enrichment for clock sites by age-altered regions (16 of 

353 clock sites, p-value < 1e-3 against 1000 randomized 

region sets). Of these, young-biased regions were 

enriched for overlaps of both hyper- and hypo-

methylated clock sites, while we found no overlaps for 

clock sites with old-biased regions. Finally, we looked 

for overlaps between clock sites and our region sets at 

the gene-locus level – clock sites tied with particular 

genes (e.g., due to falling within promoter or gene-body 

regions) which overlap gene loci we associated with our 

region sets (see Supplementary Methods). This yielded 

significant overlaps for genes associated with 

developmentally-altered regions (58 genes, 

hypergeometric p-value = 0.005), though not those 

associated with age-altered regions (12 genes, 

hypergeometric p-value = 0.19), and we observed no 

significant biases in direction sharing (e.g., old-age-

associated genes and hypo-methylated regions – chi-sq 

test p-value > 0.05) (see Supplementary Table 1). 

 

Promoter capture datasets 

 

To better identify biological process whose cis-

regulatory activity are subject to change we made use of 

a compendium of promoter-capture Hi-C interactions 

[12] (see Supplementary Methods) to identify possible 

promoter contacts made by our region sets. We also 

sought to incorporate accessibility information for gene 

promoters (in addition to the regions contacting them), 

and did this by [1] intersecting gene promoters with 
adult- or fetal-biased regions, or [2] similar to our 

treatment of region accessibility changes we also 

assessed promoter accessibility using DNase-seq read 

coverage across tissue samples (Supplementary Figure 

6, Supplementary Methods). Genome-wide, adult-

biased regions tended to have more putative promoter 

contacts than fetal-biased regions, while old-biased 

regions tended to have less putative contacts than 

young-biased regions (zero-hurdle modeling, p-value 

<< 1e-16). Gene promoters gaining accessibility are 

preferentially contacted by adult-biased regions, with 

those losing accessibility contacted by more fetal-biased 

regions than expected (chi-sq test, p < 1e-16), patterns 

which held when considering young- and old-age 

accessibility (chi-sq test, p < 1e-16). This bias was also 

true when considering gene promoter accessibility 

defined by intersection with our development- and age-

altered region sets (see Supplementary Methods). In the 

context of enhancer-promoter interaction, we observed 

enrichments in the adult-biased set for gene-ontology 

terms associated with immune response, sensory 

perception, and keratinization (Supplementary Table 2). 

Conversely, fetal-biased sets were enriched for many 

developmental terms, as well as terms relating to 

cellular proliferation and TGF-B signaling 

(Supplementary Table 2). Echoing the fetal-biased 

enrichments, we found that old-biased regions were 

weakly enriched (adjusted p-value = 0.037) for 

chemokine-response terms, as well as sensory 

perception. However, no significant term enrichments 

were observed for young-biased regions and promoters. 

 

As an additional means to consider the sets of genomic 

loci in which our development- and age-altered sets are 

distributed, we used the GREAT genome-ontology tool 

(see description of GREAT in Supplementary 

Methods). Fetal-biased regions were located near genes 

associated with several developmentally-related terms, 

such as ‘animal organ morphogenesis’ and ‘embryo 

development’ (Supplementary Table 2). The adult-

biased region set yielded enrichments relating to 

immune processes, such as ‘innate immune response’ 

and ‘immune effector process’, as well as terms related 

to keratinization (Supplementary Table 2). Young-

biased regions were enriched for terms relating to cell-

cycling, such as ‘mitotic cell cycle process’. 

Enrichments for old-biased regions were associated 

with immune processes such as ‘regulation of defense 

response’, while also hitting terms related to DNA 

break repair and ‘negative regulation of telomere 

maintenance’ (Supplementary Table 2). Interestingly, 

when intersecting the fetal/adult and young/old-biased 

regions we saw a number of additional GREAT terms, 

while many signals persisted in intersect sets 

(Supplementary Table 2). For example, adult-biased 

regions which were also more accessible in older-adult 
samples were enriched for the ‘positive regulation of 

immune response’ term; a signal of post-natal 

development of immune function would be expected 
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[13] and that this signal persists into old-age  

might suggest that we also capture signals of  

inappropriate immune system behavior (so-called 

‘inflammaging’ [14]). 

 

RNA-seq expression datasets 

 

Given the biological signals we observed by associating 

our region sets with gene loci, we next looked to see if 

similar signals are evident with tissue expression 

datasets. We utilized ENCODE RNA-seq datasets [8] for 

fetal and adult tissues – however, given the limited 

availability of adult tissue samples we performed a less-

stringent method for identifying genes whose expression 

changes over development (see Supplementary 

Methods). These broad sets of genes yielded similar 

enrichments to those seen previously on the regulatory 

level, with genes generally less-expressed in adult tissues 

enriched for terms involved in growth (e.g., cell-cycling) 

and chromatin regulation, while those generally more-

expressed in adult tissues enriched for terms relating to 

immune response (e.g., ‘humoral immune response’), 

sensory perception and keratinization (Supplementary 

Table 2). These gene sets significantly overlapped those 

genes associated with adult-biased and fetal-biased 

regions (all genes – 1.11 FC enrichment, hypergeometric 

p-value = 6.73e-10) and tended to share directionality 

(chi-sq test, p-value < 1e-16). 

 

We performed a similar expression analysis using adult 

tissue samples, stratified by the same age categories 

used in our accessibility analyses, for those adult tissues 

available from the GTEx dataset [15] which overlapped 

our adult-tissue accessibility datasets (brain, heart, lung, 

muscle and stomach) (see Supplementary Methods). 

Genes generally less-expressed in older samples  

were enriched for terms relating to growth, including 

cell-cycling, mitochondrial function, and protein 

synthesis/turnover (Supplementary Table 2). 

 

Conversely, genes generally more-expressed in older 

samples were enriched for terms relating to development, 

including terms such as ‘ECM organization’, 

‘ossification’ and ‘angiogenesis’. Whether or not this 

follows with the suggested role for aberrant 

mysregulation of developmental pathways in aging 

biology [16, 17] signalling pathways, is unclear however. 

Comparing these aging accessibility and expression-

defined gene sets we did not observe significant overlaps 

(hypergeometric test, 1.04 FC, p-value = 0.19); this may 

be the result of a disconnect between epigenetic 

dysregulation and expression changes with aging at 

particular loci. 
 

Finally, we looked for overlaps between gene 

expression in our fetal/adult and young/old-adult 

comparisons, finding that genes broadly less-expressed 

in adult tissues (relative to fetal) are also less expressed 

in older adult tissues (hypergeometric, p = < 1e-16). 

While we did not see significant overlap in the adult-

biased/old-age-biased expression sets, those genes 

which did overlap were enriched for immune response 

terms similar to those seen in the adult-biased set (data 

not shown). 

 

Divergent sequence intersection enrichments 

 

We took an aggregated set of sequences showing 

increased divergence along the human lineage [18–23] 

and intersected these with our region sets. 

Subsequently, we assigned each intersection to the 

nearest annotated gene, and asked whether these 

elements are actually contacted by these nearby genes 

via the promoter-capture datasets we had previously 

integrated with our region sets. These intersections, as 

well as whether the nearest annotated gene shows some 

contact data for the indicated region, are presented in 

Supplementary Table 3. We highlight two example loci, 

one associated with the fetal-biased region set, the other 

with the young-biased region set (both of these sets 

showing general enrichments for overlaps with our 

aggregated sequence-divergence set, see Figure 2B and 

Supplementary Figure 7 and Supplementary Table 3). 

 

A region losing accessibility in adult tissues (i.e., a 

‘fetal-biased’ region) intersects a human-accelerated 

region [20] intronic to FGF1, a fibroblast growth factor 

associated with numerous developmental processes as 

well as tissue repair [24]; this region also has promoter-

capture data to suggest contact with the FGF1 

promoter. A region losing accessibility in old-adult 

tissue intersects a human-accelerated region [20] 

intronic to the PKNOX2 gene, and which also has 

promoter-capture data to suggest contact with the 

PKNOX2 promoter. This region lies downstream of the 

variant rs590211, which has previously been identified 

in a GWAS of extreme longevity [25, 26]. 

 

Comparing sequence diversity between region sets 

 

Given the patterns of our different region sets in terms 

of the presence of common human sequence variation 

(relative to genomic backgrounds and other features, see 

Figure 2C), we directly compared the occurrence of 

common variants in different sets to one another in 

humans, chimps and gorillas (Supplementary Table 3). 

Within humans, fetal-biased regions tended to have far 

lower variation when compared to every other set, with 

the exception of young-biased regions (for which the 
difference was insignificant). Conversely, adult-biased 

regions had greater variation when compared to every 

other set, with the exception of old-biased regions 



 

www.aging-us.com 15721 AGING 

(which had higher variation). Accordingly, old-biased 

regions tended to have greater variation when compared 

to young-biased regions. Within both chimpanzees and 

gorillas these differences between accessibility-altered 

region sets were similarly observed (Supplementary 

Table 3). 

 

Developmental trait GWAS 

 

Considering our region sets comparing fetal/adult 

accessibility changes, we would expect that regions 

(which may potentially act as regulatory elements) more 

accessible in fetal tissues may have more of an impact 

on developmental processes than those regions less 

accessible in fetal tissues, and vice-versa when 

considering processes such as tissue homeostasis (e.g., 

in adult tissues). Therefore, in addition to our focus on 

aging-associated diseases/traits, we similarly collected a 

set of developmental traits/disease GWAS to confirm 

this expected behavior with regards to developmental 

processes. 

 

We observed that fetal-biased regions trended towards 

having greater numbers of nearby significance-

thresholded SNPs (reported association p-value < 1e-6) 

compared to a general DNase background set across 

almost all traits used (with the exception of childhood 

epilepsy). Significant enrichments (hypergeometric test, 

adjusted p-value < 0.05) were limited to birthweight 

[27] and height [28], though this may be due to the 

larger number of SNPs nearby target/background sets 

observed with these traits (see Supplementary Table 4). 

Conversely, adult-biased regions trended towards 

having decreased numbers of nearby significance-

thresholded SNPs across almost all traits used (with the 

exception of childhood epilepsy). Significant 

(hypergeometric test, adjusted p-value < 0.05) 

depletions were observed for birth length, maternal-

effect birth weight, childhood BMI, fetal-effect birth 

weight, gestational-duration and height (Supplementary 

Table 4). 

 

Longevity GWAS 

 

Given the patterns of association with our altered-

accessibility region sets and aging-associated diseases, 

we also considered four different GWAS summary-

statistics datasets for parental lifespan [29, 30]. 

Compared to DNase regions generally, we observed that 

fetal-biased regions were not enriched for nearby 

significance-thresholded longevity SNPs (and trended 

slightly towards depletion). By contrast, adult-biased 

regions were significantly enriched for the nearby 
presence of such variants (hypergeometric test, adjusted 

p-value < 0.05). Similar to adult-biased regions, young-

biased regions were significantly-enriched for two of the 

four longevity datasets, trending slightly with a third. 

