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INTRODUCTION 
 

Bladder cancer (BLCA) is a highly heterogeneous 

cancer. There are three main tumor areas in the bladder. 

In most cases, blood in the urine (called hematuria) is 

the first sign of bladder cancer [1]. However, the early 

diagnosis and therapy response prediction of BLCA are 

still not satisfactory. 

 

These malignant tumors' complexity stems from multi-

dimensional genetic variation affected by changes in 

genetic factors, including transcription levels and 

genome levels. With next-generation sequencing, we 

can use RNAseq data to analyze genes or transcripts 

significantly different in BLCA patients at the 

transcriptome level. At the same time, we can use WES 

data to obtain genes or loci with high-frequency 

mutations in BLCA patients. Many studies have 

detected and confirmed differentially expressed genes 

and mutations in BLCA patients [2–4]. However, these 

variants were detected either using one approach or 

using one dataset of cohorts. The consistency between 

multiple studies is much lower than expected [5]. 

 

The canonical sequencing analysis protocols have 

identified a large number of genetic variations through 

comparison with reference sequences. However, the 

current human reference sequence is still incomplete 

[6]. There are many gaps in the human genome, 

including telomere regions, centromeres, as well as a 

large number of repetitive regions and other low 

complexity regions. Due to these regions' low 

mappability, it is challenging to obtain confidential 

coverage during the sequencing process, so we also call 

them the “dark genome” [7]. Many cancer-related 
genetic variants exist in these gaps, but the canonical 

sequencing analysis protocols often ignore or discard 

these results. 
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ABSTRACT 
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significantly related to survival prognosis. A diagnostic model was trained using 17 signatures and validated on 
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mailto:zhoujiaquan131@hainmc.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


www.aging-us.com 2 AGING 

Another alternative approach is mapping-free protocols. 

In recent years, researchers have developed many analysis 

methods that do not rely on reference sequences. One of 

the commonly used algorithms is the De Bruijn graph 

(DBG) [8]. DBG is widely used in the de novo assembly, 

especially for the species without available or complete 

reference. DBG is the graph algorithm based on the k-

mers approach, which decomposes the reads into smaller 

k-mers. Then a graph is constructed according to the 

overlap between k-mers. A variant generates a bubble 

structure due to the two alleles in each branch. Therefore, 

variants are captured by searching for bubbles from the 

DBG. Generally, each library is used to construct its DBG 

and capture variants independently. Another mapping-free 

protocol dealing with large numbers of cohorts is called 

DEkupl [9]. This algorithm first screens k-mers absent in 

the reference and then uses a differential test to select 

significant k-mers between two conditions. The 

differential test methods include T-test, DESeq2 [10], and 

LimmaVoom [11]. Finally, these selected k-mers are 

merged into contigs. All these contigs are supposed to 

harbor variants or belong to the genome gaps.  

 

This study integrated the mapping-based protocol and 

mapping-free protocol to achieve a comprehensive 

analysis of BLCA patients. Both RNAseq and WES data 

were applied to obtain novel transcriptional events and 

convincing SNVs. A diagnostic model was constructed 

using signatures selected by lasso regression. We proved 

the accuracy of using the model to predict progressive 

patients on independent validation data. 

 

MATERIALS AND METHODS 
 

Data extraction 

 

The Binary Alignment Map (BAM) files of all BLCA 

patients were retrieved from the TCGA database with 

permission from dbGAP [12]. BAM files were 

converted to paired-ends fastq files using Picard tools 

with default parameters. Both of the RNAseq and WES 

sequencing data were involved in this study. All 

patients' clinical information was also obtained, 

including the survival time, stage, relapse, or metastasis. 

Patients were divided into two groups: complete 

remission and progressive group. Adapters sequences 

were trimmed using the cutadapt software with default 

parameters [13]. Duplicated reads were removed since 

these reads are majority generated from the PCR 

process instead of natural status in cells.  

