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SUPPLEMENTARY INFORMATION 
 
Supplementary Information (SI) Text 
 
Comparing altered accessibility regions to genomic 
annotations, epigenetic states, and additional 
epigenetic datasets 
 
As past studies have found that altered distribution of 
certain histone marks (e.g., H3K27ac) are a key feature 
of fetal to adult epigenetic changes [1–3] as well as 
epigenetic aging [4], the changes in chromatin 
accessibility we observe likely also reflects, in part, 
histone mark modification. 
 
To define the epigenetic context within which our 
development- and age-altered regions fall, we utilized 
genome-wide assignments of epigenetic state as defined 
by the Roadmap Epigenomics Project Consortium [3], 
which employs a Hidden Markov Model to assign one 
of several possible epigenetic annotations to 200bp 
segments of the genome, integrating both chromatin-
modification and accessibility datasets to define state 
probabilities, for different epigenomes (e.g., skin, brain 
tissues, etc.). Given that our altered regions were 
defined using a pan-tissue approach, for each 200bp 
segment we subset those epigenetic states defined for 
adult tissue samples, and took the state definition 
recurrent in the majority of samples as an ‘adult-
majority’ assignment (see Supplementary Methods). We 
next intersected our region sets with these assigned 
segments, comparing the distribution of regions falling 
within different epigenetic states to the genome-wide 
distribution of these states to look for biases 
(Supplementary Figure 4). Adult-biased regions were 
enriched for epigenetic states associated with 
transcription, heterochromatin, and repressed Polycomb 
regions (Supplementary Table 1). Conversely, fetal-
biased regions were enriched for states associated with 
enhancers, promoters, and ‘primary DNase’, while also 
showing a more moderate enrichment for repressed 
Polycomb regions. Likewise, old-biased regions were 
enriched for heterochromatin and quiescent states, while 
young-biased regions were enriched for all other  
states (Supplementary Table 1). By intersecting the  
fetal and adult as well as young and old-biased regions, 
we saw that the enrichments for different fetal and  
adult sets - i.e., adult-biased with heterochromatic  
states, fetal-biased with euchromatic states - overrode 
the young-biased and old-biased enrichment patterns 
(Supplementary Figure 4). Utilizing publicly-available 
epigenetic datasets and annotations through the  
LOLA [5] software (see Supplementary Methods), we  
again saw overlaps of the adult-biased region set for 
genomic annotations of ‘repressed segments’ and repeat 
sequences in this set, similar to the Roadmap epigenetic 

state results above (Supplementary Figure 4). Considering 
fetal-biased regions, we observed enrichments for TSS 
segments, Promoter/enhancer segments, and Vista 
enhancers, along with annotated CpG islands. We also 
saw similar enrichments for young- and old-biased  
sets (relative to their Roadmap enrichment results),  
and again saw the overriding fetal and adult patterns  
of enrichments in intersection sets (Supplementary 
Figure 5). 
 
We next sought to validate the expected correspondence 
between development-associated chromatin accessibility 
and histone modifications, first using an independent 
dataset of fetal ChIP-seq experiments [1]. This study 
defined fetal bivalent promoter regions, which are 
thought to poise expression of developmental genes for 
rapid induction upon appropriate signaling [6]. Bivalent 
promoters tended to not be intersected by adult-biased 
regions, while fetal-biased regions were enriched in 
these sets (p < 1e-16, hypergeometric test, see 
Supplementary Methods). That these marked promoters 
responding to developmental signals lose accessibility 
in adult tissues would be expected [6], suggesting that 
our approach is capturing signals of epigenetic change 
in development. As additional validation of 
correspondence between development-, and potentially 
age-, associated chromatin accessibility and regions 
subject to histone modification, we again used LOLA 
enrichments, along with histone-mark ChIP-seq datasets 
acquired from primary tissues samples processed by 
ENCODE [7, 8]. 
 
ChIP-seq analyses 
 
Given our use of DNA accessibility datasets, which 
should reflect the state of local chromatin with  
respect to chemical modifications increasing/decreasing 
accessibility, there is an expected concordance  
between open-chromatin regions defined by DNase-I 
hypersensitivity and the presence of nearby marks for 
histone post-translational modifications (i.e., histone 
ChIP-seq data). To first confirm this expected behavior 
in our accessibility data obtained from ENCODE, we 
further obtained ChIP-seq datasets from fetal and adult 
tissues matching those used in our accessibility analyses 
(see Supplementary Table 1 for accessions and 
metadata). Datasets included H3K27ac (an active, 
euchromatin mark), H3K27me3 and H3K9me3 
(facultative and constitutive heterochromatin marks, 
respectively). Replicable open-chromatin regions in 
fetal and adult tissues were compared to their respective 
called ChIP-seq peak datasets looking for adjacency 
between accessibility and chromatin marks (within 1kb, 
see Supplementary Methods). For H3K27ac marks in 
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adult tissues, between 33-82% of replicable DNase 
peaks in a given tissue had adjacent ChIP-seq peak 
calls. For H3K27ac in fetal tissues, between 37-71% of 
replicable DNase peaks had adjacent ChIP-seq peak 
calls. For H3K27me3 in adult tissues, between 0.6-10% 
of replicable DNase peaks in a given tissue had adjacent 
ChIP-seq peak calls. For H3K27me3 in fetal tissues, 
between 4-27% of replicable DNase peaks had adjacent 
ChIP-seq peak calls. For H3K9me3 in adult tissues, 
between 0.05-4% of replicable DNase peaks in a given 
tissue had adjacent ChIP-seq peak calls. For H3K9me3 
in fetal tissues, between 0.19-22% of replicable DNase 
peaks had adjacent ChIP-seq peak calls. The increased 
adjacency of DNase regions with H3K27ac (an active 
mark) compared to H3K27me3 and H3K9me3 
(repressive marks) may be expected, given that DNase 
hypersensitivity should denote more accessible, active 
regions of chromatin. 
 
We next asked whether the patterns of accessibility 
change we observed between fetal and adult tissue 
samples were also evident at the level of histone 
modifications. We thus applied a similar pipeline to  
that used in defining altered accessibility to define 
altered signals for histone marks (using ChIP-seq read 
coverage as an approximate, continuous metric) (see 
Supplementary Methods). This resulted in sets of 
H3K27ac, H3K27me3, and H3K9me3 peaks whose 
ChIP-seq signal significantly changed across tissues in 
comparing fetal and adult samples. Conditioning on 
the above DNase/ChIP-seq adjacency, we first asked 
whether significantly-DA DNase peaks tended to be 
adjacent to altered H3K27ac ChIP-seq peaks, above 
the general expectation for DNase peaks nearby 
H3K27ac peaks. We observed a 1.21 fold-change (FC) 
increase in the adjacency of altered DNase and ChIP-
seq peaks (hypergeometric test p-value < 1e-16). 
Given this, we next asked whether, for these adjacent 
pairs, directionality was shared (i.e., DNase peaks 
gaining accessibility are adjacent to H3K27ac peaks 
gaining signal). We found that, of these adjacent  
pairs, those sharing direction (i.e., adult-biased  
DNase, adult-biased H3K27ac ChIP-seq) pairs were 
significantly over-represented (1.72 FC and 1.19  
FC for adult/adult-biased and fetal/fetal-biased, 
respectively, hypergeometric tests comparing overlaps 
of sets, adjusted p-values < 1e-16). 
 
We similarly checked this adjacency with H3K9me3 
peaks changing signal across fetal/adult tissues. We 
did see a significantly-greater adjacency between 
significantly-DA DNase peaks and these altered 
H3K9me3 peaks, above general DNase/H3K9me3 
adjacency (1.13 FC increase, hypergeometric test p-value 
< 1e-16). Of these adjacent pairs, those sharing direction 
(i.e., adult-biased DNase, adult-biased H3K9me3 ChIP-

seq) were significantly under-represented, while those 
opposing direction were over-represented (1.152 FC and 
1.212 FC for adult-biased DNase/fetal-biased H3K9me3 
and fetal-biased DNase/adult-biased H3K9me3, 
respectively, hypergeometric tests comparing overlaps  
of sets, adjusted p-value < 1e-16). This follows  
with an expectation that regions gaining constitutive 
heterochromatic marks should lose local DNA 
accessibility, and vice-versa. 
 
Next, we considered the adjacency of H3K27me3 
changing signal across fetal/adult tissues. We did 
observe a slight, but significant, increased adjacency 
between significantly-DA DNase peaks and altered 
H3K27me3 peaks, above general DNase/H3K27me3 
adjacency (1.03 FC increase, hypergeometric test p-
value < 1e-16). Of these, those sharing direction (i.e., 
adult-biased DNase, adult-biased H3K27me3 ChIP-
seq) were significantly over-represented (1.20 FC and 
1.38 FC for adult/adult-biased and fetal/fetal-biased, 
respectively, hypergeometric tests comparing overlaps 
of sets, adjusted p-values < 1e-16). 
 
Finally, we compared adjacent/overlapping (i.e., within 
1 kb) developmentally-altered histone signals across 
different marks. For a given developmentally-altered 
H3K27ac peak, adjacent H3K27me3 peaks tended to 
also change (1.24 FC enrichment, hypergeometric test 
p-value < 1e-16), with regions gaining H3K27ac signal 
tending to lose adjacent H3K27me3 signal over 
development and vice-versa (1.59 FC and 1.09 FC for 
adult-biased H3K27ac/fetal-biased H3K27me3 and 
fetal-biased H3K27ac/adult-biased H3K27me3, 
respectively, adjusted p-values < 1e-16 and 1.9e-6, 
respectively). Comparing adjacent H3K27me3 and 
H3K9me3 developmentally-altered peaks, we observed 
opposing patterns, which may reflect their associations 
with predominantly facultative and constitutive 
heterochromatin, respectively. Altered H3K27ac  
and H3K9me3 peaks showed a small but significant 
degree of adjacency (~3%, 1.19 FC enrichment, 
hypergeometric test p-value < 1e-16), though the 
direction change of adjacent peaks were not consistently 
biased between adult/adult-biased, fetal/fetal-biased, 
etc., which may reflect the limited number of adjacent 
pairs (data not shown). 
 
We also considered the LOLA enrichments for external 
histone-mark datasets, observing that adult-biased 
regions showed strong enrichments with ChIP-seq 
datasets for repressive histone modifications H3K36me3, 
H3K9me3, and H3K27me3 (see Supplementary Figure 
5). Conversely, fetal-biased regions showed enrichments 
for both active (including H3K4me2/3, H3K9ac) and 
repressive (including H3K9me3 and H3K27me3) histone 
modifications. 
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Clock sites analysis 
 
Given the substantial literature on changes in DNA-
level methylation across both development and aging, 
and the observed enrichments for annotated CpG sites 
in the above LOLA analyses, we next looked for 
correspondence between our development- and age-
altered region sets and CpG sites. In particular, we 
considered so-called ‘clock sites’ capable of predicting 
age across the entire lifespan [9–11]. Firstly, we re-
confirmed the enrichment of CpG sites within 
developmental and age-altered DNase regions using 
UCSC annotated CpG sites (see Supplementary 
Methods), then confirmed that this enrichment held for 
clock sites, observing a small but significant capturing 
of these sites by developmentally-altered regions (40 of 
353 clock sites, p-value < 1e-3 against 1000 randomized 
region sets). Of these regions, we saw that the fetal-
biased set were enriched for overlaps with both clock 
sites losing methylation with age (hypo-methylated 
sites) and those gaining methylation with age (hyper-
methylated sites), while the adult-biased set was not 
enriched for either set. We also saw a significant 
enrichment for clock sites by age-altered regions (16 of 
353 clock sites, p-value < 1e-3 against 1000 randomized 
region sets). Of these, young-biased regions were 
enriched for overlaps of both hyper- and hypo-
methylated clock sites, while we found no overlaps for 
clock sites with old-biased regions. Finally, we looked 
for overlaps between clock sites and our region sets at 
the gene-locus level – clock sites tied with particular 
genes (e.g., due to falling within promoter or gene-body 
regions) which overlap gene loci we associated with our 
region sets (see Supplementary Methods). This yielded 
significant overlaps for genes associated with 
developmentally-altered regions (58 genes, 
hypergeometric p-value = 0.005), though not those 
associated with age-altered regions (12 genes, 
hypergeometric p-value = 0.19), and we observed no 
significant biases in direction sharing (e.g., old-age-
associated genes and hypo-methylated regions – chi-sq 
test p-value > 0.05) (see Supplementary Table 1). 
 