Old-biased regions were neither significantly enriched 

nor depleted for longevity GWAS signals, unlike what 

was seen for aging-associated diseases in general. 

 

Effect-size distributions 

 

In addition to determining whether or not a given 

variant can act to significantly impact disease 

heritability, the epigenetic state of a region may also 

determine the magnitude of this impact. For those 

variants falling nearby developmentally-altered regions, 

we also considered the reported effect size for their 

respective diseases. We observed 40 diseases for which 

variants nearby adult-biased regions had significantly 

greater absolute effect sizes, compared to only 3 

diseases for which nearby variants had significantly 

reduced effect sizes (Supplementary Table 4). Given 

that lowering significance thresholds can increase the 

amount of heritable variation explained for a given trait, 

we also considered the effect size distribution of all 

variants falling near our region sets. Nearly all diseases 

had biased distributions, with the majority (106 of 127) 

having larger absolute effect sizes for adult-biased 

regions (Supplementary Table 4). 

 

Per-disease enrichment testing 

 

For each GWAS set, we defined single nucleotide 

polymorphisms (SNPs) with strong association  

signals (p-value < 1e-6) and looked for the presence of 

nearby epigenetically-altered regions (Supplementary 

Methods). We observed that, generally, our accessibility 

data were enriched for nearby variants (Supplementary 

Table 4), which is expected given that these data will 

capture non-coding regulatory elements which are 

concentrated for GWAS signal [31]. First considering 

accessibility change between fetal and adult tissues, we 

found that of this general enrichment adult-biased 

regions associate with a significant proportion of 

variants across a majority of diseases, while fetal-biased 

regions associated with significantly less variants than 

expected (Supplementary Table 4). 

 

We next considered the effects of age-associated 

accessibility changes on age-related disease GWAS 

signals. Unexpectedly, we observed that old-biased 

regions, unlike adult-biased regions, are actually 

depleted of nearby strong variants across the majority of 

age-related diseases, while young-biased regions are 

enriched for such signals (Supplementary Table 4). 

Furthermore, we found that for intersections of 

development and age-altered regions that this age-
associated behavior outweighs the earlier development 

behavior. Of the general enrichment in adult-biased 

regions, a significant portion of this can be attested to 
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adult-biased regions which lose accessibility in old-age 

(i.e., young-biased regions), while adult-biased regions 

which gain accessibility in old-age are actually depleted 

for such signals (Supplementary Table 4). Conversely, 

of the general depletion in fetal-biased regions, an 

insignificant portion of this can be attested to fetal-

biased, old-biased region intersects (hypergeometric test 

adjusted p-value > 0.05), while those strong variants 

which do fall nearby fetal-biased regions tend to be 

concentrated near those regions also considered young-

biased (Supplementary Table 4). 

 

Gene set ranking tests 

 

To confirm the behavior of our within-disease gene 

ranking strategy (see Supplementary Methods), we 

defined a positive-control gene set which would be 

expected to be strongly-associated with aging diseases 

using the GO term ‘homeostatic process’ (GO:0042592). 

When compared to randomly-sampled gene sets this set 

had significantly-increased cross-disease gene rankings 

(Supplementary Table 4). As a negative control, we took 

a gene set which would not be expected to be strongly 

associated with aging diseases, those involved in the 

development of reproductive structures (GO:0003006). 

This set did not have significantly-increased cross-

disease gene rankings. 

 

When looking at gene sets defined by RNA-seq data, 

we found that genes generally less expressed in adult 

tissues (fetal-biased) were enriched for cross-disease 

GWAS signals, while genes more expressed in adults 

were actually significantly depleted for such signals 

(Supplementary Table 4). Gene loci with increased 

expression in older adult tissues were enriched for 

GWAS signals, as were loci with decreased older-adult 

expression – suggesting the possibility that a mixture of 

genes increasing and decreasing expression over time 

may additively contribute to aging disease biology. It is 

worth noting that the fetal-biased (expression) genes 

significantly overlap with young-biased genes (defined 

by expression), possibly explaining the shared 

enrichment for GWAS signals, while adult-biased and 

old-biased genes (by expression) did not significantly 

overlap - though this overlap set itself, containing a 

number of immune-related genes, was enriched for 

GWAS signals (data not shown). 

 

Cross-disease gene ranking genome-wide 

 

It has been suggested that the highly polygenic nature of 

complex traits and diseases reflects cumulative regulatory 

modification to a ‘core’ set of genes who functions most 
proximately in relevant biology (i.e., the ‘Omnigenic 

model’) [32]. If this is indeed the case, we would expect 

that, for age-associated diseases across multiple tissues, 

those genes most involved with general pan-tissue aging 

processes would represent a ‘core’ set of genes whose 

dysregulation contribute to heritable risk across aging-

associated diseases. We took an unbiased approach to 

relevant gene discovery, identifying a putative set of 

‘core’ aging-related genes solely on the basis of 

aggregate GWAS signals genome-wide (without 

considering accessibility change) (Supplementary 

Methods). The resulting set of genes was enriched for 

terms relating to keratinization, sensory perception of 

smell, and neuron-related terms (e.g., glutamate receptor 

signaling) (Supplementary Table 4). We previously 

observed the former two terms in our region-association 

analyses, which may suggest that the effects of gene 

clustering (e.g., clustering of keratin genes, olfactory 

receptors) may bias our locus ranking method. We note 

that similar enrichments for these terms in our fetal/adult 

RNA-seq analyses were observed (Supplementary Table 

2), though whether this GWAS signal – expression - 

accessibility concordance is due to broad changes in 

accessibility and subsequent transcription in gene clusters 

is unclear. The fact that we observe consistent 

enrichments for keratinization and smell perception using 

the RRA-based method may indicate that this method is 

particularly sensitive to gene-clustering effects. 

 

Our per-disease GWAS analyses suggested the 

importance of altered epigenetic state, particularly that 

which occurs between young/old adult tissues, in 

considering the risk association of variants with aging-

associated diseases. Therefore, we looked for consistent 

cross-set ranking using variants occurring nearby age-

association regions (Supplementary Methods). Again, 

applying an RRA-based method to different accessibility 

region sets yielded broadly similar terms relating to 

keratinization and smell perception. However, when 

applying a functional gene-set enrichment analysis 

(FGSEA)-based method, we saw greater differentiation 

in enrichment results. Ranking genes based on variants 

nearby fetal-biased regions yielded terms relating to 

developmental processes (e.g., embryonic development, 

skeletal system morphogenesis), while considering  

adult-biased regions again yielded enrichments for 

keratinization. Young-biased regions yielded enrichments 

for ‘histone deacetylation’ (discussed in more detail in 

main text), as well as terms relating to viral infection 

(e.g., ‘viral gene expression’). Finally, old-biased regions 

yielded the previously-seen enrichments for smell 

perception and keratinization, though also including 

enrichments for immune processes (e.g., ‘antibacterial 

humoral response’) and DNA methylation. 

 

Intersection set comparisons 

 

We compared our developmentally-associated and age-

associated regions directly, here explicitly comparing 
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age-associated regions with developmental regions not 

changing with age as a more stringent contrast 

(Supplementary Methods). Here we also saw the much-

stronger biasing of young/old-biased regions; old-

biased regions associating with significantly less cross-

trait heritability than fetal-biased, while young-biased 

regions associated with significantly more heritability 

than all other sets (Supplementary Table 4). Comparing 

development and age-altered intersection sets, we 

found that the strong disparity in GWAS associations 

between the young -and old-biased region sets 

outweighed the differences between the fetal- and 

adult-biased region sets. For example, the young-biased 

/fetal-biased set had the second-highest average cross-

trait association, despite fetal-biased regions generally 

being associated with weaker GWAS signals in the 

previous fetal/adult comparison. Conversely, the 

weaker GWAS signals associated with the old-biased 

region set outweighed the generally-higher signals  

of the adult-biased region set, actually having a  

lower average cross-trait association than fetal-biased 

regions not significantly changing accessibility in the 

young/old accessibility analysis (see Supplementary 

Table 4). 

 

Supplementary Methods 
 

Processing accessibility datasets 

 

DNase-I hypersensitivity datasets were obtained from 

ENCODE [33] for eight different fetal and adult tissues 

(adrenal gland, brain, heart, lung, muscle, skin, spleen 

and stomach), retrieving sorted, duplicate-filtered 

mapped read files (.bam) via the ENCODE web portal 

[8] in hg19 format. ENCODE file accession codes and 

metadata for individual samples are provided in 

Supplementary Table 1. To define reproducible 

hypersensitivity sites within each tissue, we applied the 

IDR statistical test [34] (version 2.0.3). Briefly, the 

IDR method identifies overlaps in peak calls across 

pairs of sample replicates by comparing ranked peak 

lists (using MACS2 q-value) to define a reproducibility 

score curve. These paired peaks are then assigned a 

pointwise score based on this curve. Peaks are sorted, 

with those falling below an “irreproducible discovery 

rate” (IDR) threshold (here defined as 0.05) are taken 

as the final reproducible peak set across replicates. For 

each sample, peaks were called with MACS2 [35] 

(version 2.1.1.2) using the following parameters: ‘-f 

BAMPE --nolambda’ and ‘-f BAM --no-model --shift -

100 --extsize 200’ for paired-end and single-end 

experiments, respectively. An IDR threshold of 0.05 

was applied, with resulting filtered peaksets combined 

using the ‘bedtools merge’ function from bedtools [36] 

version 2.29.1 in those instances where both single-end 

and paired-end experiments for a given tissue were 

obtained and processed separately with MACS2/IDR. 

Peak sets were pooled across individual tissues for a 

given set of samples (e.g., fetal IDR peak calls) and 

subsequently pooled using ‘bedtools merge -c 1 -o 

count’, filtering for peaks which were overlapped at 

least twice (i.e., called in at least two different tissues). 

Finally, peaks were fixed to a constant size by padding 

75bp from the centre of each peak (150bp regions), this 

size based on the average size of called peaks across 

different sets. These tissue-consolidated peak sets, 

defined for adult and fetal samples, were then pooled 

and merged with ‘bedtools merge’, fixing the final set 

of peaks to a constant size of 150bp. DNase read-

coverage was then quantified within this peak set using 

the ‘bedcov’ function of samtools [37] (version 1.5) for 

each mapped .bam file initially obtained, resulting in a 

final matrix of read coverages for all peaks across all 

tissue samples. 

 

Read coverages were imported into R [38] version 

4.0.2 via the limma [39] package version 3.46; 

coverages were subsequently normalized using the 

TMM method using the ‘calcNormFactors’ function 

from edgeR [40] version 3.32.1. Two different models 

for comparing differential-accessibility across adult/ 

fetal samples were used. Firstly, we considered within-

tissue differences in accessibility with time (i.e.,  

the interaction between tissue*time). Secondly, we 

considered across-tissue differences in accessibility 

with time to by accounting for all tissues simultaneously 

(i.e., using a model of tissue + time). For both models, 

we performed a standard limma-based analysis using 

the functions ‘voomWithQualityWeights’ (setting 

normalized = ‘none’, all others left to defaults), ‘lmFit’, 

‘makeContrasts’, ‘contrasts.fit’ and finally ‘eBayes’. 