 

Canonical protocol based on genome reference 

 
The latest version of the genome and annotation files were 

downloaded from the Gencode [14]. Reads from RNAseq 

data were mapped to the human genome of the hg38 

version using the STAR software with default parameters 

[15]. Reads from the WES data were mapped to the 

human genome using the BWA algorithm with default 

parameters [16]. The BAM file processing is performed 

using the Cufflinks software [17]. Given genome 

annotation file (GTF) and BAM files, we performed 

differential expression analysis of genes using the Cuffdiff 

algorithm [18]. Cuffdiff calculates the FPKM of each 

gene in each sample by summing the FPKMs of all 

transcripts belonging to the host gene. Differentially 

expressed genes were selected by Cuffdiff with default 

parameters from the FPKM matrices. For WES data 

analysis, GATK was applied to call somatic variants using 

the BAM files from WES dataset, and all somatic variants 

were stored in the Variant Call Format (VCF) format files 

[19]. The single-nucleotide variants (SNVs) from all 

BLCA patients were aggregated as a matrix. SNVs 

observed in at least two patients were selected as recurrent 

SNVs. 

 

Mapping-free protocol without genome reference 

 

As the human genome is not completed and gaps are 

present, all variations within the 'unannotated' regions 

are not captured by canonical methods. Herein, we 

introduced a mapping-free protocol named DEkupl [9]. 

The reads are decomposed to k-mers, and all the k-mers 

different to reference are retained. In this way, we can 

exhaustively capture all the variations in the "dark 

genome regions". The DEkupl estimates the gene 

expression using the Kallisto, which is also a reference-

free software [20]. The expression level of both genes 

and k-mers were compared between the complete 

remission and progressive groups. Genes and k-mers 

with P values less than 0.05 and log2FC beyond 95% 

confidence interval were considered differentially 

expressed genes (DEGs). Consequently, the DEkupl 

software provides both differentially expressed genes 

detected by limma and novel events with variations 

exhibited as contigs.  

 

Gene-level candidates through transcriptome 

analysis 

 

As the gene expression estimators in the two protocols 

are based on different rationales, we compared the 

differential genes detected by both protocols between 

the complete remission and progressive groups. 

Cufflink and Kallisto were applied to detect DEGs in 

the mapping-based and mapping-free protocols, 

respectively. Only the consistent differential genes 

between the two protocols were considered to be 

bladder cancer-related candidates. Eventually, the 

consistent DEGs between responsive and  

progressive patients were selected as gene-level 

candidates. 
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Contig-level candidates through transcriptome 

analysis 
 

Since we do not align reads to the reference in the 

mapping-free protocol, we retained all the contigs 

harboring differences to the reference. We can benefit 

from this because variations within the repeat or low 

complexity regions can also be kept, which would be 

ignored or discarded by the aligners such as STAR or 

BWA. Only the differentially expressed contigs (DECs) 

were retained and further mapped to the genome for 

annotation. The annotation process was done using 

GSNAP of version 2020-06-04 [21]. The DECs contain 

multiple events, including SNV, splice, split, lincRNA, 

polyA, repeat, and unmapped contigs. The unmapped 

contigs may either come from the exogenous 

microorganisms or unannotated human genome. All 

these events represented by contigs are absent in the 

transcriptome, thus the mapping-free protocol products 

were regarded as 'novel' events.  

 

Convincing SNVs integrating WES and RNAseq 

analysis 
 

In the WES data analysis, we screened recurrent SNVs 

present in at least two bladder cancer patients. However, 

many such SNVs do not make sense if their host genes 

do not show differential expressions or even stay silent. 

Only SNVs embedded in the DEGs are more likely 

biological factors to cancer progression. Therefore, we 

compared the host genes of all recurrent SNVs to the 

consistent DEGs (gene-level candidates) and only kept 

the intersection genes.  