Promoter capture datasets 
 
To better identify biological process whose cis-
regulatory activity are subject to change we made use of 
a compendium of promoter-capture Hi-C interactions 
[12] (see Supplementary Methods) to identify possible 
promoter contacts made by our region sets. We also 
sought to incorporate accessibility information for gene 
promoters (in addition to the regions contacting them), 
and did this by [1] intersecting gene promoters with 
adult- or fetal-biased regions, or [2] similar to our 
treatment of region accessibility changes we also 
assessed promoter accessibility using DNase-seq read 

coverage across tissue samples (Supplementary Figure 
6, Supplementary Methods). Genome-wide, adult-
biased regions tended to have more putative promoter 
contacts than fetal-biased regions, while old-biased 
regions tended to have less putative contacts than 
young-biased regions (zero-hurdle modeling, p-value 
<< 1e-16). Gene promoters gaining accessibility are 
preferentially contacted by adult-biased regions, with 
those losing accessibility contacted by more fetal-biased 
regions than expected (chi-sq test, p < 1e-16), patterns 
which held when considering young- and old-age 
accessibility (chi-sq test, p < 1e-16). This bias was also 
true when considering gene promoter accessibility 
defined by intersection with our development- and age-
altered region sets (see Supplementary Methods). In the 
context of enhancer-promoter interaction, we observed 
enrichments in the adult-biased set for gene-ontology 
terms associated with immune response, sensory 
perception, and keratinization (Supplementary Table 2). 
Conversely, fetal-biased sets were enriched for many 
developmental terms, as well as terms relating to 
cellular proliferation and TGF-B signaling 
(Supplementary Table 2). Echoing the fetal-biased 
enrichments, we found that old-biased regions were 
weakly enriched (adjusted p-value = 0.037) for 
chemokine-response terms, as well as sensory 
perception. However, no significant term enrichments 
were observed for young-biased regions and promoters. 
 
As an additional means to consider the sets of genomic 
loci in which our development- and age-altered sets are 
distributed, we used the GREAT genome-ontology tool 
(see description of GREAT in Supplementary 
Methods). Fetal-biased regions were located near genes 
associated with several developmentally-related terms, 
such as ‘animal organ morphogenesis’ and ‘embryo 
development’ (Supplementary Table 2). The adult-
biased region set yielded enrichments relating to 
immune processes, such as ‘innate immune response’ 
and ‘immune effector process’, as well as terms related 
to keratinization (Supplementary Table 2). Young-
biased regions were enriched for terms relating to cell-
cycling, such as ‘mitotic cell cycle process’. 
Enrichments for old-biased regions were associated 
with immune processes such as ‘regulation of defense 
response’, while also hitting terms related to DNA 
break repair and ‘negative regulation of telomere 
maintenance’ (Supplementary Table 2). Interestingly, 
when intersecting the fetal/adult and young/old-biased 
regions we saw a number of additional GREAT terms, 
while many signals persisted in intersect sets 
(Supplementary Table 2). For example, adult-biased 
regions which were also more accessible in older-adult 
samples were enriched for the ‘positive regulation of 
immune response’ term; a signal of post-natal 
development of immune function would be expected 



www.aging-us.com 4 AGING 

[13] and that this signal persists into old-age  
might suggest that we also capture signals of  
inappropriate immune system behavior (so-called 
‘inflammaging’ [14]). 
 
RNA-seq expression datasets 
 
Given the biological signals we observed by associating 
our region sets with gene loci, we next looked to see if 
similar signals are evident with tissue expression 
datasets. We utilized ENCODE RNA-seq datasets [8] for 
fetal and adult tissues – however, given the limited 
availability of adult tissue samples we performed a less-
stringent method for identifying genes whose expression 
changes over development (see Supplementary 
Methods). These broad sets of genes yielded similar 
enrichments to those seen previously on the regulatory 
level, with genes generally less-expressed in adult tissues 
enriched for terms involved in growth (e.g., cell-cycling) 
and chromatin regulation, while those generally more-
expressed in adult tissues enriched for terms relating to 
immune response (e.g., ‘humoral immune response’), 
sensory perception and keratinization (Supplementary 
Table 2). These gene sets significantly overlapped those 
genes associated with adult-biased and fetal-biased 
regions (all genes – 1.11 FC enrichment, hypergeometric 
p-value = 6.73e-10) and tended to share directionality 
(chi-sq test, p-value < 1e-16). 
 
We performed a similar expression analysis using adult 
tissue samples, stratified by the same age categories 
used in our accessibility analyses, for those adult tissues 
available from the GTEx dataset [15] which overlapped 
our adult-tissue accessibility datasets (brain, heart, lung, 
muscle and stomach) (see Supplementary Methods). 
Genes generally less-expressed in older samples  
were enriched for terms relating to growth, including 
cell-cycling, mitochondrial function, and protein 
synthesis/turnover (Supplementary Table 2). 
 
Conversely, genes generally more-expressed in older 
samples were enriched for terms relating to development, 
including terms such as ‘ECM organization’, 
‘ossification’ and ‘angiogenesis’. Whether or not this 
follows with the suggested role for aberrant 
mysregulation of developmental pathways in aging 
biology [16, 17] signalling pathways, is unclear however. 
Comparing these aging accessibility and expression-
defined gene sets we did not observe significant overlaps 
(hypergeometric test, 1.04 FC, p-value = 0.19); this may 
be the result of a disconnect between epigenetic 
dysregulation and expression changes with aging at 
particular loci. 
 
Finally, we looked for overlaps between gene 
expression in our fetal/adult and young/old-adult 

comparisons, finding that genes broadly less-expressed 
in adult tissues (relative to fetal) are also less expressed 
in older adult tissues (hypergeometric, p = < 1e-16). 
While we did not see significant overlap in the adult-
biased/old-age-biased expression sets, those genes 
which did overlap were enriched for immune response 
terms similar to those seen in the adult-biased set (data 
not shown). 
 
Divergent sequence intersection enrichments 
 
We took an aggregated set of sequences showing 
increased divergence along the human lineage [18–23] 
and intersected these with our region sets. 
Subsequently, we assigned each intersection to the 
nearest annotated gene, and asked whether these 
elements are actually contacted by these nearby genes 
via the promoter-capture datasets we had previously 
integrated with our region sets. These intersections, as 
well as whether the nearest annotated gene shows some 
contact data for the indicated region, are presented in 
Supplementary Table 3. We highlight two example loci, 
one associated with the fetal-biased region set, the other 
with the young-biased region set (both of these sets 
showing general enrichments for overlaps with our 
aggregated sequence-divergence set, see Figure 2B and 
Supplementary Figure 7 and Supplementary Table 3). 
 
A region losing accessibility in adult tissues (i.e., a 
‘fetal-biased’ region) intersects a human-accelerated 
region [20] intronic to FGF1, a fibroblast growth factor 
associated with numerous developmental processes as 
well as tissue repair [24]; this region also has promoter-
capture data to suggest contact with the FGF1 
promoter. A region losing accessibility in old-adult 
tissue intersects a human-accelerated region [20] 
intronic to the PKNOX2 gene, and which also has 
promoter-capture data to suggest contact with the 
PKNOX2 promoter. This region lies downstream of the 
variant rs590211, which has previously been identified 
in a GWAS of extreme longevity [25, 26]. 
 
Comparing sequence diversity between region sets 
 
Given the patterns of our different region sets in terms 
of the presence of common human sequence variation 
(relative to genomic backgrounds and other features, see 
Figure 2C), we directly compared the occurrence of 
common variants in different sets to one another in 
humans, chimps and gorillas (Supplementary Table 3). 
Within humans, fetal-biased regions tended to have far 
lower variation when compared to every other set, with 
the exception of young-biased regions (for which the 
difference was insignificant). Conversely, adult-biased 
regions had greater variation when compared to every 
other set, with the exception of old-biased regions 
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(which had higher variation). Accordingly, old-biased 
regions tended to have greater variation when compared 
to young-biased regions. Within both chimpanzees and 
gorillas these differences between accessibility-altered 
region sets were similarly observed (Supplementary 
Table 3). 
 
Developmental trait GWAS 
 
Considering our region sets comparing fetal/adult 
accessibility changes, we would expect that regions 
(which may potentially act as regulatory elements) more 
accessible in fetal tissues may have more of an impact 
on developmental processes than those regions less 
accessible in fetal tissues, and vice-versa when 
considering processes such as tissue homeostasis (e.g., 
in adult tissues). Therefore, in addition to our focus on 
aging-associated diseases/traits, we similarly collected a 
set of developmental traits/disease GWAS to confirm 
this expected behavior with regards to developmental 
processes. 
 
We observed that fetal-biased regions trended towards 
having greater numbers of nearby significance-
thresholded SNPs (reported association p-value < 1e-6) 
compared to a general DNase background set across 
almost all traits used (with the exception of childhood 
epilepsy). Significant enrichments (hypergeometric test, 
adjusted p-value < 0.05) were limited to birthweight 
[27] and height [28], though this may be due to the 
larger number of SNPs nearby target/background sets 
observed with these traits (see Supplementary Table 4). 
Conversely, adult-biased regions trended towards 
having decreased numbers of nearby significance-
thresholded SNPs across almost all traits used (with the 
exception of childhood epilepsy). Significant 
(hypergeometric test, adjusted p-value < 0.05) 
depletions were observed for birth length, maternal-
effect birth weight, childhood BMI, fetal-effect birth 
weight, gestational-duration and height (Supplementary 
Table 4). 
 
Longevity GWAS 
 
Given the patterns of association with our altered-
accessibility region sets and aging-associated diseases, 
we also considered four different GWAS summary-
statistics datasets for parental lifespan [29, 30]. 
Compared to DNase regions generally, we observed that 
fetal-biased regions were not enriched for nearby 
significance-thresholded longevity SNPs (and trended 
slightly towards depletion). By contrast, adult-biased 
regions were significantly enriched for the nearby 
presence of such variants (hypergeometric test, adjusted 
p-value < 0.05). Similar to adult-biased regions, young-
biased regions were significantly-enriched for two of the 

four longevity datasets, trending slightly with a third. 
Old-biased regions were neither significantly enriched 
nor depleted for longevity GWAS signals, unlike what 
was seen for aging-associated diseases in general. 
 
Effect-size distributions 
 
In addition to determining whether or not a given 
variant can act to significantly impact disease 
heritability, the epigenetic state of a region may also 
determine the magnitude of this impact. For those 
variants falling nearby developmentally-altered regions, 
we also considered the reported effect size for their 
respective diseases. We observed 40 diseases for which 
variants nearby adult-biased regions had significantly 
greater absolute effect sizes, compared to only 3 
diseases for which nearby variants had significantly 
reduced effect sizes (Supplementary Table 4). Given 
that lowering significance thresholds can increase the 
amount of heritable variation explained for a given trait, 
we also considered the effect size distribution of all 
variants falling near our region sets. Nearly all diseases 
had biased distributions, with the majority (106 of 127) 
having larger absolute effect sizes for adult-biased 
regions (Supplementary Table 4). 
 