The final sets of statistics comparing differential-

accessibility across all peaks were extracted for 

individual tissues (using the results from the first 

model) and across tissues (using results from the second 

model) using the ‘topTable’ function, applying  

a Benjamini-Hochberg [41] FDR correction to  

define peaks significantly changing accessibility 

(differentially-accessible, DA) (adj. P-val < 0.05). 

Subsequently, the peaks defined as DA across tissues 

with time were compared to those defined as DA within 

tissues using R, with the resulting intersections 

visualized using ggplot2 version 2.3.3 and gridExtra 

version 2.3 as shown in Figure 1C. Per-peak DA 

statistic results for the cross-tissue fetal/adult 

comparison are provided in Supplementary Table 1, 

Sheet 2. 

 

Visualizing genomic distribution of epigenetic change 

 

To visualize the distribution of regions exhibiting 

altered accessibility across the genome (i.e., the DA 
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peaks defined above), we defined genome-wide 

windows using the bedtools ‘makewindows’ function, 

then intersected our peak sets via bedtools intersect. 

The resulting tracks were loaded into R using the 

rtracklayer [42] package version 1.50. To visualize the 

density of altered peaks generally, for each 

chromosome the number of regions (adult- and fetal-

biased) falling within windows were summed per-

window, and subsequently smoothened using the 

‘smooth.spline’ function in R. We subsequently 

defined a red/blue colour scale based on these 

smoothened counts. In addition this general density, 

we also calculated the difference in the occurrence of 

adult-/fetal-biased peaks/regions within windows, 

smoothening these values within a given chromosome. 

We used the karyoploteR [43] package version 1.16 to 

plot karyotypes for all chromosomes, plotting the 

density of DA peak occurrence as a red/blue density 

bar, while the differences in adult-/fetal-biased peak 

occurrence were visualized as a curve (with diagonal 

red line indicating no difference in smoothened 

values). These plots for the first ten autosomes are 

shown in Figure 1B, with the full set of autosomes 

shown in Supplementary Figure 2. 

 

Defining age-altered regions 

 

In order to compare DNase-I accessibility across adult 

samples, the set of adult samples used in the above 

analysis was subsequently split into those from 

individuals younger than 50 (‘young-adult’) and those 

older (‘old-adult’), this age representing a roughly 

equal split of sample numbers. Not all tissues used in 

the initial fetal/adult comparison were represented in 

these age-stratified sets – thus we restricted the tissue 

comparisons to brain, heart, lung, muscle and stomach 

tissues. The read coverage matrix defined above was 

restricted to just these adult samples. Given our 

interest in considering accessibility change with age in 

the context of earlier fetal/adult epigenetic change, we 

further subset the coverage matrix to consider age-

altered accessibility in peaks defined as DA between 

fetal/adult samples (adj. P-val < 0.05). The resulting 

matrix was again loaded into R using limma, with the 

subsequent analyses performed similarly to that 

described above – considering two different models 

(within-tissue and across-tissue aging differences) to 

compare young/old samples. We finally compared 

within- and across-tissue DA peak definitions using R, 

though due to the reduced sample sizes for performing 

the within-tissue comparisons there was limited 

overlap of significant results despite agreement in 

direction-of-effect (data not shown). Per-peak DA 
statistic results for the cross-tissue young/old-adult 

comparison are provided in Supplementary Table 1, 

Sheet 3. 

Generating accessibility heatmaps 

 

To visualize accessibility across different fetal/adult 

tissues (as see in Figure 1A), we took the TMM-

normalized counts matrix defined above and converted 

counts to counts-per-million (CPM) using the ‘cpm’ 

function from edgeR with the following parameters: ‘log 

= T, prior.count = 3’. This CPM matrix was then subset 

to those peaks which were significantly DA (adj p. < 

0.05). For visualization, we then sorted all peaks by their 

limma-calculated t-statistic, taking the top 1000 peaks 

showing the strongest increase/decrease in accessibility 

(between fetal/adult). Normalized CPM values were 

averaged across individual replicates for a given tissue, 

with the resulting matrix finally z-score-normalized (per-

peak), and plotted using the ComplexHeatmap [44] 

package version 2.6.2. A similar method was performed 

using peak sets defined in the above age-altered region 

analysis, as shown in Supplementary Figure 3. 

Additionally, we performed the above analyses for 

individual replicates of a given tissue (e.g., heart 

samples), as shown in Supplementary Figure 1. 

 

Comparing development and age-associated changes 

 

Peak sets defined as differentially-accessible in either 

the fetal/adult, or young-adult/old-adult comparisons 

were read into R and compared for overlaps visually 

using the VennDiagram [45] package version 1.6.20, as 

seen in Figure 1D. The directionality of peak overlaps, 

i.e., fetal-/adult-biased vs. young/old-biased, were 

compared using a chi-sq test in base R, the results of 

which are shown in Supplementary Table 1, Sheet 3. 

 

Assigning epigenetic states to region sets 

 

To define the epigenetic context within which our 

development- and age-altered regions fall, we utilized 

genome-wide assignments of epigenetic state as defined 

by the Roadmap consortium [3]. This employs a Hidden 

Markov Model to analyze epigenetic data, including 

chromatin modification (ChIP-seq) and accessibility 

(DNase-seq) data, for a given sample and assign one of 

several possible epigenetic states for individual 200bp 

segments genome-wide. The Roadmap dataset contains 

several such genome-wide state definitions for different 

tissue and cell-line samples (e.g., skin, brain, etc.). We 

downloaded state definitions for the 25 state model, 

which incorporates imputed data for 12 marks, for 127 

reference genomes, subsetting to those obtained from 

adult tissue samples. For each individual 200bp segment 

we then considered the assigned epigenetic state of this 

segment across all samples – given our pan-tissue 
approach to chromatin accessibility changes, we defined 

an ‘adult-majority’ state assignment based on the 

assigned state recurrent across the majority of samples. 
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For simplicity, we collapsed down similar definitions 

(e.g., ‘Active Enhancer 1’ and ‘Active Enhancer 2’ 

being considered ‘Enhancer’) (see Supplementary 

Figure 4 for final reduced set of states). Our sets of 

development- and age-altered regions were 

subsequently intersected with these genome-wide states 

using bedtools intersect, counting the number of 

segments intersected that belonged to different 

categories. This was done considering the unique 

numbers of segments (i.e., segments intersected by more 

than one region were only counted once) – allowing for 

repeat segment counting did not substantially alter 

enrichment results (data not shown). Finally, for each 

epigenetic state we compared the number of segments 

intersected by a given region set (e.g., old-biased 

regions) to the total number of segments assigned this 

state genome-wide using the phyper function from base 

R. P-values from these hypergeometric tests were 

adjusted for the number of states tested using the 

Benjamin-Hochberg method – enrichment/depletion 

results were similar when considering all 25 epigenetic 

states (data not shown). Enrichments/depletions for 

each region set were plotted as logFC values using 

ggplot2 (see Supplementary Figure 4). 

 

LOLA enrichment analysis 

 

The LOLA software [5] version 1.12 was used to test 

for significant enrichments of our region sets with 

publicly-available sets of genomic annotations and 

epigenetic datasets. For these sets of developmentally-

altered regions, we used the set of DNase-I regions used 

in the initial differential-accessibility analysis (i.e., 

reproducible peaks pooled from adult and fetal tissues) 

as the background region set (to account for the 

possibility of inherent biases of open-chromatin regions 

towards certain datasets/annotations). To visualize these 

enrichment results, significant enrichments (defined as 

calculated q-value < 0.05) were first sorted by odds-

ratio values, then filtered to remove similar entries (e.g., 

replicate datasets for a given histone mark in a given 

cell-type). Furthermore, given our interest in epigenetic 

and genomic annotation terms, we further filtered 

significant results to retain histone-mark datasets and 

annotations. Of this set, the top 20 terms (by odds-ratio) 

were plotted using ggplot2. For LOLA enrichments 

using young- and old-biased region sets, the set of 

regions used in the initial young/old comparison (i.e., 

peaks differentially-accessible across the fetal/adult 

comparison) was used as the background region set. 

 

Comparing developmental epigenetic changes with 

bivalent developmental promoters 

 

A set of bivalent promoter domains defined by Yan et 

al. 2016 [1] using ChIP-seq datasets generated from 

fetal brain, heart and liver samples was obtained and 

pooled (Supplementary Table 2 of Yan et al.). To 

establish a genome-wide background for promoters, all 

hg19 Refseq gene TSS were obtained from the UCSC 

genome browser [46] and padded 2kb up/downstream, 

following the definition of promoter regions used in 

Yan et al. The adult-biased and fetal-biased region sets 

were subsequently intersected with these promoter 

regions using bedtools intersect. The number of bivalent 

promoters intersected by development-altered regions 

were compared to the total number of promoters 

intersected using the ‘phyper’ function of base R to test 

for enrichment/depletion. As an additional validation, 

we randomly sampled promoter regions genome-wide 

to match the number of promoter regions intersected by 

adult/fetal-biased sets, generating a background of 1000 

sets of randomized promoters for each. The number of 

bivalent domains intersecting these randomized sets was 

compared to the number of bivalent domains intersected 

by adult/fetal-biased regions using the ‘pnorm’ function 

in base R, confirming the depleted intersections of 

adult-biased regions and enriched intersections of fetal-

biased regions (data not shown). 

 

Processing ChIP-seq datasets 

 

For our analyses comparing patterns of chromatin 

accessibility with histone modifications, histone mark 

ChIP-seq datasets were obtained from ENCODE for 

H3K27ac, H3K27me3, and H3K9me3 marks. These 

datasets were obtained from fetal and adult tissue 

samples for tissues overlapping those used in the DNase 

accessibility analyses above – see Supplementary Table 

1 for accession codes and metadata. ChIP-seq peaks 

called by the ENCODE pipeline were obtained along 

with mapped (hg19) bam files. Peak calls from 

biological replicates for individual tissues were 

consolidated by requiring that peaks be replicated in 2/3 

of samples to be considered replicable for downstream 

analyses. Overlapping peaks were merged and fixed to 

constant size of 400bp (for H3K27ac) and 300bp (for 

H3K9me3 and H3K27me3) (size based on average peak 

call size in individual replicates) using bedtools. 

Replicable peaks were then pooled across tissues, and 

subsequently pooled across fetal/adult samples, 

overlapping peaks again merged and fixed to a constant 

size. 