 

Survival analysis of genes and contigs 

 

The convincing candidates were composed of consistent 

DEGs between two protocols and significant DECs 

detected by the mapping-free protocol. The candidates 

were compared to the patients' overall survival time 

using survival analysis. The P values were calculated 

using the log-rank test [22] with univariate cox 

regression. The Kaplan–Meier curves [23] were drawn 

for the top prognosis related candidates. Besides the 

univariate cox regression, we also applied the cox 

proportional-hazards model (coxPh), a multivariate 

regression model [24]. Genes and contigs significant in 

both univariate and multivariate cox analysis were 

selected as prognostic candidates.  

 

Deeply investigate the novel events 
 

The novel events detected by mapping-free protocol 

cannot be mapped to the reference by aligners. We 

cannot locate these novel events to specific genes or 

positions on the genome either. However, the contigs 

corresponding to these novel events show differential 

expression as cancer progresses. We compared 

signature contigs' expression profile between the early 

stage (stage I/II) and late-stage (stage III/IV) patients to 

deeply investigate the relationship between the novel 

events and cancer progression. Survival analysis was 

performed to select the potential signature contigs as 

prognostic indicators.  

 

Diagnostic model construction integrating the 

signatures 

 

The significant gene candidates were screened using the 

log-rank test. To take the collinearity between variables 

into account, we further applied the lasso regression 

[25] to select diagnostic signatures. The samples were 

randomly separated into two groups, in which 75% 

were training set and the rest 25% were test set. A 

support vector machine (SVM) model was constructed 

using the selected signatures [26]. Five-fold cross-

validation [27] was used to assess the performance of 

the diagnostic model on the trainset. The samples were 

randomly split into five folds. We trained the model 

using four folds of samples in each cycle and tested it 

using the rest one fold. This procedure was repeated 

until all samples were predicted once as test sample. 

The ROC curve was shown with the sensitivity and 

specificity on the test set [28]. 

 

Validation on the independent GEO dataset 
 

To further validate our model's performance of 

predicting progressive bladder cancer patients, we 

applied another independent dataset from the GEO 

database. The validation data accession is GSE31189, 

which comprises 52 bladder cancer patients and 40 

normal samples. The performance of our diagnostic 

model was shown using the ROC curve. 

 

RESULTS 
 

Differentially expressed genes from RNAseq data 
 

Differentially expressed genes (DEGs) between BLCA 

patients and normal samples were extracted from the 

RNAseq data integrating mapping-based and mapping-

free protocols. Up/down-regulated genes were extracted 

according to the P values and fold change values. The 

selected genes present diverse expression levels between 

responsive and progressive patients. The volcano graphs 

of DEGs consistent between canonical RNAseq pipeline 

and DEkupl were drawn, as shown in Figure 1A. 

 
Figure 1B shows the consistent DEGs between the two 

protocols. The consistent DEGs were used as stable 

prognostic risk genes. Eventually, we obtained 1240 
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consistent DEGs in total, including 727 up-regulated 

and 513 down-regulated genes, respectively.  

 

To check if two groups of patients present differences 

on DEGs level, we performed the principal component 

analysis (PCA) [29]. As seen in Figure 1C, the two 

groups of patients can be distinguished using the first 

three components. 

 

To further clarify the functions regulated by the DEGs, 

we enriched the DEGs to both gene ontology (GO) and 

the KEGG pathway [30] using the clusterProfiler 

package [31]. The top 10 GO biology process terms are 

shown in Figure 2A. The significant functions include 

axonogenesis and morphogenesis. Figure 2B shows the 

four hub functions and corresponding genes. These 

functions are supposed to be activated as most of the 

involved genes were up-regulated in progressive 

patients. Figure 2C suggests that some enriched 

functions share cross-talk genes. These genes achieve 

the communication between functions as bridges. 

Figure 2D is the most significant KEGG pathway that 

was enriched by 23 DEGs. It implies the genetic 

association between Bladder cancer and melanoma. 