Per-disease enrichment testing 
 
For each GWAS set, we defined single nucleotide 
polymorphisms (SNPs) with strong association  
signals (p-value < 1e-6) and looked for the presence of 
nearby epigenetically-altered regions (Supplementary 
Methods). We observed that, generally, our accessibility 
data were enriched for nearby variants (Supplementary 
Table 4), which is expected given that these data will 
capture non-coding regulatory elements which are 
concentrated for GWAS signal [31]. First considering 
accessibility change between fetal and adult tissues, we 
found that of this general enrichment adult-biased 
regions associate with a significant proportion of 
variants across a majority of diseases, while fetal-biased 
regions associated with significantly less variants than 
expected (Supplementary Table 4). 
 
We next considered the effects of age-associated 
accessibility changes on age-related disease GWAS 
signals. Unexpectedly, we observed that old-biased 
regions, unlike adult-biased regions, are actually 
depleted of nearby strong variants across the majority of 
age-related diseases, while young-biased regions are 
enriched for such signals (Supplementary Table 4). 
Furthermore, we found that for intersections of 
development and age-altered regions that this age-
associated behavior outweighs the earlier development 
behavior. Of the general enrichment in adult-biased 
regions, a significant portion of this can be attested to 
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adult-biased regions which lose accessibility in old-age 
(i.e., young-biased regions), while adult-biased regions 
which gain accessibility in old-age are actually depleted 
for such signals (Supplementary Table 4). Conversely, 
of the general depletion in fetal-biased regions, an 
insignificant portion of this can be attested to fetal-
biased, old-biased region intersects (hypergeometric test 
adjusted p-value > 0.05), while those strong variants 
which do fall nearby fetal-biased regions tend to be 
concentrated near those regions also considered young-
biased (Supplementary Table 4). 
 
Gene set ranking tests 
 
To confirm the behavior of our within-disease gene 
ranking strategy (see Supplementary Methods), we 
defined a positive-control gene set which would be 
expected to be strongly-associated with aging diseases 
using the GO term ‘homeostatic process’ (GO:0042592). 
When compared to randomly-sampled gene sets this set 
had significantly-increased cross-disease gene rankings 
(Supplementary Table 4). As a negative control, we took 
a gene set which would not be expected to be strongly 
associated with aging diseases, those involved in the 
development of reproductive structures (GO:0003006). 
This set did not have significantly-increased cross-
disease gene rankings. 
 
When looking at gene sets defined by RNA-seq data, 
we found that genes generally less expressed in adult 
tissues (fetal-biased) were enriched for cross-disease 
GWAS signals, while genes more expressed in adults 
were actually significantly depleted for such signals 
(Supplementary Table 4). Gene loci with increased 
expression in older adult tissues were enriched for 
GWAS signals, as were loci with decreased older-adult 
expression – suggesting the possibility that a mixture of 
genes increasing and decreasing expression over time 
may additively contribute to aging disease biology. It is 
worth noting that the fetal-biased (expression) genes 
significantly overlap with young-biased genes (defined 
by expression), possibly explaining the shared 
enrichment for GWAS signals, while adult-biased and 
old-biased genes (by expression) did not significantly 
overlap - though this overlap set itself, containing a 
number of immune-related genes, was enriched for 
GWAS signals (data not shown). 
 
Cross-disease gene ranking genome-wide 
 
It has been suggested that the highly polygenic nature of 
complex traits and diseases reflects cumulative regulatory 
modification to a ‘core’ set of genes who functions most 
proximately in relevant biology (i.e., the ‘Omnigenic 
model’) [32]. If this is indeed the case, we would expect 
that, for age-associated diseases across multiple tissues, 

those genes most involved with general pan-tissue aging 
processes would represent a ‘core’ set of genes whose 
dysregulation contribute to heritable risk across aging-
associated diseases. We took an unbiased approach to 
relevant gene discovery, identifying a putative set of 
‘core’ aging-related genes solely on the basis of 
aggregate GWAS signals genome-wide (without 
considering accessibility change) (Supplementary 
Methods). The resulting set of genes was enriched for 
terms relating to keratinization, sensory perception of 
smell, and neuron-related terms (e.g., glutamate receptor 
signaling) (Supplementary Table 4). We previously 
observed the former two terms in our region-association 
analyses, which may suggest that the effects of gene 
clustering (e.g., clustering of keratin genes, olfactory 
receptors) may bias our locus ranking method. We note 
that similar enrichments for these terms in our fetal/adult 
RNA-seq analyses were observed (Supplementary Table 
2), though whether this GWAS signal – expression - 
accessibility concordance is due to broad changes in 
accessibility and subsequent transcription in gene clusters 
is unclear. The fact that we observe consistent 
enrichments for keratinization and smell perception using 
the RRA-based method may indicate that this method is 
particularly sensitive to gene-clustering effects. 
 
Our per-disease GWAS analyses suggested the 
importance of altered epigenetic state, particularly that 
which occurs between young/old adult tissues, in 
considering the risk association of variants with aging-
associated diseases. Therefore, we looked for consistent 
cross-set ranking using variants occurring nearby age-
association regions (Supplementary Methods). Again, 
applying an RRA-based method to different accessibility 
region sets yielded broadly similar terms relating to 
keratinization and smell perception. However, when 
applying a functional gene-set enrichment analysis 
(FGSEA)-based method, we saw greater differentiation 
in enrichment results. Ranking genes based on variants 
nearby fetal-biased regions yielded terms relating to 
developmental processes (e.g., embryonic development, 
skeletal system morphogenesis), while considering  
adult-biased regions again yielded enrichments for 
keratinization. Young-biased regions yielded enrichments 
for ‘histone deacetylation’ (discussed in more detail in 
main text), as well as terms relating to viral infection 
(e.g., ‘viral gene expression’). Finally, old-biased regions 
yielded the previously-seen enrichments for smell 
perception and keratinization, though also including 
enrichments for immune processes (e.g., ‘antibacterial 
humoral response’) and DNA methylation. 
 
Intersection set comparisons 
 
We compared our developmentally-associated and age-
associated regions directly, here explicitly comparing 
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age-associated regions with developmental regions not 
changing with age as a more stringent contrast 
(Supplementary Methods). Here we also saw the much-
stronger biasing of young/old-biased regions; old-
biased regions associating with significantly less cross-
trait heritability than fetal-biased, while young-biased 
regions associated with significantly more heritability 
than all other sets (Supplementary Table 4). Comparing 
development and age-altered intersection sets, we 
found that the strong disparity in GWAS associations 
between the young -and old-biased region sets 
outweighed the differences between the fetal- and 
adult-biased region sets. For example, the young-biased 
/fetal-biased set had the second-highest average cross-
trait association, despite fetal-biased regions generally 
being associated with weaker GWAS signals in the 
previous fetal/adult comparison. Conversely, the 
weaker GWAS signals associated with the old-biased 
region set outweighed the generally-higher signals  
of the adult-biased region set, actually having a  
lower average cross-trait association than fetal-biased 
regions not significantly changing accessibility in the 
young/old accessibility analysis (see Supplementary 
Table 4). 
 
Supplementary Methods 
 
Processing accessibility datasets 
 
DNase-I hypersensitivity datasets were obtained from 
ENCODE [33] for eight different fetal and adult tissues 
(adrenal gland, brain, heart, lung, muscle, skin, spleen 
and stomach), retrieving sorted, duplicate-filtered 
mapped read files (.bam) via the ENCODE web portal 
[8] in hg19 format. ENCODE file accession codes and 
metadata for individual samples are provided in 
Supplementary Table 1. To define reproducible 
hypersensitivity sites within each tissue, we applied the 
IDR statistical test [34] (version 2.0.3). Briefly, the 
IDR method identifies overlaps in peak calls across 
pairs of sample replicates by comparing ranked peak 
lists (using MACS2 q-value) to define a reproducibility 
score curve. These paired peaks are then assigned a 
pointwise score based on this curve. Peaks are sorted, 
with those falling below an “irreproducible discovery 
rate” (IDR) threshold (here defined as 0.05) are taken 
as the final reproducible peak set across replicates. For 
each sample, peaks were called with MACS2 [35] 
(version 2.1.1.2) using the following parameters: ‘-f 
BAMPE --nolambda’ and ‘-f BAM --no-model --shift -
100 --extsize 200’ for paired-end and single-end 
experiments, respectively. An IDR threshold of 0.05 
was applied, with resulting filtered peaksets combined 
using the ‘bedtools merge’ function from bedtools [36] 
version 2.29.1 in those instances where both single-end 
and paired-end experiments for a given tissue were 

obtained and processed separately with MACS2/IDR. 
Peak sets were pooled across individual tissues for a 
given set of samples (e.g., fetal IDR peak calls) and 
subsequently pooled using ‘bedtools merge -c 1 -o 
count’, filtering for peaks which were overlapped at 
least twice (i.e., called in at least two different tissues). 
Finally, peaks were fixed to a constant size by padding 
75bp from the centre of each peak (150bp regions), this 
size based on the average size of called peaks across 
different sets. These tissue-consolidated peak sets, 
defined for adult and fetal samples, were then pooled 
and merged with ‘bedtools merge’, fixing the final set 
of peaks to a constant size of 150bp. DNase read-
coverage was then quantified within this peak set using 
the ‘bedcov’ function of samtools [37] (version 1.5) for 
each mapped .bam file initially obtained, resulting in a 
final matrix of read coverages for all peaks across all 
tissue samples. 
 
Read coverages were imported into R [38] version 
4.0.2 via the limma [39] package version 3.46; 
coverages were subsequently normalized using the 
TMM method using the ‘calcNormFactors’ function 
from edgeR [40] version 3.32.1. Two different models 
for comparing differential-accessibility across adult/ 
fetal samples were used. Firstly, we considered within-
tissue differences in accessibility with time (i.e.,  
the interaction between tissue*time). Secondly, we 
considered across-tissue differences in accessibility 
with time to by accounting for all tissues simultaneously 
(i.e., using a model of tissue + time). For both models, 
we performed a standard limma-based analysis using 
the functions ‘voomWithQualityWeights’ (setting 
normalized = ‘none’, all others left to defaults), ‘lmFit’, 
‘makeContrasts’, ‘contrasts.fit’ and finally ‘eBayes’. 
The final sets of statistics comparing differential-
accessibility across all peaks were extracted for 
individual tissues (using the results from the first 
model) and across tissues (using results from the second 
model) using the ‘topTable’ function, applying  
a Benjamini-Hochberg [41] FDR correction to  
define peaks significantly changing accessibility 
(differentially-accessible, DA) (adj. P-val < 0.05). 
Subsequently, the peaks defined as DA across tissues 
with time were compared to those defined as DA within 
tissues using R, with the resulting intersections 
visualized using ggplot2 version 2.3.3 and gridExtra 
version 2.3 as shown in Figure 1C. Per-peak DA 
statistic results for the cross-tissue fetal/adult 
comparison are provided in Supplementary Table 1, 
Sheet 2. 
 
Visualizing genomic distribution of epigenetic change 
 
To visualize the distribution of regions exhibiting 
altered accessibility across the genome (i.e., the DA 
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peaks defined above), we defined genome-wide 
windows using the bedtools ‘makewindows’ function, 
then intersected our peak sets via bedtools intersect. 
The resulting tracks were loaded into R using the 
rtracklayer [42] package version 1.50. To visualize the 
density of altered peaks generally, for each 
chromosome the number of regions (adult- and fetal-
biased) falling within windows were summed per-
window, and subsequently smoothened using the 
‘smooth.spline’ function in R. We subsequently 
defined a red/blue colour scale based on these 
smoothened counts. In addition this general density, 
we also calculated the difference in the occurrence of 
adult-/fetal-biased peaks/regions within windows, 
smoothening these values within a given chromosome. 
We used the karyoploteR [43] package version 1.16 to 
plot karyotypes for all chromosomes, plotting the 
density of DA peak occurrence as a red/blue density 
bar, while the differences in adult-/fetal-biased peak 
occurrence were visualized as a curve (with diagonal 
red line indicating no difference in smoothened 
values). These plots for the first ten autosomes are 
shown in Figure 1B, with the full set of autosomes 
shown in Supplementary Figure 2. 
 