 

In order to address the expected concordance between 

called DNase-I hypersensitivity sites and the presence 

of nearby histone ChIP-seq peaks, replicable DNase-I 

hypersensitivity sites defined for fetal and adult tissues 

were taken and compared with replicable ChIP-seq 
peaks looking for adjacency. This was done using the 

bedtools ‘slop’ function, looking for the presence of 

ChIP-seq peaks within a 1kb window (centred on each 
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ChIP-seq peak) of a given DNase peak. Nearby 

adjacency was checked for matched tissues – e.g., 

H3K27ac peaks defined in adult muscle tissue were 

compared with DNase peaks defined in adult muscle 

tissue, with the percent of called DNase peaks having 

nearby ChIP-seq peaks calculated. 

 

We then applied a pipeline similar to that described 

above in the treatment of DNase datasets. 

 

ChIP-seq read-coverage was quantified within the final 

peak set using the ‘bedcov’ function of samtools 

(version 1.5) for each mapped .bam file initially 

obtained, resulting in a final matrix of read coverages 

for all peaks across all tissue samples. 

 

Read coverages were imported into R via the limma 

package; coverages were subsequently normalized using 

the TMM method using the ‘calcNormFactors’ function 

from edgeR. Given the reduced number of ChIP-seq 

samples available for any given fetal/adult tissue 

comparison, only pan-tissue defined peaks were used in 

subsequent comparisons with altered-accessibility 

regions (results for individual tissue comparison models 

not shown). We performed a standard limma-based 

analysis using the functions ‘voomWithQualityWeights’ 

(setting normalized = ‘none’, all others left to defaults), 

‘lmFit’, ‘makeContrasts’, ‘contrasts.fit’ and finally 

‘eBayes’. The final sets of statistics comparing 

differential-accessibility across all peaks were extracted 

from the pan-tissue model using the ‘topTable’ function, 

applying a Benjamini-Hochberg FDR correction to 

define peaks significantly changing accessibility 

(differentially-accessible, DA) (adj. P-val < 0.05). 

 

Methylation-site analysis 

 

The set of methylation sites used in defining the 

methylation-aging clock from Horvath 2013 [47] were 

obtained (Additional File 3). These sites were separated 

into those either increasing or decreasing methylation 

status with age, with the resulting sets of genomic 

coordinates lifted-over from hg18 to hg19 using the 

‘liftOver’ utility from UCSC [48]. These sites were then 

intersected with our sets of development- and age-

altered regions using regioneR [49] (version 1.8.1) 

using the 'permTest’ function, generating 1000 

randomized region sets as a background using the 

'circularRandomizeRegions’ option and the 

‘count.once’ flag, with all other options set to defaults. 

Significance was assessed at p < 0.05 (Supplementary 

Table 1). For hypergeometric testing at the gene-locus 

level, gene annotations for hyper/hypo-methylated sites 
(as defined in the Horvath dataset) were intersected with 

the sets of genes associated with our different region 

sets (defined as described below under ‘Defining 

Region-Associated Genes’), using the ‘phyper’ function 

in base R to compare the numbers of overlaps relative to 

all genes captured in the promoter-capture datasets used 

(see below). Directional bias (e.g., old-age-associated 

genes and hypo-methylated regions) was tested using 

the ‘chisq.test’ function in base R. 

 

Promoter accessibility change processing 

 

All hg19 Refseq gene TSS were obtained from the UCSC 

genome browser [50] and padded 1kb up/downstream to 

define promoter regions. For each promoter region, 

DNase read coverage was calculated for all fetal and 

adult tissue samples using the ‘bedcov’ function of 

samtools (version 1.5) for each mapped .bam file initially 

obtained, resulting in a final matrix of read coverages for 

all peaks across all tissue samples. A limma-voom 

analysis to define promoters whose accessibility were 

significantly different across tissues in the fetal/adult 

comparison was performed, similar to that described 

above in our initial DNase-I region analysis. Significance 

was defined as adjusted p-value < 0.05. The same 

analysis was performed using age-stratified adult samples 

in order to define promoter regions changing accessibility 

across tissues (i.e., age-altered promoter regions). To 

visualize promoter accessibility across fetal/adult and 

young/old-age tissues (as seen in Supplementary Figure 

6), the promoter read-coverage matrices was treated 

similar to that described above. Given the large number 

of promoters defined as differentially-accessible, we also 

defined a more stringent definition of changing promoter 

accessibility. We intersected promoter regions with our 

region sets using bedtools – that is, a promoter 

intersected by a fetal-biased region was considered a 

fetal-biased promoter, and similarly for age-altered 

region intersections. 

 

Promoter contact processing 

 

Promoter-capture data was obtained from Jung et al., 

2019 [12], particularly the file ‘GSE86189_ 

all_interaction.po.txt.gz’ which contains processed 

information on regions contacting the promoters 

assayed in this study. This dataset was generated from 

promoter-capture assays across a number of different 

tissues and cell-types; given our pan-tissue approach, 

we considered all data (with the exception of OV2, as 

we excluded sex-specific tissues from all previous 

obtained datasets). To generate a set of genomic regions 

which show evidence of contacting gene promoters, we 

filtered interacting regions to those which contacted 

their respective promoters in at least two different 

tissues/cell-types. This moderate filter was used to 
exclude those regions for which interactions appear to 

be exclusive to one dataset, while allowing for regions 

that do not show such exclusivity. We then intersected 
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these interacting regions with our sets of altered regions 

in order to suggest the possible regulatory roles that our 

sets may have (in terms of regulating possible target 

genes). 

 

Preferential contacts: 

 

We first tested to see whether adult-biased or fetal-

biased regions differed in their tendency to contact gene 

promoters. Interacting regions were labeled as adult-

/fetal-biased based on these intersections, and the 

numbers of said regions interacting with promoters was 

tested using hurdle modelling as implemented using the 

‘hurdle’ function from the pscl [51, 52] package in R 

(version 1.5.2). A binomial model was applied for the 

initial hurdle/zero-counts step, with the subsequent 

counts modeling done using a negative binomial 

regression model. Tukey post-hoc testing was 

performed using the emmeans package version 1.5.5 in 

R. A similar analysis was performed using young- and 

old-biased regions. 

 

To test whether adult- or fetal-biased regions 

preferentially intersected with promoter-capture regions 

contacting promoters either gaining or losing 

accessibility (differential accessibility as defined above, 

adjusted p-value < 0.05), we used the ‘chisq.test’ 

function in base R for both the adult/fetal comparison as 

well as young/old-age. As a more stringent test, we 

performed a similar chi-sq test for promoters 

gaining/losing accessibility as defined by intersections 

with development- or age-altered regions. 

 

Defining region-associated genes 

 

To associate genes with our region sets to suggest 

regulatory patterns (e.g., adult-biased regions contacting 

a promoter with increased accessibility across adult 

tissues relative to fetal), we took the set of promoters 

for which differential-accessibility was significant in the 

fetal/adult (or young/old-age) comparison (adjusted p-

value < 0.05) and considered the regions putatively 

contacting these promoters, as defined above. Given 

that a given promoter may be contacted by regions both 

gaining and losing accessibility (e.g., adult- and fetal-

biased regions) (there being few genes contacted by 

exclusively one set of regions – data not shown), a chi-

sq test was performed per-promoter to test for 

significant bias in the number of putatively-contacting 

regions (i.e., a fetal-biased promoter with a greater 

proportion of putative fetal-biased region contacts), 

controlling for the global proportion of putative contacts 

(given that we observed biases in different region sets 
for having more putative contacts given the above zero-

hurdle modelling analyses). These multiple tests were 

corrected using a Benjamini-Hochberg correction, with 

genes showing a significant bias in putative contacts 

sharing direction with promoter accessibility change 

retained for subsequent gene-set enrichment analyses 

(see below, Supplementary Table 2). 

 

GREAT: GREAT [53] takes an input set of genomic 

regions along with a defined ontology of gene 

annotations; firstly, it defines regulatory domains for all 

genes genome-wide, then measures the fraction of the 

genome covered by the regulatory domains of genes 

associated with a particular annotation (e.g., ‘cartilage 

development’). These fractions are used as the 

expectation in a binomial test counting the number of 

input genomic regions falling within a given set of 

regulatory domains, which results in the reported 

significance of association between an input region set 

and a particular gene ontology term. GREAT also 

performs a more traditional gene-based hypergeometric 

test to test for significance of region set-ontology 

association. The program returns a set of enriched 

ontologies sorted by the joint rankings of FDR-corrected 

binomial and hypergeometric tests, as reported here in 

our Supplementary Tables. For each given set of 

ontologies (e.g., GO Biological Processes) we took the 

set of ranked terms and filtered for those having either an 

FDR-corrected binomial or hypergeometric p-value of < 

0.05; this was done as, given our large peak sets, the 

hypergeometric test can become saturated (hence, the 

option to show enrichments significant by the region-

based binomial with the GREAT online service). The top 

thirty filtered terms were then subset and are provided in 

Supplementary Table 1. 

 

Gene-set enrichment analyses 

 

Genes associated with our different region sets (as 

described above) were tested for enrichment in different 

GO Biological Process terms using the ‘enrichGO’ 

function from the clusterProfiler [54] package version 

3.16.1. The background gene set was defined as all 

genes for which promoter-capture data was available for 

use in our above region-gene association processing. 

Semantically-similar enriched GO terms were 

subsequently collapsed using the ‘simplify’ function 

from clusterProfiler, using default settings. The top 

enriched GO terms (sorted by adjusted p-value) for each 

region-associated gene set are reported in 

Supplementary Table 2, limiting to the top twenty 

significant (adjusted p-value < 0.05) terms. Similar 

results are shown for gene sets defined using expression 

datasets (Supplementary Table 2). 

 

ENCODE fetal/adult RNA-seq processing 

 

Processed per-gene quantification files, as generated by 

the ENCODE pipeline, were obtained from the ENCODE 



 

www.aging-us.com 15728 AGING 

web portal [8] (see Supplementary Table 2 for file 

accessions). Given the limited availability of adult tissue 

samples with which to perform a differential-expression 

analysis, we instead defined a less-stringent method to 

look for broad changes in expression of genes across 

tissues, as follows. For each individual tissue, replicates 

for adult and fetal samples were collapsed by calculating 

the geometric mean of expression values for each gene. 

The difference in average expression for each gene was 

then calculated, with all expressed genes subsequently 

ranked by these differences. The gene-set ranks for  

each individual tissue comparison were then aggregated 

using the ‘aggregateRanks’ function from the 

RobustRankAggreg library version 1.1 [55]. Briefly, this 

method considers the ranking of genes across multiple 

conditions, detecting genes that are ranked consistently 

higher than expected given a null hypothesis of 

uncorrelated ranked sets by assigning a per-gene 

significance score. We applied this method to genes 

ranked based on differences calculated as (adult – fetal) 

as well as (fetal – adult), defining our final sets of 

‘broadly adult-biased’ and ‘broadly fetal-biased’ genes 

using an RRA significance cutoff of < 0.05. Overlaps of 

these gene sets with those defined above based on our 

region sets was done in R, testing for significant overlap 

with the ‘phyper’ function, as well as biases in the 

direction of these overlaps (i.e., adult-biased by region-

association, adult-biased by RRA RNA-seq) using the 

‘chisq.test’ function. 