 

Recurrent SNVs from WES data 
 

Large numbers of mutated genes do not express in the 

Bladder tissues. The significant number of SNVs is 

attributed to the gene length, for instance, TTN [32]. 

Therefore, the frequently mutated genes have little 

impact on the disease progression if they are not 

expressed. Given this hypothesis, we only investigated 

the SNVs from the differentially expressed genes. The 

most recurrently mutated genes were identified using 

the GATK across all patients. The frequency and 

patients harboring each mutated gene can be seen from 

Figure 3A. 

 

 
 

Figure 1. Differentially expressed genes. (A) Volcano graph of consistent DEGs using cufflinks and kallisto. Red/blue dots represent the 

up/down-regulated genes. (B) The results generated by cufflinks are marked in blue, and the results of kallisto are marked in orange. The red 
bars in the middle indicate the Jaccard index. (C) Principle component analysis. Response/progressive patients are marked in blue and red, 
respectively. 
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Figure 2. Function enrichment using DEGs. (A) The dotplot of the top 10 enriched gene ontology biological process terms. (B) The 

regulatory relationships between genes and corresponding functions. (C) The upset graph is showing the number of overlapped genes among 
functions. (D) The most significant KEGG pathway. 

 

 
 

Figure 3. Top mutated genes that are also differentially expressed. (A) Oncoplot of top mutated genes. Each row indicates one gene, 

and each column represents one patient. (B) Interactions between mutated genes. The co-occurrence and mutually exclusive interactions are 
marked in blue and yellow, respectively. 
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As seen in Figure 3A, the top 20 differentially 

expressed genes with the highest mutational frequency 

can be observed in at least 5% of patients, in which the 

highest frequency is 7%. Interestingly, the most well-

known cancer suppressor gene, TP53 [33], is absent in 

our top 20 gene list, which has a mutational frequency 

of 88% in bladder cancer patients. The reason is TP53 is 

not differentially expressed in progressive bladder 

cancer patients despite a high mutational frequency. In 

contrast, the genes in our list were recurrently mutated 

in bladder cancer patients and presented significant 

differences as the tumor progressed (Table 1). 

 

To further investigate the internal relationship between 

the most mutated genes, we applied the maftools [34] to 

estimate the interactions between genes. There are two 

types of interactions between genes that are the co-

occurrence and mutually exclusive relationship. Co-

occurrence interaction indicates that two genes tend to 

be mutated simultaneously [35]. The mutually exclusive 

interaction suggests that two genes are barely observed 

to be mutated simultaneously [36]. It's worth 

mentioning that mutually exclusive interaction does not 

mean two genes could not be mutated simultaneously. 

Instead, it means the cells carrying both of the two 

mutated genes tend to trigger the apoptosis program and 

turn out to die. This phenomenon is called synthetic 

lethality [37], which is a significant avenue of cancer 

therapy.  

 

As seen in Figure 3B, there are many mutually 

exclusive gene pairs whose P values are less than 0.1, 

marked as dots. The predominant interaction among the 

top 20 genes is co-occurrence. The gene pairs with co-

occurrence relationships are marked with stars, 

suggesting significant P values less than 0.05. 

 

Novel events identified by DEkupl 
 

Since we also applied a mapping-free protocol, we 

could capture novel events unsolvable to the mapping-

based methods. DEkupl captured all the k-mers absent 

in the human reference and then merged the k-mers into 

contigs. These contigs were therefore considered to be 

the context of local events. We eventually identified 

contigs composed of 139 SNVs, 412 intron events, 6 

repeats, and 24 unmapped events. As DEkupl masked 

all the k-mers present in the reference, these contigs 

extended from the retained k-mers can be considered 

novel events. The detailed results can be seen from the 

Supplementary Table 1. All these novel events present 

significant differences between the two groups  

(Figure 4A).  