Defining age-altered regions 
 
In order to compare DNase-I accessibility across adult 
samples, the set of adult samples used in the above 
analysis was subsequently split into those from 
individuals younger than 50 (‘young-adult’) and those 
older (‘old-adult’), this age representing a roughly 
equal split of sample numbers. Not all tissues used in 
the initial fetal/adult comparison were represented in 
these age-stratified sets – thus we restricted the tissue 
comparisons to brain, heart, lung, muscle and stomach 
tissues. The read coverage matrix defined above was 
restricted to just these adult samples. Given our 
interest in considering accessibility change with age in 
the context of earlier fetal/adult epigenetic change, we 
further subset the coverage matrix to consider age-
altered accessibility in peaks defined as DA between 
fetal/adult samples (adj. P-val < 0.05). The resulting 
matrix was again loaded into R using limma, with the 
subsequent analyses performed similarly to that 
described above – considering two different models 
(within-tissue and across-tissue aging differences) to 
compare young/old samples. We finally compared 
within- and across-tissue DA peak definitions using R, 
though due to the reduced sample sizes for performing 
the within-tissue comparisons there was limited 
overlap of significant results despite agreement in 
direction-of-effect (data not shown). Per-peak DA 
statistic results for the cross-tissue young/old-adult 
comparison are provided in Supplementary Table 1, 
Sheet 3. 

Generating accessibility heatmaps 
 
To visualize accessibility across different fetal/adult 
tissues (as see in Figure 1A), we took the TMM-
normalized counts matrix defined above and converted 
counts to counts-per-million (CPM) using the ‘cpm’ 
function from edgeR with the following parameters: ‘log 
= T, prior.count = 3’. This CPM matrix was then subset 
to those peaks which were significantly DA (adj p. < 
0.05). For visualization, we then sorted all peaks by their 
limma-calculated t-statistic, taking the top 1000 peaks 
showing the strongest increase/decrease in accessibility 
(between fetal/adult). Normalized CPM values were 
averaged across individual replicates for a given tissue, 
with the resulting matrix finally z-score-normalized (per-
peak), and plotted using the ComplexHeatmap [44] 
package version 2.6.2. A similar method was performed 
using peak sets defined in the above age-altered region 
analysis, as shown in Supplementary Figure 3. 
Additionally, we performed the above analyses for 
individual replicates of a given tissue (e.g., heart 
samples), as shown in Supplementary Figure 1. 
 
Comparing development and age-associated changes 
 
Peak sets defined as differentially-accessible in either 
the fetal/adult, or young-adult/old-adult comparisons 
were read into R and compared for overlaps visually 
using the VennDiagram [45] package version 1.6.20, as 
seen in Figure 1D. The directionality of peak overlaps, 
i.e., fetal-/adult-biased vs. young/old-biased, were 
compared using a chi-sq test in base R, the results of 
which are shown in Supplementary Table 1, Sheet 3. 
 
Assigning epigenetic states to region sets 
 
To define the epigenetic context within which our 
development- and age-altered regions fall, we utilized 
genome-wide assignments of epigenetic state as defined 
by the Roadmap consortium [3]. This employs a Hidden 
Markov Model to analyze epigenetic data, including 
chromatin modification (ChIP-seq) and accessibility 
(DNase-seq) data, for a given sample and assign one of 
several possible epigenetic states for individual 200bp 
segments genome-wide. The Roadmap dataset contains 
several such genome-wide state definitions for different 
tissue and cell-line samples (e.g., skin, brain, etc.). We 
downloaded state definitions for the 25 state model, 
which incorporates imputed data for 12 marks, for 127 
reference genomes, subsetting to those obtained from 
adult tissue samples. For each individual 200bp segment 
we then considered the assigned epigenetic state of this 
segment across all samples – given our pan-tissue 
approach to chromatin accessibility changes, we defined 
an ‘adult-majority’ state assignment based on the 
assigned state recurrent across the majority of samples. 
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For simplicity, we collapsed down similar definitions 
(e.g., ‘Active Enhancer 1’ and ‘Active Enhancer 2’ 
being considered ‘Enhancer’) (see Supplementary 
Figure 4 for final reduced set of states). Our sets of 
development- and age-altered regions were 
subsequently intersected with these genome-wide states 
using bedtools intersect, counting the number of 
segments intersected that belonged to different 
categories. This was done considering the unique 
numbers of segments (i.e., segments intersected by more 
than one region were only counted once) – allowing for 
repeat segment counting did not substantially alter 
enrichment results (data not shown). Finally, for each 
epigenetic state we compared the number of segments 
intersected by a given region set (e.g., old-biased 
regions) to the total number of segments assigned this 
state genome-wide using the phyper function from base 
R. P-values from these hypergeometric tests were 
adjusted for the number of states tested using the 
Benjamin-Hochberg method – enrichment/depletion 
results were similar when considering all 25 epigenetic 
states (data not shown). Enrichments/depletions for 
each region set were plotted as logFC values using 
ggplot2 (see Supplementary Figure 4). 
 
LOLA enrichment analysis 
 
The LOLA software [5] version 1.12 was used to test 
for significant enrichments of our region sets with 
publicly-available sets of genomic annotations and 
epigenetic datasets. For these sets of developmentally-
altered regions, we used the set of DNase-I regions used 
in the initial differential-accessibility analysis (i.e., 
reproducible peaks pooled from adult and fetal tissues) 
as the background region set (to account for the 
possibility of inherent biases of open-chromatin regions 
towards certain datasets/annotations). To visualize these 
enrichment results, significant enrichments (defined as 
calculated q-value < 0.05) were first sorted by odds-
ratio values, then filtered to remove similar entries (e.g., 
replicate datasets for a given histone mark in a given 
cell-type). Furthermore, given our interest in epigenetic 
and genomic annotation terms, we further filtered 
significant results to retain histone-mark datasets and 
annotations. Of this set, the top 20 terms (by odds-ratio) 
were plotted using ggplot2. For LOLA enrichments 
using young- and old-biased region sets, the set of 
regions used in the initial young/old comparison (i.e., 
peaks differentially-accessible across the fetal/adult 
comparison) was used as the background region set. 
 
Comparing developmental epigenetic changes with 
bivalent developmental promoters 
 
A set of bivalent promoter domains defined by Yan et 
al. 2016 [1] using ChIP-seq datasets generated from 

fetal brain, heart and liver samples was obtained and 
pooled (Supplementary Table 2 of Yan et al.). To 
establish a genome-wide background for promoters, all 
hg19 Refseq gene TSS were obtained from the UCSC 
genome browser [46] and padded 2kb up/downstream, 
following the definition of promoter regions used in 
Yan et al. The adult-biased and fetal-biased region sets 
were subsequently intersected with these promoter 
regions using bedtools intersect. The number of bivalent 
promoters intersected by development-altered regions 
were compared to the total number of promoters 
intersected using the ‘phyper’ function of base R to test 
for enrichment/depletion. As an additional validation, 
we randomly sampled promoter regions genome-wide 
to match the number of promoter regions intersected by 
adult/fetal-biased sets, generating a background of 1000 
sets of randomized promoters for each. The number of 
bivalent domains intersecting these randomized sets was 
compared to the number of bivalent domains intersected 
by adult/fetal-biased regions using the ‘pnorm’ function 
in base R, confirming the depleted intersections of 
adult-biased regions and enriched intersections of fetal-
biased regions (data not shown). 
 
Processing ChIP-seq datasets 
 
For our analyses comparing patterns of chromatin 
accessibility with histone modifications, histone mark 
ChIP-seq datasets were obtained from ENCODE for 
H3K27ac, H3K27me3, and H3K9me3 marks. These 
datasets were obtained from fetal and adult tissue 
samples for tissues overlapping those used in the DNase 
accessibility analyses above – see Supplementary Table 
1 for accession codes and metadata. ChIP-seq peaks 
called by the ENCODE pipeline were obtained along 
with mapped (hg19) bam files. Peak calls from 
biological replicates for individual tissues were 
consolidated by requiring that peaks be replicated in 2/3 
of samples to be considered replicable for downstream 
analyses. Overlapping peaks were merged and fixed to 
constant size of 400bp (for H3K27ac) and 300bp (for 
H3K9me3 and H3K27me3) (size based on average peak 
call size in individual replicates) using bedtools. 
Replicable peaks were then pooled across tissues, and 
subsequently pooled across fetal/adult samples, 
overlapping peaks again merged and fixed to a constant 
size. 
 
In order to address the expected concordance between 
called DNase-I hypersensitivity sites and the presence 
of nearby histone ChIP-seq peaks, replicable DNase-I 
hypersensitivity sites defined for fetal and adult tissues 
were taken and compared with replicable ChIP-seq 
peaks looking for adjacency. This was done using the 
bedtools ‘slop’ function, looking for the presence of 
ChIP-seq peaks within a 1kb window (centred on each 
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ChIP-seq peak) of a given DNase peak. Nearby 
adjacency was checked for matched tissues – e.g., 
H3K27ac peaks defined in adult muscle tissue were 
compared with DNase peaks defined in adult muscle 
tissue, with the percent of called DNase peaks having 
nearby ChIP-seq peaks calculated. 
 
We then applied a pipeline similar to that described 
above in the treatment of DNase datasets. 
 
ChIP-seq read-coverage was quantified within the final 
peak set using the ‘bedcov’ function of samtools 
(version 1.5) for each mapped .bam file initially 
obtained, resulting in a final matrix of read coverages 
for all peaks across all tissue samples. 
 
Read coverages were imported into R via the limma 
package; coverages were subsequently normalized using 
the TMM method using the ‘calcNormFactors’ function 
from edgeR. Given the reduced number of ChIP-seq 
samples available for any given fetal/adult tissue 
comparison, only pan-tissue defined peaks were used in 
subsequent comparisons with altered-accessibility 
regions (results for individual tissue comparison models 
not shown). We performed a standard limma-based 
analysis using the functions ‘voomWithQualityWeights’ 
(setting normalized = ‘none’, all others left to defaults), 
‘lmFit’, ‘makeContrasts’, ‘contrasts.fit’ and finally 
‘eBayes’. The final sets of statistics comparing 
differential-accessibility across all peaks were extracted 
from the pan-tissue model using the ‘topTable’ function, 
applying a Benjamini-Hochberg FDR correction to 
define peaks significantly changing accessibility 
(differentially-accessible, DA) (adj. P-val < 0.05). 
 
Methylation-site analysis 
 
The set of methylation sites used in defining the 
methylation-aging clock from Horvath 2013 [47] were 
obtained (Additional File 3). These sites were separated 
into those either increasing or decreasing methylation 
status with age, with the resulting sets of genomic 
coordinates lifted-over from hg18 to hg19 using the 
‘liftOver’ utility from UCSC [48]. These sites were then 
intersected with our sets of development- and age-
altered regions using regioneR [49] (version 1.8.1) 
using the 'permTest’ function, generating 1000 
randomized region sets as a background using the 
'circularRandomizeRegions’ option and the 
‘count.once’ flag, with all other options set to defaults. 
Significance was assessed at p < 0.05 (Supplementary 
Table 1). For hypergeometric testing at the gene-locus 
level, gene annotations for hyper/hypo-methylated sites 
(as defined in the Horvath dataset) were intersected with 
the sets of genes associated with our different region 
sets (defined as described below under ‘Defining 

Region-Associated Genes’), using the ‘phyper’ function 
in base R to compare the numbers of overlaps relative to 
all genes captured in the promoter-capture datasets used 
(see below). Directional bias (e.g., old-age-associated 
genes and hypo-methylated regions) was tested using 
the ‘chisq.test’ function in base R. 
 