 

GTEx young/old-adult RNA-seq processing 

 

The following processed RNA-seq quantification  

files were obtained from the GTEx web portal  

[15]: GTEx_Analysis_2017-06-05_v8_RNASeQCv1. 

1.9_gene_reads.gct, GTEx_Analysis_v8_Annotations 

_SubjectPhenotypesDS.txt, GTEx_Analysis_v8_ 

Annotations_SampleAttributesDS.txt. The scripting 

written for processing this initial metadata was 

modeled after similar code used in a study of age-

associated expression changes that also made use of 

the GTEx dataset [56]. Samples were subset to just 

those used in the young-age/old-age accessibility 

comparison; brain (Brain - Cerebellum), heart (Heart – 

Left Ventricle), lung (Lung), muscle (Muscle - Skeletal) 

and stomach (Stomach). Similar to Benayoun et al., the 

set of human protein-coding genes was obtained from 

UCSC [50] (Homo_sapiens.GRCh38.pep.all.fa) and 

intersected with the subset GTEx expression matrix. 

Similarly, we subset the GTEx matrix to include only 

male individuals, though testing yielded similar sets of 

differentially-expressed genes when considering both 

sexes (data not shown), and filtered for samples having 
genotype data as well as RIN scores >= 5. We used the 

same definitions for ‘young-age’ (< 50) and ‘old-age’ (> 

50) as in the above accessibility analyses. 

We utilized similar processing steps as those outlined 

above in our young/old-age accessibility analyses. The 

subset expression matrix was imported into R version 

4.0.2 via the limma package version 3.46, applying a 

quality filter by requiring that genes have an expression 

value of at least 1 counts-per-million in at least three 

different samples. The filtered matrix was then 

normalized using the TMM method via the 

‘calcNormFactors’ function from edgeR version 3.32.1. 

Two different models for comparing differential-

accessibility across adult/fetal samples were used. Firstly, 

we considered within-tissue differences in accessibility 

with time (i.e., the interaction between tissue*time). 

Secondly, we considered across-tissue differences in 

accessibility with time to by accounting for all tissues 

simultaneously (i.e., using a model of tissue + time). For 

both models, we performed a standard limma-based 

analysis using the functions ‘voomWithQualityWeights’ 

(setting normalized = ‘none’, all others left to defaults), 

‘lmFit’, ‘makeContrasts’, ‘contrasts.fit’ and finally 

‘eBayes’. The final sets of differential-expression 

statistics extracted for individual tissues (using the results 

from the first model) and across tissues (using results 

from the second model) using the ‘topTable’ function, 

applying a Benjamini-Hochberg FDR correction to 

define genes significantly changing expression 

(differentially-expressed, DE) (adj. P-val < 0.05). 

Subsequently, the DE genes defined across tissues with 

time were compared to those defined as DE within-

tissues using R, with the majority (> 60%) of pan-tissue-

defined DE genes also considered DE in at least two 

different tissues (data not shown). 

 

Overlaps of pan-tissue-defined DE genes with those 

defined above based on our young-/old-biased region 

sets was done in R, testing for significant overlap with 

the ‘phyper’ function, as well as biases in the direction 

of these overlaps (i.e., old-biased by region-association, 

old-biased by GTEx RNA-seq) using the ‘chisq.test’ 

function. 

 

Human-divergent sequence analyses 

 

We took an aggregated set of sequences showing 

increased divergence along the human lineage [18–23] 

(see Supplementary Table 3, Sheet 2) and intersected 

with our regions sets (e.g., fetal-biased regions), along 

with ATAC-seq data obtained from a separate adult 

post-mortem brain tissue datasets [57], as well as a 

previously-published B-lymphocyte dataset [58], to act 

as controls. GM12878 ATAC-seq data was obtained 

from GEO datasets (GSE47753) as raw .fastq files (for 

50K samples); reads were subsequently mapped to hg19 
using the ATAC-seq processing pipeline described in 

Richard et al [59], with IDR replication performed for n 

= 4 replicates. Adult brain open-chromatin regions were 
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obtained from the Brain Open Chromatin Atlas (BOCA) 

[57], downloading the file ‘https://bendlj01.u.hpc.mssm. 

edu/multireg/resources/boca_peaks.zip’. Called peaks 

were pooled across different cell types using the 

‘bedtools merge’ function. To account for differences in 

set size when performing intersections, the number of 

intersections for any given region set were calculated as 

intersections/bp of sequence in said set. A background 

distribution was made by generating 1000 random region 

sets consisting of 100,000 regions (based on the general 

set size of our altered-accessibility sets, again accounting 

for total bp of sequence in each randomized set) with a 

constant length of 150bp via the bedtools ‘random’ 

function. These background sets were subsequently 

intersected with our set of human-divergent sequences to 

establish a background distribution of randomized 

intersection counts/bp. The distribution of intersection/bp 

values for this background set was assessed using the 

‘qqnorm’ (R base, version 4.0.3) and ‘qqPlot’ (car [60] 

version 3.0.8) functions – no obvious deviations from a 

normal distribution were observed. Additionally as a 

more stringent significance test, we utilized the 

fitdistrplus [61] package (version 1.1.1) to determine a 

possible alternative distribution to fit the data. The 

‘descdist’ function was initially used to assess curve 

behavior; goodness-of-fit statistics (from the ‘gofstat’ 

function) for gamma, beta, exponential, and log-normal 

distributions were subsequently compared, with the beta-

distribution subsequently selected (this choice also being 

appropriate given the fractional nature of the datapoints 

[62]. Beta distribution parameters (‘shape1’ and ‘shape2’ 

in the R implementation of ‘pbeta’) were fit using a 

bootstrap method (‘bootdist’ from ‘fitdistrplus’), with the 

median parameter estimates from 1000 samples used to 

define the distribution for significance testing of target set 

intersections/bp values with ‘pbeta’ (upper-tail p-values). 

Results were subsequently adjusted using BH correction, 

along with those obtained using the normal CDF 

distribution (‘pnorm’ in base R). Regions intersecting 

human-divergent sequences were associated with the 

closest annotated TSS with the HOMER (version 4.11) 

[63] ‘annotatePeaks.pl’ script. Subsequently, these 

regions were merged with the promoter-capture datasets 

described above, indicating those regions for which 

contact data is suggestive of possible interactions with 

the nearest gene promoter (Supplementary Table 3). 

 

Cross-species sequence conservation within region sets 

 

Per-bp phyloP20ways conservation scores [64] were 

obtained from the UCSC table browser [50] for the hg19 

genome. For a given region, scores were averaged over 

the length of all bp using the ‘bigWigAverageOverBed’ 
utility from UCSC [48]. Scores across all regions  

in different sets were compared using the 

‘pairwise.wilcox.test’ function in base R, applying a BH 

post-hoc correction (see Supplementary Table 3). Similar 

comparison results were observed when using a broader 

100-ways alignment score (data not shown). For 

visualizing distributions of scores across sets (as shown 

in Figure 2A), the region-averaged phyloP scores for 

different sets were plotted using the ‘density’ function in 

base R with default settings. 

 

The sets of altered regions were also compared to those 

DNase regions considered in our accessibility analyses 

which did not significantly change in the fetal/adult 

comparison to act as a control dataset. Region-averaged 

values for target and control sets were compared using 

the ‘t.test’ function in base R for a one-sided 

comparisons. This was done for developmentally-altered 

region sets, as well as age-altered region sets (the control 

for the latter being those regions in the age-accessibility 

analysis which did not significantly change between 

young/old-age tissue samples) (see Supplementary Table 

3, Sheet 1). 

 

Species diversity patterns within region sets 

 

Zero-hurdle modelling 

Variation data from the 1000 Genomes Project phase 3 

(1KGP) [65] (n = 2504 individuals) in .vcf.gz format 

was obtained and intersected with our region sets using 

tabix [66] (version 1.9) to obtain variants occurring 

within these altered-accessibility regions. Chimpanzee 

(n = 25) and gorilla (n = 31) sequence data was 

similarly obtained via the Great Ape Genome Diversity 

Project (GADP) [67]. Peak sets were lifted-over from 

hg19 to hg18 for use with the GADP datasets with the 

UCSC ‘liftover’ utility and relevant liftover chain file. 

Resulting subset VCF files were converted to tab format 

with the following Unix command, using bcftools [68] 

(version 1.8):  

 

bcftools query -f '%CHROM\t%POS\t%ID\t%REF\t% 

ALT[\t%SAMPLE=%TGT]\n' -o out.vcf in.vcf. 

 

Variant data for all region sets were down-sampled to 

n=25 (with replacement, 5 resamples for gorilla and 200 

re-samples for the human set) in order to match sample 

size for all comparisons based on the least-sampled 

species (chimp), using a custom R script. 

 

Common variants were defined using a minor allele 

frequency (MAF) threshold of >= 0.05 for all datasets, 

filtering tab-formatted files using a custom Python script. 

Counts data was defined as the number of variants 

intersecting a given region and were averaged over 

resampled variant sets (see below). Counts data across 
apes were then compared within a given region set (e.g., 

young-age regions) to compare intra-species diversity 

within sequences. Hurdle modeling was used to test for 

‘https:/bendlj01.u.hpc.mssm.edu/multireg/resources/boca_peaks.zip’
‘https:/bendlj01.u.hpc.mssm.edu/multireg/resources/boca_peaks.zip’
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significant differences in both total number of sequences 

containing variants (hurdle) as well as degree of variation 

between species (counts); implemented using the ‘hurdle’ 

function from the pscl [51, 52] package in R (version 

1.5.5). A binomial model was applied for the initial 

hurdle/zero-counts step, with the subsequent counts 

modelling done using a negative binomial regression 

model. Tukey post-hoc testing was performed using the 

emmeans package in R (version 1.4.7) for both 

hurdle/zero-counts and counts models, with significance 

assessed at adjusted p-value < 0.05 (Supplementary 

Table 3). Additionally, region sets were compared to one 

another (e.g., fetal-biased vs. adult-biased regions) within 

a given species using the above methods. 

 

In order to look at sequence constraint of our region sets 

within humans, a background distribution was made by 

generating 1000 random region sets consisting of 

100,000 regions (based on the general set size of our 

altered-accessibility sets) with a constant length of 

150bp via the bedtools ‘random’ function. These sets 

were subsequently pooled, sorted, and merged using 

bedtools, with the resulting bed file used to extract 

variants from the 1KG3 set with tabix (version 1.9). The 

pooled set of altered-accessibility regions was also used 

to extract variants from the 1KG3 set. We also 

considered intersection sets in this analysis (e.g., young-

biased / adult-biased regions, etc.). 