 

In Figure 4A, most of the novel contigs were highly 

expressed in the progressive group. Meanwhile, we 

observed that some complete remission patients exhibit 

similar expression patterns as the progressive patients. It 

suggests that patients sensitive to therapy at the initial 

phase might carry a risk of relapse in the following 

phases.  

 

Candidates SNVs screening 
 

Besides the shared DEGs, we also screened the SNVs 

detected by both of the two protocols from WES data 

as convincing SNVs. The contigs generated by 

DEkupl were mapped to the human genome using 

GSNAP software. Then the genomic coordinates were 

compared with the GATK results. Finally, we 

obtained 450 convincing SNVs belonging to the DECs 

(Figure 4B). Figure 4B shows the locations of SNVs 

and the correlation between the host genes. Some 

SNVs are found to locate at closed loci forming a 

local cluster. And genes from the same chromosome 

tend to present a positive correlation. In contrast, 

genes from distant genomic loci tend to have a 

negative correlation. 

 

Prognosis related indicators 

 

Since the SNVs whose host genes belong to the DEGs 

were considered potential indicators, we intended to 

extract prognosis related indicators from the whole 

DEGs list. We initially used the log-rank test to estimate 

each gene. The patients were divided into two groups 

according to the median expression value of the queried 

gene. Then the log-rank test P value was computed. 

After ranking the genes P values in ascending order, we 

selected the top 6 genes and drew the KM curves, as 

shown in Figure 5. 

 

As seen from Figure 5, patients with different 

expression levels of the six genes tend to present 

various surviving time. The high expression levels of 

the gene FABP4 and PCDHGA7 always imply a poor 

surviving prognosis. In contrast, the low expression 

levels of the gene PRSS30P, LOC100272228, KLRC2, 

and SLC10A5 indicate a poor surviving prognosis. 

 

We also applied the coxPh, a multivariable regression 

method, to select prognostic indicators from the DEGs. 

The top 20 genes can be seen in Table 2. 

 

The top indicator lists in the coxPh and log-rank test are 

not the same. This is because coxPh considers the 

internal interactions among genes, while the log-rank 

test treats each gene independently. However, among 

the 1240 DEGs, 4 of the top 6 genes detected by the 

log-rank test rank in the top25%. The ranks of 

PRSS30P, LOC100272228, PCDHGA7, and SLC10A5 

are 79, 124, 310, and 43, respectively. 
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Table 1. Limma result of the top 25 genes.  

gene logFC P value direction mean_response mean_progressive 

TCHH    0.170 0.000 up-regulate 0.668 0.838 

FBN2    0.139 0.000 up-regulate 1.066 1.205 

ANK2    0.124 0.000 up-regulate 0.842 0.966 

DNAH3   0.091 0.000 up-regulate 0.745 0.836 

CSMD3   0.126 0.001 up-regulate 0.249 0.375 

AKAP6   0.081 0.001 up-regulate 0.855 0.936 

TEX15   0.141 0.001 up-regulate 0.289 0.43 

LRP2    0.115 0.002 up-regulate 0.483 0.598 

ZFHX4   0.101 0.002 up-regulate 0.912 1.013 

PCDH15  0.095 0.003 up-regulate 0.209 0.304 

FLG     0.123 0.003 up-regulate 0.596 0.719 

NAV3    0.090 0.004 up-regulate 0.728 0.818 

PCLO    0.092 0.006 up-regulate 0.963 1.056 

HRNR    0.079 0.014 up-regulate 0.59 0.669 

ABCA12  0.098 0.014 up-regulate 0.899 0.997 

DCHS2   0.079 0.018 up-regulate 0.411 0.49 

AHNAK2  0.069 0.019 up-regulate 1.256 1.325 

DNAH8   -0.070 0.020 downregulate 0.265 0.195 

PTPRD   0.086 0.021 up-regulate 0.748 0.833 

RELN    0.085 0.031 up-regulate 0.429 0.514 

The table shows the top 25 DEGs sorted by P values. The P values and logFC are calculated by Limma algorithm. Genes 
overexpressed in progressive group patients are up-regulated genes. 