Promoter accessibility change processing 
 
All hg19 Refseq gene TSS were obtained from the UCSC 
genome browser [50] and padded 1kb up/downstream to 
define promoter regions. For each promoter region, 
DNase read coverage was calculated for all fetal and 
adult tissue samples using the ‘bedcov’ function of 
samtools (version 1.5) for each mapped .bam file initially 
obtained, resulting in a final matrix of read coverages for 
all peaks across all tissue samples. A limma-voom 
analysis to define promoters whose accessibility were 
significantly different across tissues in the fetal/adult 
comparison was performed, similar to that described 
above in our initial DNase-I region analysis. Significance 
was defined as adjusted p-value < 0.05. The same 
analysis was performed using age-stratified adult samples 
in order to define promoter regions changing accessibility 
across tissues (i.e., age-altered promoter regions). To 
visualize promoter accessibility across fetal/adult and 
young/old-age tissues (as seen in Supplementary Figure 
6), the promoter read-coverage matrices was treated 
similar to that described above. Given the large number 
of promoters defined as differentially-accessible, we also 
defined a more stringent definition of changing promoter 
accessibility. We intersected promoter regions with our 
region sets using bedtools – that is, a promoter 
intersected by a fetal-biased region was considered a 
fetal-biased promoter, and similarly for age-altered 
region intersections. 
 
Promoter contact processing 
 
Promoter-capture data was obtained from Jung et al., 
2019 [12], particularly the file ‘GSE86189_ 
all_interaction.po.txt.gz’ which contains processed 
information on regions contacting the promoters 
assayed in this study. This dataset was generated from 
promoter-capture assays across a number of different 
tissues and cell-types; given our pan-tissue approach, 
we considered all data (with the exception of OV2, as 
we excluded sex-specific tissues from all previous 
obtained datasets). To generate a set of genomic regions 
which show evidence of contacting gene promoters, we 
filtered interacting regions to those which contacted 
their respective promoters in at least two different 
tissues/cell-types. This moderate filter was used to 
exclude those regions for which interactions appear to 
be exclusive to one dataset, while allowing for regions 
that do not show such exclusivity. We then intersected 
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these interacting regions with our sets of altered regions 
in order to suggest the possible regulatory roles that our 
sets may have (in terms of regulating possible target 
genes). 
 
Preferential contacts: 
 
We first tested to see whether adult-biased or fetal-
biased regions differed in their tendency to contact gene 
promoters. Interacting regions were labeled as adult-
/fetal-biased based on these intersections, and the 
numbers of said regions interacting with promoters was 
tested using hurdle modelling as implemented using the 
‘hurdle’ function from the pscl [51, 52] package in R 
(version 1.5.2). A binomial model was applied for the 
initial hurdle/zero-counts step, with the subsequent 
counts modeling done using a negative binomial 
regression model. Tukey post-hoc testing was 
performed using the emmeans package version 1.5.5 in 
R. A similar analysis was performed using young- and 
old-biased regions. 
 
To test whether adult- or fetal-biased regions 
preferentially intersected with promoter-capture regions 
contacting promoters either gaining or losing 
accessibility (differential accessibility as defined above, 
adjusted p-value < 0.05), we used the ‘chisq.test’ 
function in base R for both the adult/fetal comparison as 
well as young/old-age. As a more stringent test, we 
performed a similar chi-sq test for promoters 
gaining/losing accessibility as defined by intersections 
with development- or age-altered regions. 
 
Defining region-associated genes 
 
To associate genes with our region sets to suggest 
regulatory patterns (e.g., adult-biased regions contacting 
a promoter with increased accessibility across adult 
tissues relative to fetal), we took the set of promoters 
for which differential-accessibility was significant in the 
fetal/adult (or young/old-age) comparison (adjusted p-
value < 0.05) and considered the regions putatively 
contacting these promoters, as defined above. Given 
that a given promoter may be contacted by regions both 
gaining and losing accessibility (e.g., adult- and fetal-
biased regions) (there being few genes contacted by 
exclusively one set of regions – data not shown), a chi-
sq test was performed per-promoter to test for 
significant bias in the number of putatively-contacting 
regions (i.e., a fetal-biased promoter with a greater 
proportion of putative fetal-biased region contacts), 
controlling for the global proportion of putative contacts 
(given that we observed biases in different region sets 
for having more putative contacts given the above zero-
hurdle modelling analyses). These multiple tests were 
corrected using a Benjamini-Hochberg correction, with 

genes showing a significant bias in putative contacts 
sharing direction with promoter accessibility change 
retained for subsequent gene-set enrichment analyses 
(see below, Supplementary Table 2). 
 
GREAT: GREAT [53] takes an input set of genomic 
regions along with a defined ontology of gene 
annotations; firstly, it defines regulatory domains for all 
genes genome-wide, then measures the fraction of the 
genome covered by the regulatory domains of genes 
associated with a particular annotation (e.g., ‘cartilage 
development’). These fractions are used as the 
expectation in a binomial test counting the number of 
input genomic regions falling within a given set of 
regulatory domains, which results in the reported 
significance of association between an input region set 
and a particular gene ontology term. GREAT also 
performs a more traditional gene-based hypergeometric 
test to test for significance of region set-ontology 
association. The program returns a set of enriched 
ontologies sorted by the joint rankings of FDR-corrected 
binomial and hypergeometric tests, as reported here in 
our Supplementary Tables. For each given set of 
ontologies (e.g., GO Biological Processes) we took the 
set of ranked terms and filtered for those having either an 
FDR-corrected binomial or hypergeometric p-value of < 
0.05; this was done as, given our large peak sets, the 
hypergeometric test can become saturated (hence, the 
option to show enrichments significant by the region-
based binomial with the GREAT online service). The top 
thirty filtered terms were then subset and are provided in 
Supplementary Table 1. 
 
Gene-set enrichment analyses 
 
Genes associated with our different region sets (as 
described above) were tested for enrichment in different 
GO Biological Process terms using the ‘enrichGO’ 
function from the clusterProfiler [54] package version 
3.16.1. The background gene set was defined as all 
genes for which promoter-capture data was available for 
use in our above region-gene association processing. 
Semantically-similar enriched GO terms were 
subsequently collapsed using the ‘simplify’ function 
from clusterProfiler, using default settings. The top 
enriched GO terms (sorted by adjusted p-value) for each 
region-associated gene set are reported in 
Supplementary Table 2, limiting to the top twenty 
significant (adjusted p-value < 0.05) terms. Similar 
results are shown for gene sets defined using expression 
datasets (Supplementary Table 2). 
 
ENCODE fetal/adult RNA-seq processing 
 
Processed per-gene quantification files, as generated by 
the ENCODE pipeline, were obtained from the ENCODE 
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web portal [8] (see Supplementary Table 2 for file 
accessions). Given the limited availability of adult tissue 
samples with which to perform a differential-expression 
analysis, we instead defined a less-stringent method to 
look for broad changes in expression of genes across 
tissues, as follows. For each individual tissue, replicates 
for adult and fetal samples were collapsed by calculating 
the geometric mean of expression values for each gene. 
The difference in average expression for each gene was 
then calculated, with all expressed genes subsequently 
ranked by these differences. The gene-set ranks for  
each individual tissue comparison were then aggregated 
using the ‘aggregateRanks’ function from the 
RobustRankAggreg library version 1.1 [55]. Briefly, this 
method considers the ranking of genes across multiple 
conditions, detecting genes that are ranked consistently 
higher than expected given a null hypothesis of 
uncorrelated ranked sets by assigning a per-gene 
significance score. We applied this method to genes 
ranked based on differences calculated as (adult – fetal) 
as well as (fetal – adult), defining our final sets of 
‘broadly adult-biased’ and ‘broadly fetal-biased’ genes 
using an RRA significance cutoff of < 0.05. Overlaps of 
these gene sets with those defined above based on our 
region sets was done in R, testing for significant overlap 
with the ‘phyper’ function, as well as biases in the 
direction of these overlaps (i.e., adult-biased by region-
association, adult-biased by RRA RNA-seq) using the 
‘chisq.test’ function. 
 
GTEx young/old-adult RNA-seq processing 
 
The following processed RNA-seq quantification  
files were obtained from the GTEx web portal  
[15]: GTEx_Analysis_2017-06-05_v8_RNASeQCv1. 
1.9_gene_reads.gct, GTEx_Analysis_v8_Annotations 
_SubjectPhenotypesDS.txt, GTEx_Analysis_v8_ 
Annotations_SampleAttributesDS.txt. The scripting 
written for processing this initial metadata was 
modeled after similar code used in a study of age-
associated expression changes that also made use of 
the GTEx dataset [56]. Samples were subset to just 
those used in the young-age/old-age accessibility 
comparison; brain (Brain - Cerebellum), heart (Heart – 
Left Ventricle), lung (Lung), muscle (Muscle - Skeletal) 
and stomach (Stomach). Similar to Benayoun et al., the 
set of human protein-coding genes was obtained from 
UCSC [50] (Homo_sapiens.GRCh38.pep.all.fa) and 
intersected with the subset GTEx expression matrix. 
Similarly, we subset the GTEx matrix to include only 
male individuals, though testing yielded similar sets of 
differentially-expressed genes when considering both 
sexes (data not shown), and filtered for samples having 
genotype data as well as RIN scores >= 5. We used the 
same definitions for ‘young-age’ (< 50) and ‘old-age’ (> 
50) as in the above accessibility analyses. 

We utilized similar processing steps as those outlined 
above in our young/old-age accessibility analyses. The 
subset expression matrix was imported into R version 
4.0.2 via the limma package version 3.46, applying a 
quality filter by requiring that genes have an expression 
value of at least 1 counts-per-million in at least three 
different samples. The filtered matrix was then 
normalized using the TMM method via the 
‘calcNormFactors’ function from edgeR version 3.32.1. 
Two different models for comparing differential-
accessibility across adult/fetal samples were used. Firstly, 
we considered within-tissue differences in accessibility 
with time (i.e., the interaction between tissue*time). 
Secondly, we considered across-tissue differences in 
accessibility with time to by accounting for all tissues 
simultaneously (i.e., using a model of tissue + time). For 
both models, we performed a standard limma-based 
analysis using the functions ‘voomWithQualityWeights’ 
(setting normalized = ‘none’, all others left to defaults), 
‘lmFit’, ‘makeContrasts’, ‘contrasts.fit’ and finally 
‘eBayes’. The final sets of differential-expression 
statistics extracted for individual tissues (using the results 
from the first model) and across tissues (using results 
from the second model) using the ‘topTable’ function, 
applying a Benjamini-Hochberg FDR correction to 
define genes significantly changing expression 
(differentially-expressed, DE) (adj. P-val < 0.05). 
Subsequently, the DE genes defined across tissues with 
time were compared to those defined as DE within-
tissues using R, with the majority (> 60%) of pan-tissue-
defined DE genes also considered DE in at least two 
different tissues (data not shown). 
 
Overlaps of pan-tissue-defined DE genes with those 
defined above based on our young-/old-biased region 
sets was done in R, testing for significant overlap with 
the ‘phyper’ function, as well as biases in the direction 
of these overlaps (i.e., old-biased by region-association, 
old-biased by GTEx RNA-seq) using the ‘chisq.test’ 
function. 
 