 

Additionally, several genomic features were extracted 

from the HOMER (version 4.0.4) set of genomic 

annotations provided with the program, including the 

following sets: exon, intronic, promoter-TSS, and TTS. 

Regions from RepeatMasker were also obtained from the 

UCSC Table Browser. These additional sets were used to 

extract variants from the 1KG3 set. The resulting files 

were filtered for duplicate variants and subsequently 

MAF >= 0.05 with bcftools (version 1.8). Variants falling 

within particular regions in the random background, 

target (i.e., altered-accessibility regions), and genomic 

annotation sets were then extracted using tabix. Variants 

extracted for each set were counted using vcftools 

(version 0.1.15) ‘--counts2 --stdout’ arguments. Variant 

counts were then adjusted to account for the number of 

bp within a given set. The background distribution of 

these values was investigated using the ‘qqnorm’ (R 

base) and ‘qqPlot’ (car package) functions to look for 

visible deviations from normality, for which no obvious 

deviations were observed. Values were standardized and 

statistical significance was assessed using a CDF of the 

standard normal distribution as implemented in the 

‘pnorm’ function in R (version 4.0.3). P-values for 

significant deviations from the background distribution 
were corrected for the number of sets (n = 13) tested 

using a BH correction. Significance was defined as 

adjusted p < 0.05 (Supplementary Table 3). 

Chimpanzee genomic depletion analysis 

 

A similar sequence constraint analysis was also 

performed for chimpanzees. Altered-accessibility region 

sets were pooled and lifted-over to hg18 using the 

‘liftOver’ utility; a set of 1,000 randomly-generated 

region sets, consisting of 100,000 regions (based on the 

general set size of our altered-accessibility sets) with a 

constant length of 150bp via the bedtools ‘random’ 

function. Randomized sequence sets were subsequently 

pooled, sorted, and merged using bedtools, with the 

resulting bed file used to extract variants from the 

GADP set with tabix. Several genomic features were 

extracted from chimpanzee HOMER genomic 

annotations, including the following sets: intronic, 

promoter-TSS, TTS, and exon. Additionally, 

RepeatMasker elements called for the panTro4 genome 

were obtained from the UCSC Table Browser. These 

additional sets were lifted-over to hg18 (flags as 

indicated above) and used to extract variants from the 

GADP. The resulting files were filtered for duplicate 

variants and subsequently MAF >= 0.05 with bcftools 

(version 1.8). Variants falling within particular elements 

in the random background, target, and genomic 

annotation sets were then extracted using tabix. Variants 

per-set were counted using vcftools (version 0.1.15) ‘--

counts2 --stdout’ arguments. Variant counts were then 

adjusted to account for the number of bp within a given 

set. The background distribution of these values was 

investigated using the ‘qqnorm’ (R base) and ‘qqPlot’ 

(car package) functions to look for visible deviations 

from normality, for which no obvious deviations were 

observed. For comparison with the above human 

analysis, background values were standardized and 

statistical significance was assessed using a CDF of the 

standard normal distribution with the ‘pnorm’ function 

in base R. P-values for significant deviations from the 

background distribution were corrected for the number 

of sets (n = 13) tested using a BH correction. 

Significance was defined as adjusted p < 0.05 

(Supplementary Table 3). 

 

Obtaining and processing GWAS summary statistics 

data 

 

To define a set of aging-associated diseases for use in 

our analyses, we first used broadly-defined categories as 

described in Chang et al., 2019 [69]. This study 

described 92 age-related diseases grouped into broader 

disease categories based on analyses of large-scale 

demographic datasets. We took these diseases and used 

them as the basis for manually searching the set of 

ICD10 disease codes, data for which was obtained from 
https://www.cdc.gov/nchs/icd/icd10cm.htm. We pulled 

all ICD codes which matched keywords from this set of 

defined age-related diseases and aggregated them across 

https://www.cdc.gov/nchs/icd/icd10cm.htm
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different ICD categories (e.g., diseases of the circulatory 

system, nervous system, etc.). 

 

Pre-processed data files from the UK Biobanks study 

[70] were obtained from the Neale lab (https://nealelab. 

github.io/UKBB_ldsc/downloads.html) (via the link 

https://docs.google.com/spreadsheets/d/1EmwlCYYqko

VKqAS71nNDKoN18PyKwysYUppKTSMvKiM/edit?

usp=sharing), for all summary-statistics results in this 

UKB dataset for which ICD10 codes matched those 

aggregated above for aging-associated diseases. We 

further subset these traits to those for which liability-

scaled h2 estimates (based on LDSC analyses previously 

performed on these data [71], taken from the 

‘UKBiobanks_2019_heritabilities_per_trait.tsv.gz’ file) 

were positive. This resulted in a final set of 129 

different summary-statistics datasets for further 

processing (see Supplementary Table 4 for file 

accessions and trait descriptions). For these summary 

statistics, the per-SNP hg19 coordinates were obtained 

from https://www.dropbox.com/s/puxks683vb0omeg/ 

variants.tsv.bgz. 

 

Adjacent accessibility region associations – per-

disease enrichment testing 

 

For a given disease, we took the summary-level statistics 

and defined a set of variants having an association p-

value less than a given significance threshold (using both 

1e-6 and a more stringent 1e-8 cutoff, the latter yielding 

similar results - data not shown), generating a .bed output 

of SNPs (hg19 coordinates). Subsequently, for a given 

altered-accessibility region set (e.g., adult-biased regions), 

we considered the presence of SNPs nearby these regions 

– this was done to capture the possible effects of local 

linkage-disequilibrium, wherein a strongly-associated 

SNP may not fall immediately within a region, but a 

nearby proxy SNP (which may be the causal variant for 

the association signal) does intersect. This was done 

using the ‘window’ function in bedtools to consider 

significance-thresholded SNPs falling within 1000bp of a 

given region. As a robusticity check, we also performed 

the following per-disease enrichment tests using only 

those significance-thresholded SNPs falling immediately 

within regions, observing similar enrichments for DNase 

regions relative to genomic backgrounds, as well as 

altered-accessibility sets relative to all DNase regions 

(data not shown). 

 

To first test whether the global set of DNase regions 

used in our accessibility analyses (i.e., all regions 

defined across all adult and fetal tissues) were enriched 

for nearby significance-thresholded SNPs, we defined a 
genomic background set by randomly subsampling 

972,073 regions of 150bp size (matching the set-size of 

the global DNase set) from the hg19 genome using the 

bedtools ‘random’ function, generating 1000 sets of 

randomized backgrounds. These randomized sets were 

then subsequently used to count for nearby significance-

thresholded SNPs (for a given disease/trait) using the 

bedtools ‘window’ function. These randomized 

background counts were assessed using the ‘qqnorm’ (R 

base) and ‘qqPlot’ (car package) functions to look for 

visible deviations from normality, for which no obvious 

deviations were observed. Values were standardized 

and statistical significance was assessed using a CDF of 

the standard normal distribution as implemented in the 

‘pnorm’ function in R (version 4.0.3). P-values for 

significant deviations from the background distribution 

were corrected for the number of traits tested (n = 129) 

tested using a BH correction. Significance was defined 

as adjusted p < 0.05 (Supplementary Table 4). 

 

Similar testing was done for our different accessibility-

altered region sets, whereby customized genome-wide 

background sets were generated, randomized set counts 

were calculated, and target/background enrichments 

were performed. After p-value adjusting, we observed 

enrichment for all region sets across the majority 

diseases, which follows with the general enrichment for 

nearby significance-thresholded SNPs of all DNase 

regions (significant enrichments seen for 119 of 129 

diseases – Supplementary Table 4). Thus, to condition 

on this general DNase-GWAS enrichment we 

implemented a hypergeometric testing approach. For 

each disease/trait showing significant enrichment/ 

depletion using all DNase regions, we counted the 

number of unique regions (in the set, e.g., adult-biased 

regions) for which nearby significance-thresholded 

SNPs were observed, comparing this to the number of 

general DNase regions for which nearby significance-

thresholded SNPs were observed (via the ‘phyper’ 

function in base R). For each region-set considered, the 

resulting set of p-values was adjusted for the number of 

diseases tested (n = 127) (Supplementary Table 4). In 

order to perform hypergeometric tests comparing the 

GWAS associations of developmental-aging intersection 

sets (e.g., adult-biased, young-biased regions), we 

defined the background set for testing as the respective 

set of developmentally-altered regions (i.e., we compare 

the occurrence of nearby significance-thresholded  

SNPs for adult-biased, young-biased regions to their 

occurrence nearby the adult-biased region set as a 

whole). 

 

To visualize these hypergeometric test results (Figure 

3A), adjusted p-values for hyper-geometric tests done 

using different region sets (e.g., adult-biased regions) 

were plotted as a barplot using ggplot2 version 3.3.3. 
For visualization purposes, significant enrichment 

results were plotted as positive values, while significant 

depletion results were plotted as negative values. 

https://nealelab.github.io/UKBB_ldsc/downloads.html
https://nealelab.github.io/UKBB_ldsc/downloads.html
https://docs.google.com/spreadsheets/d/1EmwlCYYqkoVKqAS71nNDKoN18PyKwysYUppKTSMvKiM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1EmwlCYYqkoVKqAS71nNDKoN18PyKwysYUppKTSMvKiM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1EmwlCYYqkoVKqAS71nNDKoN18PyKwysYUppKTSMvKiM/edit?usp=sharing
https://www.dropbox.com/s/puxks683vb0omeg/variants.tsv.bgz
https://www.dropbox.com/s/puxks683vb0omeg/variants.tsv.bgz
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Additional developmental trait GWAS processing 

 

We manually searched GWAS summary-statistic 

datasets for traits associated with fetal/adult 

development, pulling largely from data assembled by 

the EGG consortium (http://egg-consortium.org/index. 

html), as well as using a combination of GWAS 

Central [72], GWAS Catalog [73] and GWAS ATLAS 

[74]. Both general developmental traits (e.g., birth 

weight), as well as traits relating to particular tissues 

relevant to the tissues used in our accessibility 

analyses (e.g., stomach, brain) were searched for, with 

data availability (in terms of sufficiently-powered 

studies) largely limited to the former. The following 

datasets were obtained: 

 

Birth weight 

 

- Birthweight [27] ftp://ftp.ebi.ac.uk/pub/databases/ 

gwas/summary_statistics/GCST005001-GCST006000/ 

GCST005146 

- Fetal-effect birthweight [75] (http://egg-consortium. 

org/birth-weight-2019.html) 

- Maternal-effect birthweight [75] (http://egg-

consortium.org/birth-weight-2019.html) 

- Childhood obesity [76] (http://egg-consortium.org/ 

childhood-obesity-2019.html) 

- Pubertal growth (PGF + PGM combined) [77] 

http://egg-consortium.org/pubertal-growth.html 

- Gestational duration (fetal genome) [78] http://egg-

consortium.org/gestational-duration-2019.html 

- Birth length [79] http://egg-consortium.org/birth-

length.html 

- Gastrointestinal congenital defects [80] 

http://biobanks.dk/GWAS/MEGA_CIDR_IHPS_summ

aryStats.txt.gz 

 - Childhood epilepsy [81] http://www.epigad.org/ 

gwas_ilae2018_16loci/JME_BOLT-LMM_final.gz 

- Height [28] https://portals.broadinstitute.org/ 

collaboration/giant/images/6/63/Meta-analysis_Wood_ 

et_al%2BUKBiobank_2018.txt.gz 

 

Similar to our above treatment of UK Biobanks 

summary statistics, for each study we filtered for 

variants below a significance threshold of 1e-6. We then 

counted the occurrence of these sets of variants falling 

nearby our region-altered sets (using bedtools window 

as above), and compared this occurrence to that 

observed when considering all DNase regions using a 

hypergeometric test. For each region set considered we 

adjusted the resulting hypergeometric p-values for  

the number of GWAS datasets tested (n = 10). As 

before, when considering the age-altered accessibility 
region sets, the background set was defined as those 

regions changing accessibility in our developmental 

accessibility analyses. 