Survival analysis using the contigs of novel events 

 

Besides DEGs, we also captured some novel events 

from the RNAseq data. These novel events were 

composed of SNVs, intron, splice, repeat, and 

unmapped contigs. It's worth mentioning that the 

unmapped contigs may come from transcripts produced 

by rearranged genes or result from exogenous viral 

genomes and could thus be highly relevant biologically. 

We therefore investigated the correlation between

 

 
 

Figure 4. DEkupl contigs results. (A) The heatmap of novel events identified by DEkupl using RNAseq data. (B) The circus graph of SNVs 

identified by DEkupl using the WES data. 
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surviving time and the novel events, including 

unmapped contigs.   

 

We compared the expression of contigs corresponding 

to the novel events, as shown in Figure 6A. The violin 

graph indicates the transcriptional difference between 

the early and late-stage patients. Survival analysis 

also proves the correlation between these novel events 

and survival prognosis. Interestingly, we showed the 

top 6 most significant contigs in Figure 6B. All the 

patients with high expressions of these 6 contigs tend 

to have a worse prognosis than the others. Our 

findings imply that the overexpression of these 

unannotated events may promote cancer progression.   

 

Diagnostic model construction 

 

To screen the diagnostic signatures, we herein applied a 

machine learning feature selection algorithm called 

lasso regression. We combined all the DEGs and 

convincing SNVs as features. Lasso regression 

determined the best combination of features according 

to the Log gamma criteria.  

In Figure 7A, 17 signatures were selected by lasso 

regression via the cutoff of log gamma. The best log 

gamma cutoff was determined automatically by lasso 

regression. The coefficient of each signature can be 

seen in the Figure 7B. Positive and negative 

signatures were marked in blue and red, respectively. 

Finally, the SVM model was trained using the 17 

signatures, and the AUC was 90% on the test set 

(Figure 8A). Our results demonstrate that the 

signatures in our findings can distinguish progressive 

patients from responsive patients. Many of the 17 

genes are already verified by previous studies to be 

cancer related. Thorsen K found that ACSL5 shows 

tumor-specific alternative TSS usage in cancer 

samples [38]. The gene of ACSS3 is proved to 

promote BLCA cell growth [39]. ART3 and ASAH2B 

are two well-known cancer driver genes, especially in 

breast cancer patients [40–43]. AZGP1 is involved in 

colorectal cancer and androgen receptor-induced 

prostate cancer [44, 45]. DENND2D, PCDHB7, 
FAM113B, and GBX2 have prognostic impact on 

various cancers, including lung cancer, gastric cancer, 

ovarian and esophageal cancer [46–50]. TLR4 and

 

 
 

Figure 5. Kaplan-Meier curves of the top 6 prognostic indicator genes. The patients with high/low expression levels are marked in 
red and blue, respectively. 
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Table 2. CoxPh results. 