Human-divergent sequence analyses 
 
We took an aggregated set of sequences showing 
increased divergence along the human lineage [18–23] 
(see Supplementary Table 3, Sheet 2) and intersected 
with our regions sets (e.g., fetal-biased regions), along 
with ATAC-seq data obtained from a separate adult 
post-mortem brain tissue datasets [57], as well as a 
previously-published B-lymphocyte dataset [58], to act 
as controls. GM12878 ATAC-seq data was obtained 
from GEO datasets (GSE47753) as raw .fastq files (for 
50K samples); reads were subsequently mapped to hg19 
using the ATAC-seq processing pipeline described in 
Richard et al [59], with IDR replication performed for n 
= 4 replicates. Adult brain open-chromatin regions were 
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obtained from the Brain Open Chromatin Atlas (BOCA) 
[57], downloading the file ‘https://bendlj01.u.hpc.mssm. 
edu/multireg/resources/boca_peaks.zip’. Called peaks 
were pooled across different cell types using the 
‘bedtools merge’ function. To account for differences in 
set size when performing intersections, the number of 
intersections for any given region set were calculated as 
intersections/bp of sequence in said set. A background 
distribution was made by generating 1000 random region 
sets consisting of 100,000 regions (based on the general 
set size of our altered-accessibility sets, again accounting 
for total bp of sequence in each randomized set) with a 
constant length of 150bp via the bedtools ‘random’ 
function. These background sets were subsequently 
intersected with our set of human-divergent sequences to 
establish a background distribution of randomized 
intersection counts/bp. The distribution of intersection/bp 
values for this background set was assessed using the 
‘qqnorm’ (R base, version 4.0.3) and ‘qqPlot’ (car [60] 
version 3.0.8) functions – no obvious deviations from a 
normal distribution were observed. Additionally as a 
more stringent significance test, we utilized the 
fitdistrplus [61] package (version 1.1.1) to determine a 
possible alternative distribution to fit the data. The 
‘descdist’ function was initially used to assess curve 
behavior; goodness-of-fit statistics (from the ‘gofstat’ 
function) for gamma, beta, exponential, and log-normal 
distributions were subsequently compared, with the beta-
distribution subsequently selected (this choice also being 
appropriate given the fractional nature of the datapoints 
[62]. Beta distribution parameters (‘shape1’ and ‘shape2’ 
in the R implementation of ‘pbeta’) were fit using a 
bootstrap method (‘bootdist’ from ‘fitdistrplus’), with the 
median parameter estimates from 1000 samples used to 
define the distribution for significance testing of target set 
intersections/bp values with ‘pbeta’ (upper-tail p-values). 
Results were subsequently adjusted using BH correction, 
along with those obtained using the normal CDF 
distribution (‘pnorm’ in base R). Regions intersecting 
human-divergent sequences were associated with the 
closest annotated TSS with the HOMER (version 4.11) 
[63] ‘annotatePeaks.pl’ script. Subsequently, these 
regions were merged with the promoter-capture datasets 
described above, indicating those regions for which 
contact data is suggestive of possible interactions with 
the nearest gene promoter (Supplementary Table 3). 
 
Cross-species sequence conservation within region sets 
 
Per-bp phyloP20ways conservation scores [64] were 
obtained from the UCSC table browser [50] for the hg19 
genome. For a given region, scores were averaged over 
the length of all bp using the ‘bigWigAverageOverBed’ 
utility from UCSC [48]. Scores across all regions  
in different sets were compared using the 
‘pairwise.wilcox.test’ function in base R, applying a BH 

post-hoc correction (see Supplementary Table 3). Similar 
comparison results were observed when using a broader 
100-ways alignment score (data not shown). For 
visualizing distributions of scores across sets (as shown 
in Figure 2A), the region-averaged phyloP scores for 
different sets were plotted using the ‘density’ function in 
base R with default settings. 
 
The sets of altered regions were also compared to those 
DNase regions considered in our accessibility analyses 
which did not significantly change in the fetal/adult 
comparison to act as a control dataset. Region-averaged 
values for target and control sets were compared using 
the ‘t.test’ function in base R for a one-sided 
comparisons. This was done for developmentally-altered 
region sets, as well as age-altered region sets (the control 
for the latter being those regions in the age-accessibility 
analysis which did not significantly change between 
young/old-age tissue samples) (see Supplementary Table 
3, Sheet 1). 
 
Species diversity patterns within region sets 
 
Zero-hurdle modelling 
Variation data from the 1000 Genomes Project phase 3 
(1KGP) [65] (n = 2504 individuals) in .vcf.gz format 
was obtained and intersected with our region sets using 
tabix [66] (version 1.9) to obtain variants occurring 
within these altered-accessibility regions. Chimpanzee 
(n = 25) and gorilla (n = 31) sequence data was 
similarly obtained via the Great Ape Genome Diversity 
Project (GADP) [67]. Peak sets were lifted-over from 
hg19 to hg18 for use with the GADP datasets with the 
UCSC ‘liftover’ utility and relevant liftover chain file. 
Resulting subset VCF files were converted to tab format 
with the following Unix command, using bcftools [68] 
(version 1.8):  
 
bcftools query -f '%CHROM\t%POS\t%ID\t%REF\t% 
ALT[\t%SAMPLE=%TGT]\n' -o out.vcf in.vcf. 
 
Variant data for all region sets were down-sampled to 
n=25 (with replacement, 5 resamples for gorilla and 200 
re-samples for the human set) in order to match sample 
size for all comparisons based on the least-sampled 
species (chimp), using a custom R script. 
 
Common variants were defined using a minor allele 
frequency (MAF) threshold of >= 0.05 for all datasets, 
filtering tab-formatted files using a custom Python script. 
Counts data was defined as the number of variants 
intersecting a given region and were averaged over 
resampled variant sets (see below). Counts data across 
apes were then compared within a given region set (e.g., 
young-age regions) to compare intra-species diversity 
within sequences. Hurdle modeling was used to test for 
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significant differences in both total number of sequences 
containing variants (hurdle) as well as degree of variation 
between species (counts); implemented using the ‘hurdle’ 
function from the pscl [51, 52] package in R (version 
1.5.5). A binomial model was applied for the initial 
hurdle/zero-counts step, with the subsequent counts 
modelling done using a negative binomial regression 
model. Tukey post-hoc testing was performed using the 
emmeans package in R (version 1.4.7) for both 
hurdle/zero-counts and counts models, with significance 
assessed at adjusted p-value < 0.05 (Supplementary 
Table 3). Additionally, region sets were compared to one 
another (e.g., fetal-biased vs. adult-biased regions) within 
a given species using the above methods. 
 
In order to look at sequence constraint of our region sets 
within humans, a background distribution was made by 
generating 1000 random region sets consisting of 
100,000 regions (based on the general set size of our 
altered-accessibility sets) with a constant length of 
150bp via the bedtools ‘random’ function. These sets 
were subsequently pooled, sorted, and merged using 
bedtools, with the resulting bed file used to extract 
variants from the 1KG3 set with tabix (version 1.9). The 
pooled set of altered-accessibility regions was also used 
to extract variants from the 1KG3 set. We also 
considered intersection sets in this analysis (e.g., young-
biased / adult-biased regions, etc.). 
 
Additionally, several genomic features were extracted 
from the HOMER (version 4.0.4) set of genomic 
annotations provided with the program, including the 
following sets: exon, intronic, promoter-TSS, and TTS. 
Regions from RepeatMasker were also obtained from the 
UCSC Table Browser. These additional sets were used to 
extract variants from the 1KG3 set. The resulting files 
were filtered for duplicate variants and subsequently 
MAF >= 0.05 with bcftools (version 1.8). Variants falling 
within particular regions in the random background, 
target (i.e., altered-accessibility regions), and genomic 
annotation sets were then extracted using tabix. Variants 
extracted for each set were counted using vcftools 
(version 0.1.15) ‘--counts2 --stdout’ arguments. Variant 
counts were then adjusted to account for the number of 
bp within a given set. The background distribution of 
these values was investigated using the ‘qqnorm’ (R 
base) and ‘qqPlot’ (car package) functions to look for 
visible deviations from normality, for which no obvious 
deviations were observed. Values were standardized and 
statistical significance was assessed using a CDF of the 
standard normal distribution as implemented in the 
‘pnorm’ function in R (version 4.0.3). P-values for 
significant deviations from the background distribution 
were corrected for the number of sets (n = 13) tested 
using a BH correction. Significance was defined as 
adjusted p < 0.05 (Supplementary Table 3). 

Chimpanzee genomic depletion analysis 
 
A similar sequence constraint analysis was also 
performed for chimpanzees. Altered-accessibility region 
sets were pooled and lifted-over to hg18 using the 
‘liftOver’ utility; a set of 1,000 randomly-generated 
region sets, consisting of 100,000 regions (based on the 
general set size of our altered-accessibility sets) with a 
constant length of 150bp via the bedtools ‘random’ 
function. Randomized sequence sets were subsequently 
pooled, sorted, and merged using bedtools, with the 
resulting bed file used to extract variants from the 
GADP set with tabix. Several genomic features were 
extracted from chimpanzee HOMER genomic 
annotations, including the following sets: intronic, 
promoter-TSS, TTS, and exon. Additionally, 
RepeatMasker elements called for the panTro4 genome 
were obtained from the UCSC Table Browser. These 
additional sets were lifted-over to hg18 (flags as 
indicated above) and used to extract variants from the 
GADP. The resulting files were filtered for duplicate 
variants and subsequently MAF >= 0.05 with bcftools 
(version 1.8). Variants falling within particular elements 
in the random background, target, and genomic 
annotation sets were then extracted using tabix. Variants 
per-set were counted using vcftools (version 0.1.15) ‘--
counts2 --stdout’ arguments. Variant counts were then 
adjusted to account for the number of bp within a given 
set. The background distribution of these values was 
investigated using the ‘qqnorm’ (R base) and ‘qqPlot’ 
(car package) functions to look for visible deviations 
from normality, for which no obvious deviations were 
observed. For comparison with the above human 
analysis, background values were standardized and 
statistical significance was assessed using a CDF of the 
standard normal distribution with the ‘pnorm’ function 
in base R. P-values for significant deviations from the 
background distribution were corrected for the number 
of sets (n = 13) tested using a BH correction. 
Significance was defined as adjusted p < 0.05 
(Supplementary Table 3). 
 
Obtaining and processing GWAS summary statistics 
data 
 
To define a set of aging-associated diseases for use in 
our analyses, we first used broadly-defined categories as 
described in Chang et al., 2019 [69]. This study 
described 92 age-related diseases grouped into broader 
disease categories based on analyses of large-scale 
demographic datasets. We took these diseases and used 
them as the basis for manually searching the set of 
ICD10 disease codes, data for which was obtained from 
https://www.cdc.gov/nchs/icd/icd10cm.htm. We pulled 
all ICD codes which matched keywords from this set of 
defined age-related diseases and aggregated them across 

https://www.cdc.gov/nchs/icd/icd10cm.htm
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different ICD categories (e.g., diseases of the circulatory 
system, nervous system, etc.). 
 
Pre-processed data files from the UK Biobanks study 
[70] were obtained from the Neale lab (https://nealelab. 
github.io/UKBB_ldsc/downloads.html) (via the link 
https://docs.google.com/spreadsheets/d/1EmwlCYYqko
VKqAS71nNDKoN18PyKwysYUppKTSMvKiM/edit?
usp=sharing), for all summary-statistics results in this 
UKB dataset for which ICD10 codes matched those 
aggregated above for aging-associated diseases. We 
further subset these traits to those for which liability-
scaled h2 estimates (based on LDSC analyses previously 
performed on these data [71], taken from the 
‘UKBiobanks_2019_heritabilities_per_trait.tsv.gz’ file) 
were positive. This resulted in a final set of 129 
different summary-statistics datasets for further 
processing (see Supplementary Table 4 for file 
accessions and trait descriptions). For these summary 
statistics, the per-SNP hg19 coordinates were obtained 
from https://www.dropbox.com/s/puxks683vb0omeg/ 
variants.tsv.bgz. 
 