Summary statistics for additional developmental traits, 

such as congenital heart defects, celiac disease, etc., 

were obtained, however, these studies had few or no 

significant SNPs at the 1e-6 significance threshold used 

(data not shown). 

 

Additional longevity GWAS dataset processing: 

 

Longevity GWAS summary statistics were obtained 

from Timmers et al. 2019 [29] and Pilling et al. 2017 

[30], particularly: 

 

Parental lifespan (Timmers et. al) (GWAS Catalog ID: 

GCST009890) 

Parental lifespan (mother’s attained age, Pilling et al.) 

(GWAS Catalog ID: GCST006696) 

Parental lifespan (father’s attained age, Pilling et al.) 

(GWAS Catalog ID: GCST006701) 

Parental lifespan (combined parental age, Pilling et al.) 

(GWAS Catalog ID: GCST006697) 

 

Similar to our above treatment of UK Biobanks 

summary statistics, for each set of summary statistics 

we filtered for variants below a significance threshold 

of 1e-6. We then counted the occurrence of these sets 

of variants falling nearby our region-altered sets (using 

bedtools window as above), and compared this 

occurrence to that observed when considering all 

DNase regions using a hypergeometric test. For each 

region set considered we adjusted the resulting 

hypergeometric p-values for the number of GWAS 

datasets tested (n = 4). As before, when considering 

the age-altered accessibility region sets, the 

background set was defined as those regions changing 

accessibility in our developmental accessibility 

analyses. 

 

Effect-size distribution of variants 

 

For a given disease, the set of significance-thresholded 

SNPs falling nearby a given set of accessibility-altered 

regions were extracted from the summary-statistic data 

along with their reported effect-size (estimated beta 

value). In order to compare effect-size distributions of 

SNPs nearby different region sets (e.g., fetal-biased vs. 

adult-biased regions), the absolute effect size values 

for SNPs falling nearby the two sets were compared 

using a two-tailed non-parametric Wilcoxon rank-sum 

test via the ‘wilcox.test’ function in base R. The 

resulting p-values were corrected for the number of 

diseases compared (n = 127) using a BH correction 

(see Supplementary Table 4). This testing was carried 

out first using significance-thresholded SNPs 
(association p-value < 1e-6), and subsequently tested 

using all nearby SNPs (not applying a significance 

threshold). 

http://egg-consortium.org/index.html
http://egg-consortium.org/index.html
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST005001-GCST006000/GCST005146
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST005001-GCST006000/GCST005146
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST005001-GCST006000/GCST005146
http://egg-consortium.org/birth-weight-2019.html
http://egg-consortium.org/birth-weight-2019.html
http://egg-consortium.org/birth-weight-2019.html
http://egg-consortium.org/birth-weight-2019.html
http://egg-consortium.org/childhood-obesity-2019.html
http://egg-consortium.org/childhood-obesity-2019.html
http://egg-consortium.org/pubertal-growth.html
http://egg-consortium.org/gestational-duration-2019.html
http://egg-consortium.org/gestational-duration-2019.html
http://egg-consortium.org/birth-length.html
http://egg-consortium.org/birth-length.html
http://biobanks.dk/GWAS/MEGA_CIDR_IHPS_summaryStats.txt.gz
http://biobanks.dk/GWAS/MEGA_CIDR_IHPS_summaryStats.txt.gz
http://www.epigad.org/gwas_ilae2018_16loci/JME_BOLT-LMM_final.gz
http://www.epigad.org/gwas_ilae2018_16loci/JME_BOLT-LMM_final.gz
https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-analysis_Wood_et_al%2BUKBiobank_2018.txt.gz
https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-analysis_Wood_et_al%2BUKBiobank_2018.txt.gz
https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-analysis_Wood_et_al%2BUKBiobank_2018.txt.gz
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Per-SNP definitions 

 

We defined a cross-trait metric of disease association 

which considers the assigned association p-value 

between a given SNP and multiple different aging-

associated diseases. The UK Biobanks summary 

statistics datasets provide association statistics across 

the same set of SNPs, such that directly comparing the 

association values for a single variant across multiple 

datasets is possible. We first defined the global set of 

shared variants reported in the majority of GWAS files 

(for a final set of 13,789,793 SNPs), filtering out those 

summary statistics data which did not have information 

for this shared set. For a given summary statistic file, 

the association p-values assigned to these shared 

variants were extracted and subsequently standardized 

using the ‘stats.zscore’ function from the ‘scipy’ 

package [82] version 1.15.4 in Python 3. This was done 

across all diseases, with the final set of per-SNP z-

scores converted to a matrix. This matrix was 

subsequently summed per-row using ‘awk’ to produce a 

per-SNP summarized z-score metric reflecting cross-

disease risk associations, such that SNPs having 

stronger associations across multiple diseases 

(standardized within each disease) will have larger 

summed Z-scores. 

 

Region integration with per-SNP metric 

 

Similar to the above per-disease hyper-geometric testing, 

we considered the cross-disease association metric of 

SNPs falling nearby accessiblity-altered region sets using 

the bedtools ‘window’ function with a window of 

1000bp. As above, we similarly performed a robusticity 

check to confirm that these results were consistent with 

those generated when considering only variants falling 

immediately within regions (data not shown). To 

compare the behavior of SNPs associated with our 

developmentally-altered region sets, we aggregated these 

per-SNP metrics across adult-biased (n = 3,688,911) and 

fetal-biased (n = 1,977,122) region sets and compared 

them using the ‘aov’ function in base R. As additional 

controls for this analysis, we also considered the per-SNP 

metrics of variants falling nearby DNase regions not 

significantly changing accessibility (acting as a DNase 

control, n = 2,554,671), and finally compared all these 

region-associated variants to those variants not associated 

with any nearby DNase regions (acting as a genome-

wide, non-regulatory-element control, n = 6,742,487). 

Tukey post-hoc analysis was performed with the 

‘TukeyHSD’ function in base R (see Supplementary 

Table 4). To visualize these results (Figure 3B), we used 

the ‘plotmeans’ function from gplots version 3.1.1. 
 

To compare our aging-altered region sets to 

developmentally-altered regions, as well as the 

behaviors of intersection sets (e.g., adult-biased, young-

biased regions), we similarly aggregated per-SNP 

metrics across all sets and compared them as above. For 

the comparisons of intersect sets, we used fetal-biased 

and adult-biased regions which were not intersected 

with aging-altered regions, rather than the full region 

sets, while the DNase control regions, as well as 

genome-wide control set, remained unchanged. For 

graphical purposes, the comparison was simplified to 

show age-altered and developmentally-altered region 

sets separately (Figure 3B). 

 

Comparing cross-set SNP metric with PhastCons 

 

PhastCons [83] 20ways-defined conserved regions were 

downloaded from the UCSC table browser in hg38 

coordinates, and subsequently lifted-over to hg19 with 

the ‘liftOver’ tool. We partitioned SNPs genome-wide 

as those falling within or outside these PhastCons 

elements, then compared the cross-trait SNP metrics of 

these two partitions using a two-sided Wilcoxon test 

using the ‘wilcox.test’ function in base R. SNPs nearby 

accessibility-altered region sets were also partitioned 

based on PhastCons elements to confirm the cross-set 

metric behavior of subset variants. We also ran these 

PhastCons comparisons for SNPs subset by different 

region set, consistently observed an increased cross-set 

metric for variants falling nearby phastCons elements 

(Supplementary Table 4). 

 

Integrating additional per-SNP information 

 

phyloP20ways per-nucleotide data was intersected with 

the global set of variants for which the per-SNP cross-

set association metric was calculated to assign a single 

phyloP20ways score to each variant. Argweaver [84] 

estimated allele ages, based on the European subset of 

the 1000 Genomes project [65], were obtained from 

http://compgen.cshl.edu/ARGweaver/CG_results/downl

oad/bigWigs/?C=S;O=A, and assigned to individual 

variants using the ‘bigWigAverageOverBed’ utility 

from UCSC. Variants for which estimated allele ages 

were not available were excluded from subsequent 

analyses. Pre-computed LINSIGHT [85] scores were 

obtained for the hg19 genome from https://github.com/ 

CshlSiepelLab/LINSIGHT. These were similarly 

assigned to individual variants using the 

‘bigWigAverageOverBed’ utility. 

 

ClinVar variant testing 

 

ClinVar variants were obtained from the UCSC table 

browser in hg19 coordinates. We intersected this SNP 
set with the global set of variants (filtered based on 

integration of additional per-SNP information) for 

which the per-SNP cross-set association was calculated. 

http://compgen.cshl.edu/ARGweaver/CG_results/download/bigWigs/?C=S;O=A
http://compgen.cshl.edu/ARGweaver/CG_results/download/bigWigs/?C=S;O=A
https://github.com/CshlSiepelLab/LINSIGHT
https://github.com/CshlSiepelLab/LINSIGHT
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Given the larger number of SNPs not part of the 

ClinVar set, we subsampled these SNPs to match the 

number of ClinVar variants used (n = 76778 SNPs), 

generating 1000 sets of randomized background 

variants. For each subset the average cross-trait 

association metric, phyloP20ways, estimated allele age 

and LINSIGHT score for all variants was calculated. 

These averages were used as a background set to 

compare against the average values in the ClinVar set; 

for each feature the distribution of randomized values 

was assessed using the ‘qqnorm’ (R base) and ‘qqPlot’ 

(car package) functions to look for visible deviations 

from normality, for which no obvious deviations were 

observed for different features. Values were 

standardized and statistical significance was assessed 

using a CDF of the standard normal distribution as 

implemented in the ‘pnorm’ function in R (version 

4.0.3) (see Supplementary Table 4). As an additional 

robusticity check, the first and third quartiles for all of 

these values were also used to calculate significant 

deviations from randomized background values. 