 
beta HR (95% CI for HR) Wald test P value 

APOBEC3G -2.5 0.081 (0.022-0.29) 15 0.00011 

DENND2D -4.5 0.011 (0.0012-0.11) 15 0.00011 

SEMA3A 2.1 7.9 (2.8-23) 15 0.00011 

CCL15 -0.86 0.42 (0.27-0.66) 15 0.00012 

COLQ -2.3 0.1 (0.031-0.32) 15 0.00012 

PCDHGA2 2 7.5 (2.7-21) 15 0.00012 

PLIN5 -1.2 0.31 (0.17-0.56) 15 0.00013 

SLC26A8 -2.1 0.12 (0.043-0.36) 15 0.00013 

TXK -1.5 0.23 (0.11-0.49) 15 0.00013 

AGER -3 0.049 (0.011-0.23) 15 0.00014 

AHNAK2 1.9 6.8 (2.5-18) 15 0.00014 

NAT8B -1.3 0.26 (0.13-0.52) 15 0.00014 

FOXD4 -1.9 0.14 (0.052-0.39) 14 0.00015 

PCDHGA1 2.1 7.8 (2.7-23) 14 0.00015 

TMIGD2 -1.5 0.22 (0.1-0.48) 14 0.00015 

ACCN2 2.2 9.1 (2.9-29) 14 0.00016 

SPRR2E 0.72 2.1 (1.4-3) 14 0.00016 

CD96 -1.7 0.19 (0.078-0.45) 14 0.00017 

WNT11 1.3 3.8 (1.9-7.6) 14 0.00017 

AMY2B -2.1 0.12 (0.042-0.37) 14 0.00018 

The P value was calculated by log-rank test. The HR stands for hazard ratios. 
Top 20 genes sorted by P value were shown in the first column. 

 

NR1H3 are the prognostic factors of bladder cancer 

patients [51–53]. 

 

Validation and comparison 

 

We trained a diagnostic model using the signatures 

and proved the performance of predicting progressive 

bladder cancer patients. To further investigate if our 

model can also predict bladder cancer patients from 

the normal samples, we applied another independent 

data from the GEO database. The validation data 

comprises 52 bladder cancer patients and 40 normal 

samples. The ROC curve on the validation data is 

shown in Figure 8B. The accuracy of predicting

 

 
 

Figure 6. Expression of contigs in different cancer groups. (A) The violin graph shows the expression of the top 20 contigs of novel 

events in the early and late-stage patients. (B) Survival analysis shows the top 6 most significant contigs. 
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bladder cancer patients is 0.87, which is slightly lower 

than the discovery data. 

 

We also compared our 17-signatures model to the other 

models published previously. The first model is an 

immune prognostic model (IPM) developed by 

Hongyan Li [54]. The IPM is based on immune-

associated genes derived from differential analysis 

between wild-type TP53 and mutated TP53 bladder 

cancer patients. The IPM was validated using an

 

 
 

Figure 7. Machine learning results. (A) Feature selection process performed by lasso regression. (B) Feature importance ranking 

according to the coefficient. 
 

 
 

Figure 8. ROC curves of diagnostic model. (A) The performance of model on discovery data from TCGA. (B) The performance of model 

on validation data from GEO. 
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independent cohort from the GEO database. IPM 

utilizes the expression of four essential genes (CTSG, 

TREML4, KRT1, and PPBP) to calculate the risk score 

for each patient. The other model we compared to is an 

autophagy prognostic model (APM) developed by 

WANG et al. [55]. The APM was constructed with 

autophagy-related genes (ARGs). The author screened 

three key prognostic ARGs (JUN, MYC, and ITGA3) to 

calculate each patient's risk score. The APM was 

validated by two GEO datasets (GSE13507 and 

GSE31684). The comparison between our model and 

the other two models is shown in Figure 9. 

 

As shown in Figure 9, our 17-signature model 

outperforms the other two models in both TCGA and 

GEO cohort. APM and IPM apply four and three 

essential genes as signatures, respectively. From this 

point, our 17-signature model takes more genes into 

account and thus achieves better performance 

expectedly. On the other hand, APM and IPM focus on 

either immune related genes or autophagy related genes. 

In contrast, we considered the whole transcriptome and 

exome. In addition to biological interpretation, our 

model also has an advantage in terms of accuracy. 

 

DISCUSSION 
 

Recurrent variations are valuable tools in cancer 

diagnosis and treatment. Within this scope, sequencing 

technology has revealed the universality and diversity 

of the human transcriptome and genome. However, 

there are a large number of false positives in these 

cancer-related genes. For example, TTN, a high-

frequency mutation gene detected in many cancers, but 

TTN is also one of the longest genes known to humans. 

Thus, it has a higher probability of accumulating more 

mutations. 

 

On the other hand, many cancer mutations are found in 

some implausible genes (such as those encoding 

olfactory receptors and the muscle protein titin). 