Adjacent accessibility region associations – per-
disease enrichment testing 
 
For a given disease, we took the summary-level statistics 
and defined a set of variants having an association p-
value less than a given significance threshold (using both 
1e-6 and a more stringent 1e-8 cutoff, the latter yielding 
similar results - data not shown), generating a .bed output 
of SNPs (hg19 coordinates). Subsequently, for a given 
altered-accessibility region set (e.g., adult-biased regions), 
we considered the presence of SNPs nearby these regions 
– this was done to capture the possible effects of local 
linkage-disequilibrium, wherein a strongly-associated 
SNP may not fall immediately within a region, but a 
nearby proxy SNP (which may be the causal variant for 
the association signal) does intersect. This was done 
using the ‘window’ function in bedtools to consider 
significance-thresholded SNPs falling within 1000bp of a 
given region. As a robusticity check, we also performed 
the following per-disease enrichment tests using only 
those significance-thresholded SNPs falling immediately 
within regions, observing similar enrichments for DNase 
regions relative to genomic backgrounds, as well as 
altered-accessibility sets relative to all DNase regions 
(data not shown). 
 
To first test whether the global set of DNase regions 
used in our accessibility analyses (i.e., all regions 
defined across all adult and fetal tissues) were enriched 
for nearby significance-thresholded SNPs, we defined a 
genomic background set by randomly subsampling 
972,073 regions of 150bp size (matching the set-size of 
the global DNase set) from the hg19 genome using the 

bedtools ‘random’ function, generating 1000 sets of 
randomized backgrounds. These randomized sets were 
then subsequently used to count for nearby significance-
thresholded SNPs (for a given disease/trait) using the 
bedtools ‘window’ function. These randomized 
background counts were assessed using the ‘qqnorm’ (R 
base) and ‘qqPlot’ (car package) functions to look for 
visible deviations from normality, for which no obvious 
deviations were observed. Values were standardized 
and statistical significance was assessed using a CDF of 
the standard normal distribution as implemented in the 
‘pnorm’ function in R (version 4.0.3). P-values for 
significant deviations from the background distribution 
were corrected for the number of traits tested (n = 129) 
tested using a BH correction. Significance was defined 
as adjusted p < 0.05 (Supplementary Table 4). 
 
Similar testing was done for our different accessibility-
altered region sets, whereby customized genome-wide 
background sets were generated, randomized set counts 
were calculated, and target/background enrichments 
were performed. After p-value adjusting, we observed 
enrichment for all region sets across the majority 
diseases, which follows with the general enrichment for 
nearby significance-thresholded SNPs of all DNase 
regions (significant enrichments seen for 119 of 129 
diseases – Supplementary Table 4). Thus, to condition 
on this general DNase-GWAS enrichment we 
implemented a hypergeometric testing approach. For 
each disease/trait showing significant enrichment/ 
depletion using all DNase regions, we counted the 
number of unique regions (in the set, e.g., adult-biased 
regions) for which nearby significance-thresholded 
SNPs were observed, comparing this to the number of 
general DNase regions for which nearby significance-
thresholded SNPs were observed (via the ‘phyper’ 
function in base R). For each region-set considered, the 
resulting set of p-values was adjusted for the number of 
diseases tested (n = 127) (Supplementary Table 4). In 
order to perform hypergeometric tests comparing the 
GWAS associations of developmental-aging intersection 
sets (e.g., adult-biased, young-biased regions), we 
defined the background set for testing as the respective 
set of developmentally-altered regions (i.e., we compare 
the occurrence of nearby significance-thresholded  
SNPs for adult-biased, young-biased regions to their 
occurrence nearby the adult-biased region set as a 
whole). 
 
To visualize these hypergeometric test results (Figure 
3A), adjusted p-values for hyper-geometric tests done 
using different region sets (e.g., adult-biased regions) 
were plotted as a barplot using ggplot2 version 3.3.3. 
For visualization purposes, significant enrichment 
results were plotted as positive values, while significant 
depletion results were plotted as negative values. 

https://nealelab.github.io/UKBB_ldsc/downloads.html
https://nealelab.github.io/UKBB_ldsc/downloads.html
https://docs.google.com/spreadsheets/d/1EmwlCYYqkoVKqAS71nNDKoN18PyKwysYUppKTSMvKiM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1EmwlCYYqkoVKqAS71nNDKoN18PyKwysYUppKTSMvKiM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1EmwlCYYqkoVKqAS71nNDKoN18PyKwysYUppKTSMvKiM/edit?usp=sharing
https://www.dropbox.com/s/puxks683vb0omeg/variants.tsv.bgz
https://www.dropbox.com/s/puxks683vb0omeg/variants.tsv.bgz
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Additional developmental trait GWAS processing 
 
We manually searched GWAS summary-statistic 
datasets for traits associated with fetal/adult 
development, pulling largely from data assembled by 
the EGG consortium (http://egg-consortium.org/index. 
html), as well as using a combination of GWAS 
Central [72], GWAS Catalog [73] and GWAS ATLAS 
[74]. Both general developmental traits (e.g., birth 
weight), as well as traits relating to particular tissues 
relevant to the tissues used in our accessibility 
analyses (e.g., stomach, brain) were searched for, with 
data availability (in terms of sufficiently-powered 
studies) largely limited to the former. The following 
datasets were obtained: 
 
Birth weight 
 
- Birthweight [27] ftp://ftp.ebi.ac.uk/pub/databases/ 
gwas/summary_statistics/GCST005001-GCST006000/ 
GCST005146 
- Fetal-effect birthweight [75] (http://egg-consortium. 
org/birth-weight-2019.html) 
- Maternal-effect birthweight [75] (http://egg-
consortium.org/birth-weight-2019.html) 
- Childhood obesity [76] (http://egg-consortium.org/ 
childhood-obesity-2019.html) 
- Pubertal growth (PGF + PGM combined) [77] 
http://egg-consortium.org/pubertal-growth.html 
- Gestational duration (fetal genome) [78] http://egg-
consortium.org/gestational-duration-2019.html 
- Birth length [79] http://egg-consortium.org/birth-
length.html 
- Gastrointestinal congenital defects [80] 
http://biobanks.dk/GWAS/MEGA_CIDR_IHPS_summ
aryStats.txt.gz 
 - Childhood epilepsy [81] http://www.epigad.org/ 
gwas_ilae2018_16loci/JME_BOLT-LMM_final.gz 
- Height [28] https://portals.broadinstitute.org/ 
collaboration/giant/images/6/63/Meta-analysis_Wood_ 
et_al%2BUKBiobank_2018.txt.gz 
 
Similar to our above treatment of UK Biobanks 
summary statistics, for each study we filtered for 
variants below a significance threshold of 1e-6. We then 
counted the occurrence of these sets of variants falling 
nearby our region-altered sets (using bedtools window 
as above), and compared this occurrence to that 
observed when considering all DNase regions using a 
hypergeometric test. For each region set considered we 
adjusted the resulting hypergeometric p-values for  
the number of GWAS datasets tested (n = 10). As 
before, when considering the age-altered accessibility 
region sets, the background set was defined as those 
regions changing accessibility in our developmental 
accessibility analyses. 

Summary statistics for additional developmental traits, 
such as congenital heart defects, celiac disease, etc., 
were obtained, however, these studies had few or no 
significant SNPs at the 1e-6 significance threshold used 
(data not shown). 
 
Additional longevity GWAS dataset processing: 
 
Longevity GWAS summary statistics were obtained 
from Timmers et al. 2019 [29] and Pilling et al. 2017 
[30], particularly: 
 
Parental lifespan (Timmers et. al) (GWAS Catalog ID: 
GCST009890) 
Parental lifespan (mother’s attained age, Pilling et al.) 
(GWAS Catalog ID: GCST006696) 
Parental lifespan (father’s attained age, Pilling et al.) 
(GWAS Catalog ID: GCST006701) 
Parental lifespan (combined parental age, Pilling et al.) 
(GWAS Catalog ID: GCST006697) 
 
Similar to our above treatment of UK Biobanks 
summary statistics, for each set of summary statistics 
we filtered for variants below a significance threshold 
of 1e-6. We then counted the occurrence of these sets 
of variants falling nearby our region-altered sets (using 
bedtools window as above), and compared this 
occurrence to that observed when considering all 
DNase regions using a hypergeometric test. For each 
region set considered we adjusted the resulting 
hypergeometric p-values for the number of GWAS 
datasets tested (n = 4). As before, when considering 
the age-altered accessibility region sets, the 
background set was defined as those regions changing 
accessibility in our developmental accessibility 
analyses. 
 
Effect-size distribution of variants 
 
For a given disease, the set of significance-thresholded 
SNPs falling nearby a given set of accessibility-altered 
regions were extracted from the summary-statistic data 
along with their reported effect-size (estimated beta 
value). In order to compare effect-size distributions of 
SNPs nearby different region sets (e.g., fetal-biased vs. 
adult-biased regions), the absolute effect size values 
for SNPs falling nearby the two sets were compared 
using a two-tailed non-parametric Wilcoxon rank-sum 
test via the ‘wilcox.test’ function in base R. The 
resulting p-values were corrected for the number of 
diseases compared (n = 127) using a BH correction 
(see Supplementary Table 4). This testing was carried 
out first using significance-thresholded SNPs 
(association p-value < 1e-6), and subsequently tested 
using all nearby SNPs (not applying a significance 
threshold). 

http://egg-consortium.org/index.html
http://egg-consortium.org/index.html
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST005001-GCST006000/GCST005146
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST005001-GCST006000/GCST005146
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST005001-GCST006000/GCST005146
http://egg-consortium.org/birth-weight-2019.html
http://egg-consortium.org/birth-weight-2019.html
http://egg-consortium.org/birth-weight-2019.html
http://egg-consortium.org/birth-weight-2019.html
http://egg-consortium.org/childhood-obesity-2019.html
http://egg-consortium.org/childhood-obesity-2019.html
http://egg-consortium.org/pubertal-growth.html
http://egg-consortium.org/gestational-duration-2019.html
http://egg-consortium.org/gestational-duration-2019.html
http://egg-consortium.org/birth-length.html
http://egg-consortium.org/birth-length.html
http://biobanks.dk/GWAS/MEGA_CIDR_IHPS_summaryStats.txt.gz
http://biobanks.dk/GWAS/MEGA_CIDR_IHPS_summaryStats.txt.gz
http://www.epigad.org/gwas_ilae2018_16loci/JME_BOLT-LMM_final.gz
http://www.epigad.org/gwas_ilae2018_16loci/JME_BOLT-LMM_final.gz
https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-analysis_Wood_et_al%2BUKBiobank_2018.txt.gz
https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-analysis_Wood_et_al%2BUKBiobank_2018.txt.gz
https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-analysis_Wood_et_al%2BUKBiobank_2018.txt.gz
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Per-SNP definitions 
 
We defined a cross-trait metric of disease association 
which considers the assigned association p-value 
between a given SNP and multiple different aging-
associated diseases. The UK Biobanks summary 
statistics datasets provide association statistics across 
the same set of SNPs, such that directly comparing the 
association values for a single variant across multiple 
datasets is possible. We first defined the global set of 
shared variants reported in the majority of GWAS files 
(for a final set of 13,789,793 SNPs), filtering out those 
summary statistics data which did not have information 
for this shared set. For a given summary statistic file, 
the association p-values assigned to these shared 
variants were extracted and subsequently standardized 
using the ‘stats.zscore’ function from the ‘scipy’ 
package [82] version 1.15.4 in Python 3. This was done 
across all diseases, with the final set of per-SNP z-
scores converted to a matrix. This matrix was 
subsequently summed per-row using ‘awk’ to produce a 
per-SNP summarized z-score metric reflecting cross-
disease risk associations, such that SNPs having 
stronger associations across multiple diseases 
(standardized within each disease) will have larger 
summed Z-scores. 
 