 

Cross-disease gene ranking 

 

All hg19 Refseq gene TSS were obtained from the 

UCSC genome browser, and filtered for genes with 

assigned peptide sequences (obtained from the Table 

Browser as a ‘known canonical’ gene table) (i.e., 

protein-coding genes). This gene set was then padded 

100kb up/downstream to define 200kb per-gene 

windows. For a given disease, we considered all 

variants falling within all gene windows, selecting the 

strongest-associated variant falling within each and 

assigning this association p-value to that particular 

gene. All genes were then ranked according to their 

assigned association p-values within a given disease. 

 

To test for significant-enrichment of ranks for a 

particular set of genes (i.e., a set of genes have nearby 

assigned SNPs that rank them consistently higher across 

a number of diseases), all protein-coding genes were 

first considered: counting how often a given gene 

appeared in the top 75th percentile of ranked protein-

coding genes across different diseases (ranging from 1 

to 127). The distribution of these counts for the target 

set of genes was compared to that of the global 

distribution of protein-coding genes (exclusive of the 

target set) using a one-sided (alternative = “greater”) 

Student’s t-test in base R. 

 

As a positive control for this analysis, genes associated 

with the GO term ‘homeostatic process’ (GO:0042592) 

were used as a target set for testing. As a negative 
control, genes associated with the GO term 

‘developmental process involved in reproduction’ 

(GO:0003006) were used as a target set for testing. 

Defining ‘core’ aging genes 

 

These sets of gene rankings were then aggregated  

using the ‘aggregateRanks’ function from the 

RobustRankAggreg [55] library version 1.1. Given that 

we considered all protein-coding gene loci, we applied a 

conservative filter to the resulting RRA significance 

values via the use of a Bonferroni correction – retaining 

all genes with a corrected value < 0.05. Gene-set 

enrichment analysis was then performed with the 

‘enrichGO’ function from the clusterProfiler [54] 

library version 3.16.1, with the background defined as 

all protein-coding genes used in the gene-ranking 

analysis. Significant gene-set enrichments were defined 

as adjusted p-value < 0.05. 

 

In addition to applying this cutoff-based approach to 

defining highly-ranked gene sets, we also implemented 

an approach that did not rely on defining a strict cutoff 

with the RRA method. For a given gene, we took all of 

the ranks across the different diseases and calculated the 

geometric mean of ranks. All genes were then sorted 

based on this final mean-of-ranks, with this ranking 

used with ‘gseGO’ function from the clusterProfiler 

library version 3.16.1 to perform an FGSEA analysis 

with the following flags: OrgDb = org.Hs.eg.db, ont = 

"BP", minGSSize = 15, maxGSSize = 500. Significant 

gene-set enrichments were defined as adjusted p-value 

< 0.05. 

 

Given our gene-window based method, it is possible 

that a single strongly-associated variant may be 

assigned to two or more closely-adjacent genes. We 

performed a separate ranking analysis collapsing 

overlapping gene windows, though found that this led to 

a reduction in the strength of gene-set enrichments of 

the RRA ranking results (data not shown). 

 

In order to integrate the effects of local accessibility 

change into these gene-set rankings, the above ranking 

procedure was done considering only those variants 

nearby altered-accessibility regions (e.g., young-biased 

regions) when assigning per-gene association p-values 

for ranking (Supplementary Table 4). 

 

Characterizing gene-ranking histone-deacetylase 

enrichments 

 

To visualize the increased average geometric-mean rank 

of genes associated with histone deacetylation, the set 

of ‘leading edge’ genes associated with the GO term 

‘histone deacetylase’ (HDAC) (GO:0016575) from the 

FGSEA gene-wise ranking analysis (gene set in 
Supplementary Table 4) was taken and compared with 

the geometric-mean rank of all other protein-coding 

genes used in this analysis. This was done for gene-wise 
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rankings defined when considering all variants falling 

within a given gene window (Figure 4A, left), as well as 

rankings defined when considering those variants with 

nearby young-biased regions falling within a given gene 

window (Figure 4B, right). 

 
To compare the differences in GWAS signal associations 

of these HDAC genes when stratifying variants by 

nearby altered-accessibility regions, we made use of the 

per-SNP cross-trait association metric defined above. 

 
The sets of gene windows defined for all protein-coding 

genes were again taken and variants falling within each 

gene window were collected. Similar to above, variants 

were binned based on the presence of nearby altered-

accessibility regions (e.g., young-biased regions) – 

rather than considering the strongest variant signal for a 

given disease and aggregating ranks across, instead the 

per-SNP cross-trait association metric for variants was 

used to assign the strongest signal to a given gene 

window. This was done considering all variants within a 

window, as well as binned variants, such that a single 

gene window has multiple assigned values (one per 

region set used, as well as a region-independent value). 

These values were assigned for: all variants, variants 

with no nearby DNase regions (‘Background’), variants 

with nearby DNase regions not significantly changing 

accessibility (“DNase Unchanged”), variants with 

nearby fetal-biased regions (“Fetal-biased”), variants 

with nearby adult-biased regions (“Adult-biased”), 

variants with nearby young-biased regions (“Young-

Age”), and variants with nearby old-biased regions 

(“Old-Age”). 

 

The gene-window values for the HDAC gene set were 

used as target values. The remaining values of all 

protein-coding genes (exclusive of this target set) was 

randomly sampled, generating 1000 sets of genes 

matching the size of the HDAC target set. The seven 

different types of assigned values (enumerated above) 

for each gene window were calculated for both target 

and test sets. For comparing the target and 

randomized background sets, the average assigned 

value for each gene set (target and random) was 

calculated. 

 

For each type of assigned value, the randomized 

background set values were assessed using the ‘qqnorm’ 

(R base) and ‘qqPlot’ (car package) functions to look for 

visible deviations from normality, for which no obvious 

deviations were observed. Values were standardized and 

statistical significance was assessed using a CDF of the 

standard normal distribution as implemented in the 
‘pnorm’ function in R (version 4.0.3). To determine 

whether stronger GWAS variants falling within HDAC 

gene windows tend to be stratified by nearby altered-

accessibility regions (particularly, young-biased regions 

as suggested by Figure 4A), the enrichment/depletion 

values for each different type of gene-wise values 

(relative to their own respective backgrounds) were 

compared to the enrichment/depletion values calculated 

when considering all variants (the region-independent 

value). This was calculated as: -log10((region-specific 

CDF test p-value) / (region-independent CDF test p-

value)), with positive values indicating a stronger 

deviation from the background distribution when using 

region-stratified variants when compared to all variants 

within a given gene window. These values were 

visualized using ggplot2, as seen in Figure 4B and 

Supplementary Table 4. 

 

Visualizing promoter-contact datasets 

 

To visualize the interactions between young-biased 

regions harbouring nearby genetic variants and the SIRT6 

promoter (Figure 4C) we extracted significant promoter-

capture interactions (p-value < 0.01) from the SIRT6 

anchor across a subset of cell types representative of our 

tissue sets (AD2, AO, GA, Hcmerge, IMR90, PO3 and 

SX, referring to adrenal gland, aorta, gastric tissue, brain, 

fibroblast (lung), muscle and spleen labels, respectively). 

These interaction data were visualized using the 

GenomicInteractions [86] library version 1.24.0. 
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Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Per-tissue heatmaps for brain and heart tissue. (A) Z-score accessibility values for regions defined as 
differentially-accessible comparing fetal and adult brain tissue samples. (B) Z-score accessibility values for regions defined as differentially-
accessible comparing fetal and adult heart tissue samples. Red-blue colour scale indicates increased/decreased accessibility, z-score 
normalized per-column. 



 

www.aging-us.com 15742 AGING 

 
 

Supplementary Figure 2. Autosome distribution of accessibility-altered regions. Genomic distribution of regions changing 

accessibility in fetal/adult comparison. Red/blue: density of defined differentially-accessible regions. Line: relative proportion of regions more 
accessible in adult (top) or fetal (bottom) tissues. 
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Supplementary Figure 3. Changes in regional accessibility across young-age and old-age adult tissue samples. Equivalent to 

Figure 1A. Red-blue colour scale indicates increased/decreased accessibility, z-score normalized per-column. 
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Supplementary Figure 4. Enrichment for epigenetic states. Bar plots indicate log10 logFC enrichment/depletion values for different 

region sets (e.g., young-biased regions) falling within different Roadmap HMM-annotated epigenetic states. Asterisk (*) indicates significant 
hypergeometric test for enrichment/depletion of an indicated region set for indicated epigenetic state (p < 0.05). Intersection sets (e.g., 
young-biased, fetal-biased intersected regions) are indicated with “—". 
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Supplementary Figure 5. LOLA enrichment plots. Enrichment q-values for top terms in the LOLA regional-enrichment analyses.  
(A) Fetal-biased Regions (B) Adult-biased Regions (C) Young-biased Regions (D) Old-biased Regions (E) Young-biased – Fetal-biased Regions 
(F) Young-biased– Adult-biased Regions (G) Old-biased – Fetal-biased Regions (H) Old-biased – Adult-biased Regions. All listed terms are 
significant, q-value < 0.05. See also Supplementary Table 2. 
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Supplementary Figure 6. Promoter accessibility heatmaps. Red-blue colour scale indicates increased/decreased accessibility, z-score 
normalized per-column. (A) Promoter accessibility differences between fetal and adult tissue samples, for significantly-altered promoters 
(adj. p-val < 0.05). (B) Promoter accessibility differences between young-age and old-age adult tissue samples, for significantly-altered 
promoters (adj. p-val < 0.05). 
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Supplementary Figure 7. UCSC genome screenshots for two representative human divergent-sequence loci. Additional tracks 

(top to bottom): Layered H3K27ac signal from ENCODE datasets, layered DNase-I hypersensitivity sites from ENCODE datasets, aggregated 
ENCODE transcription-factor ChIP-seq data, phyloP100ways conservation track (per-bp), multiple-sequence alignment to human reference 
sequence. (A) A human-accelerated region [20] (top track – highlighted in light blue) intersects a region losing accessibility in adult tissue 
(bottom track) intronic to the FGF1 gene (and which also has promoter-capture data to suggest promoter contact). Also intersects a possible 
CEBPB binding site (ENCODE TF-ChIP-seq track). (B) A human-accelerated region [20] (top track - highlighted in light blue) intersects a region 
losing accessibility in old-age adult tissue (bottom track) intronic to the PKNOX2 gene (and which also has promoter-capture data to suggest 
promoter contact). Upstream of this region lies the variant rs590211(highlighted in red), which has been associated with human-longevity via 
GWAS studies [25, 26]. 
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Supplementary Figure 8. Chimpanzee genomic distribution plot. Counts of chimpanzee common variants per bp of sequence for 

region sets were compared to random region sets along with other genomic features; labels correspond to results in Supplementary Table 3. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. Region set characterization. 

 

Supplementary Table 2. Regulatory gene associations and expression data. 

 

Supplementary Table 3. Evolutionary sequence analyses. 

 

Supplementary Table 4. Disease associations. 