However, many genes that carry mutations are not 

expressed in cancer tissues. Therefore, we combined the 

RNAseq and WES data to screen out genes with high-

frequency mutations from genes significantly 

differentially expressed in Bladder cancer patients. 

 

We first compared responsive patients to the 

progressive patients and screened out 727 up-regulated 

and 513 down-regulated genes. These DEGs were 

concentrated in the calcium ion homeostasis-related 

functions. The endometrial cancer KEGG pathway was 

also enriched. The calcium ion homeostasis is widely 

proved to be a cancer promoter.  

 

Highly mutated genes were selected from the DEGs. 

These genes present diverse expression levels between 

the responsive and progressive bladder cancer patients. 

On the other hand, these genes harbor recurrent 

mutations in at least 5% of patients. Thus, we avoided 

the false positive genes that are either non-differentially 

expressed or have nothing to do with cancer 

progression. To further investigate these mutated genes' 

internal relationships, we drew a heatmap showing the

 

 
 

Figure 9. Comparison with the other two models. (A) The performance comparison among three models on the TCGA cohort. (B) The 

performance comparison among three models on the GEO cohort. The curves with different colors represent the ROC curves of different 
models. 
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co-occurrence and mutually exclusive relationship. We 

observed some significant co-occurrence gene pairs, 

like ABCA12 and DCHS2, ABCA12 and TCHH, 

PCDH15 and DCHS2. These genes tend to be mutated 

in the same patients. Meanwhile, we found the gene 

pairs with mutually exclusive relationships, indicating 

the potential synthetic lethality candidates. This kind of 

gene pairs are barely observed to be mutated 

simultaneously. Therefore, for tumor cells with one of 

the mutated genes in a synthetic lethality pair, the other 

gene can be considered a potential therapeutic target. 

Tumor cells can be killed by blocking the other gene 

using inhibitors, which mimics the condition of two 

genes mutated together. 

 

Besides, the canonical sequencing analysis protocol 

relies on comparison with reference sequences to detect 

mutations. This method is highly dependent on the 

accuracy and completeness of the reference sequence. 

At the same time, it cannot do anything about mutations 

out of the reference sequence. However, many cancer-

related mutations are hidden in these "dark genome". In-

depth exploration of these unmappable regions is 

essential to complement the current human 

understanding of cancer. Therefore, in this study, we 

also used a mapping-free method called Dekupl. On the 

one hand, the two mapping-based and mapping-free 

protocols validate each other to screen out variants with 

higher confidence. We have unearthed many contigs 

related to cancer prognosis, including unmapped 

contigs. These contigs cannot be mapped to human 

reference sequences by software such as BWA or 

STAR, but they present significant differences in cancer 

patients with diverse responses to therapies. Besides, 

combined with survival analysis, we found that these 

contigs are also significantly related to survival 

prognosis. 

 

The novel events identified by DEkupl include SNVs, 

repeat, splice, intron, and unmapped contigs. Except for 

the repeat and unmapped contigs, all the other contigs 

can be mapped to the genome. In this way, we obtained 

the convincing SNVs comparing with the mapping-

based approach. For the 24 unmapped contigs, they 

were only captured by DEkupl. Even though the source 

of these unmapped contigs is still not clear, these 

contigs were recurrently observed in multiple patients. 

Therefore, to some extent, these novel events complete 

the puzzle of cancer mechanisms, and the novel events 

can be used as alternative indicators for diagnosis and 

prognosis. 

 

We constructed a diagnostic model using 17 signatures 

and the achieved satisfactory performance of predicting 

progressive bladder cancer patients on discovery data 

and validation data. It implies our diagnostic model's 

clinical implication in terms of early diagnosis and 

response prediction to therapy. 

 
In addition to clinical value, the newly discovered 

sources of embedded DE-kupl contigs are also crucial, 

especially unmappable contigs. These contigs may be 

derived from exogenous RNA and DNA or viral 

sequences embedded in the human genome. 
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