Region integration with per-SNP metric 
 
Similar to the above per-disease hyper-geometric testing, 
we considered the cross-disease association metric of 
SNPs falling nearby accessiblity-altered region sets using 
the bedtools ‘window’ function with a window of 
1000bp. As above, we similarly performed a robusticity 
check to confirm that these results were consistent with 
those generated when considering only variants falling 
immediately within regions (data not shown). To 
compare the behavior of SNPs associated with our 
developmentally-altered region sets, we aggregated these 
per-SNP metrics across adult-biased (n = 3,688,911) and 
fetal-biased (n = 1,977,122) region sets and compared 
them using the ‘aov’ function in base R. As additional 
controls for this analysis, we also considered the per-SNP 
metrics of variants falling nearby DNase regions not 
significantly changing accessibility (acting as a DNase 
control, n = 2,554,671), and finally compared all these 
region-associated variants to those variants not associated 
with any nearby DNase regions (acting as a genome-
wide, non-regulatory-element control, n = 6,742,487). 
Tukey post-hoc analysis was performed with the 
‘TukeyHSD’ function in base R (see Supplementary 
Table 4). To visualize these results (Figure 3B), we used 
the ‘plotmeans’ function from gplots version 3.1.1. 
 
To compare our aging-altered region sets to 
developmentally-altered regions, as well as the 

behaviors of intersection sets (e.g., adult-biased, young-
biased regions), we similarly aggregated per-SNP 
metrics across all sets and compared them as above. For 
the comparisons of intersect sets, we used fetal-biased 
and adult-biased regions which were not intersected 
with aging-altered regions, rather than the full region 
sets, while the DNase control regions, as well as 
genome-wide control set, remained unchanged. For 
graphical purposes, the comparison was simplified to 
show age-altered and developmentally-altered region 
sets separately (Figure 3B). 
 
Comparing cross-set SNP metric with PhastCons 
 
PhastCons [83] 20ways-defined conserved regions were 
downloaded from the UCSC table browser in hg38 
coordinates, and subsequently lifted-over to hg19 with 
the ‘liftOver’ tool. We partitioned SNPs genome-wide 
as those falling within or outside these PhastCons 
elements, then compared the cross-trait SNP metrics of 
these two partitions using a two-sided Wilcoxon test 
using the ‘wilcox.test’ function in base R. SNPs nearby 
accessibility-altered region sets were also partitioned 
based on PhastCons elements to confirm the cross-set 
metric behavior of subset variants. We also ran these 
PhastCons comparisons for SNPs subset by different 
region set, consistently observed an increased cross-set 
metric for variants falling nearby phastCons elements 
(Supplementary Table 4). 
 
Integrating additional per-SNP information 
 
phyloP20ways per-nucleotide data was intersected with 
the global set of variants for which the per-SNP cross-
set association metric was calculated to assign a single 
phyloP20ways score to each variant. Argweaver [84] 
estimated allele ages, based on the European subset of 
the 1000 Genomes project [65], were obtained from 
http://compgen.cshl.edu/ARGweaver/CG_results/downl
oad/bigWigs/?C=S;O=A, and assigned to individual 
variants using the ‘bigWigAverageOverBed’ utility 
from UCSC. Variants for which estimated allele ages 
were not available were excluded from subsequent 
analyses. Pre-computed LINSIGHT [85] scores were 
obtained for the hg19 genome from https://github.com/ 
CshlSiepelLab/LINSIGHT. These were similarly 
assigned to individual variants using the 
‘bigWigAverageOverBed’ utility. 
 
ClinVar variant testing 
 
ClinVar variants were obtained from the UCSC table 
browser in hg19 coordinates. We intersected this SNP 
set with the global set of variants (filtered based on 
integration of additional per-SNP information) for 
which the per-SNP cross-set association was calculated. 

http://compgen.cshl.edu/ARGweaver/CG_results/download/bigWigs/?C=S;O=A
http://compgen.cshl.edu/ARGweaver/CG_results/download/bigWigs/?C=S;O=A
https://github.com/CshlSiepelLab/LINSIGHT
https://github.com/CshlSiepelLab/LINSIGHT
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Given the larger number of SNPs not part of the 
ClinVar set, we subsampled these SNPs to match the 
number of ClinVar variants used (n = 76778 SNPs), 
generating 1000 sets of randomized background 
variants. For each subset the average cross-trait 
association metric, phyloP20ways, estimated allele age 
and LINSIGHT score for all variants was calculated. 
These averages were used as a background set to 
compare against the average values in the ClinVar set; 
for each feature the distribution of randomized values 
was assessed using the ‘qqnorm’ (R base) and ‘qqPlot’ 
(car package) functions to look for visible deviations 
from normality, for which no obvious deviations were 
observed for different features. Values were 
standardized and statistical significance was assessed 
using a CDF of the standard normal distribution as 
implemented in the ‘pnorm’ function in R (version 
4.0.3) (see Supplementary Table 4). As an additional 
robusticity check, the first and third quartiles for all of 
these values were also used to calculate significant 
deviations from randomized background values. 
 
Cross-disease gene ranking 
 
All hg19 Refseq gene TSS were obtained from the 
UCSC genome browser, and filtered for genes with 
assigned peptide sequences (obtained from the Table 
Browser as a ‘known canonical’ gene table) (i.e., 
protein-coding genes). This gene set was then padded 
100kb up/downstream to define 200kb per-gene 
windows. For a given disease, we considered all 
variants falling within all gene windows, selecting the 
strongest-associated variant falling within each and 
assigning this association p-value to that particular 
gene. All genes were then ranked according to their 
assigned association p-values within a given disease. 
 
To test for significant-enrichment of ranks for a 
particular set of genes (i.e., a set of genes have nearby 
assigned SNPs that rank them consistently higher across 
a number of diseases), all protein-coding genes were 
first considered: counting how often a given gene 
appeared in the top 75th percentile of ranked protein-
coding genes across different diseases (ranging from 1 
to 127). The distribution of these counts for the target 
set of genes was compared to that of the global 
distribution of protein-coding genes (exclusive of the 
target set) using a one-sided (alternative = “greater”) 
Student’s t-test in base R. 
 
As a positive control for this analysis, genes associated 
with the GO term ‘homeostatic process’ (GO:0042592) 
were used as a target set for testing. As a negative 
control, genes associated with the GO term 
‘developmental process involved in reproduction’ 
(GO:0003006) were used as a target set for testing. 

Defining ‘core’ aging genes 
 
These sets of gene rankings were then aggregated  
using the ‘aggregateRanks’ function from the 
RobustRankAggreg [55] library version 1.1. Given that 
we considered all protein-coding gene loci, we applied a 
conservative filter to the resulting RRA significance 
values via the use of a Bonferroni correction – retaining 
all genes with a corrected value < 0.05. Gene-set 
enrichment analysis was then performed with the 
‘enrichGO’ function from the clusterProfiler [54] 
library version 3.16.1, with the background defined as 
all protein-coding genes used in the gene-ranking 
analysis. Significant gene-set enrichments were defined 
as adjusted p-value < 0.05. 
 
In addition to applying this cutoff-based approach to 
defining highly-ranked gene sets, we also implemented 
an approach that did not rely on defining a strict cutoff 
with the RRA method. For a given gene, we took all of 
the ranks across the different diseases and calculated the 
geometric mean of ranks. All genes were then sorted 
based on this final mean-of-ranks, with this ranking 
used with ‘gseGO’ function from the clusterProfiler 
library version 3.16.1 to perform an FGSEA analysis 
with the following flags: OrgDb = org.Hs.eg.db, ont = 
"BP", minGSSize = 15, maxGSSize = 500. Significant 
gene-set enrichments were defined as adjusted p-value 
< 0.05. 
 
Given our gene-window based method, it is possible 
that a single strongly-associated variant may be 
assigned to two or more closely-adjacent genes. We 
performed a separate ranking analysis collapsing 
overlapping gene windows, though found that this led to 
a reduction in the strength of gene-set enrichments of 
the RRA ranking results (data not shown). 
 
In order to integrate the effects of local accessibility 
change into these gene-set rankings, the above ranking 
procedure was done considering only those variants 
nearby altered-accessibility regions (e.g., young-biased 
regions) when assigning per-gene association p-values 
for ranking (Supplementary Table 4). 
 
Characterizing gene-ranking histone-deacetylase 
enrichments 
 
To visualize the increased average geometric-mean rank 
of genes associated with histone deacetylation, the set 
of ‘leading edge’ genes associated with the GO term 
‘histone deacetylase’ (HDAC) (GO:0016575) from the 
FGSEA gene-wise ranking analysis (gene set in 
Supplementary Table 4) was taken and compared with 
the geometric-mean rank of all other protein-coding 
genes used in this analysis. This was done for gene-wise 



www.aging-us.com 19 AGING 

rankings defined when considering all variants falling 
within a given gene window (Figure 4A, left), as well as 
rankings defined when considering those variants with 
nearby young-biased regions falling within a given gene 
window (Figure 4B, right). 
 
To compare the differences in GWAS signal associations 
of these HDAC genes when stratifying variants by 
nearby altered-accessibility regions, we made use of the 
per-SNP cross-trait association metric defined above. 
 
The sets of gene windows defined for all protein-coding 
genes were again taken and variants falling within each 
gene window were collected. Similar to above, variants 
were binned based on the presence of nearby altered-
accessibility regions (e.g., young-biased regions) – 
rather than considering the strongest variant signal for a 
given disease and aggregating ranks across, instead the 
per-SNP cross-trait association metric for variants was 
used to assign the strongest signal to a given gene 
window. This was done considering all variants within a 
window, as well as binned variants, such that a single 
gene window has multiple assigned values (one per 
region set used, as well as a region-independent value). 
These values were assigned for: all variants, variants 
with no nearby DNase regions (‘Background’), variants 
with nearby DNase regions not significantly changing 
accessibility (“DNase Unchanged”), variants with 
nearby fetal-biased regions (“Fetal-biased”), variants 
with nearby adult-biased regions (“Adult-biased”), 
variants with nearby young-biased regions (“Young-
Age”), and variants with nearby old-biased regions 
(“Old-Age”). 
 
The gene-window values for the HDAC gene set were 
used as target values. The remaining values of all 
protein-coding genes (exclusive of this target set) was 
randomly sampled, generating 1000 sets of genes 
matching the size of the HDAC target set. The seven 
different types of assigned values (enumerated above) 
for each gene window were calculated for both target 
and test sets. For comparing the target and 
randomized background sets, the average assigned 
value for each gene set (target and random) was 
calculated. 
 
For each type of assigned value, the randomized 
background set values were assessed using the ‘qqnorm’ 
(R base) and ‘qqPlot’ (car package) functions to look for 
visible deviations from normality, for which no obvious 
deviations were observed. Values were standardized and 
statistical significance was assessed using a CDF of the 
standard normal distribution as implemented in the 
‘pnorm’ function in R (version 4.0.3). To determine 
whether stronger GWAS variants falling within HDAC 
gene windows tend to be stratified by nearby altered-

accessibility regions (particularly, young-biased regions 
as suggested by Figure 4A), the enrichment/depletion 
values for each different type of gene-wise values 
(relative to their own respective backgrounds) were 
compared to the enrichment/depletion values calculated 
when considering all variants (the region-independent 
value). This was calculated as: -log10((region-specific 
CDF test p-value) / (region-independent CDF test p-
value)), with positive values indicating a stronger 
deviation from the background distribution when using 
region-stratified variants when compared to all variants 
within a given gene window. These values were 
visualized using ggplot2, as seen in Figure 4B and 
Supplementary Table 4. 
 
Visualizing promoter-contact datasets 
 
To visualize the interactions between young-biased 
regions harbouring nearby genetic variants and the SIRT6 
promoter (Figure 4C) we extracted significant promoter-
capture interactions (p-value < 0.01) from the SIRT6 
anchor across a subset of cell types representative of our 
tissue sets (AD2, AO, GA, Hcmerge, IMR90, PO3 and 
SX, referring to adrenal gland, aorta, gastric tissue, brain, 
fibroblast (lung), muscle and spleen labels, respectively). 
These interaction data were visualized using the 
GenomicInteractions [86] library version 1.24.0. 
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