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INTRODUCTION 
 

Ewing's sarcoma, the second most frequent orthopaedic 

malignancy, is a highly aggressive, low-grade, small, 

round, and blue-cell tumour, with undefined patho-

genesis [1, 2]. It can develop at any age; however, its 

incidence particularly in young people is high. Current 

treatment modalities only seek to control its metastasis 

through a combination of neoadjuvant and adjuvant 

chemotherapy, as well as surgery and radiation therapy, 
although the prognosis of patients with recurrence 

remains poor [3]. Studies have demonstrated that the 

prognosis of Ewing's sarcoma is largely dependent on 

the occurrence of metastases, and the survival rate is 

reduced to approximately 20%–30% in case of 

metastasis [4]. A study on Ewing's sarcoma of the head 

and neck reported that the stage and age of patients are 

crucial prognostic factors [5]. 

 

Tumour cells are characterised by increased glucose 

uptake. These cells utilise glucose mainly through 

glycolysis, which leads to the production of lactate. 

Tumour cell glycolysis is also being investigated as a 

potential target for cancer treatment and as a possible 
therapeutic target [6–8]. Increased glycolytic activity 

leads to increased chemical resistance in some 

malignant tumours, which provides a favourable 

environment for survival of tumour cells [9]. The 
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specific mechanisms through which tumour cells 

enhance the glycolytic process in Ewing's sarcoma are 

not yet known. Thus, the present study attempted to 

investigate the role of glycolysis-related genes in 

Ewing's sarcoma. 

 

With advancement of the bioinformatics field, 

increasing number of analyses based on this discipline 

are being utilised in clinical practice [10]. Application 

of bioinformatics analyses in immune cell infiltration 

for the treatment of cancer is also increasing, and 

immunotherapy seems to be the future therapeutic 

modality for cancers. Immune cells in the tumour 

microenvironment are the crucial components of the 

cancer development process that not only antagonise 

tumours but also promote tumour development, leading 

to tumour progression [11]. For many years, scholars 

have been aiming to develop an injectable vaccine, 

which could allow the human body to expand the 

immune response to tumour-specific T cells through 

active immunity, eventually achieving immunotherapy 

for cancer [12]. Immunotherapy is considered to play a 

crucial role in cancer treatment. Therefore, immune 

cells in Ewing's sarcoma were explored in the present 

study. 

 

In this study, we aimed to identify glycolysis-related 

and immune-related prognostic biomarkers in Ewing's 

sarcoma through precise bioinformatics techniques in 

order to improve clinical prognosis, and we validated 

our analysis through the immunohistochemical analysis. 

 

MATERIALS AND METHODS 
 

Retrieval of Ewing's sarcoma data and glycolysis-

related gene sets and preliminary processing of the 

data 
 

Gene expression data and the corresponding clinical 

information data for Ewing's sarcoma were downloaded 

from the gene expression omnibus repository in the 

GSE17674 dataset [13]. Inclusion criteria were  

as follows: 1) samples with a diagnosis of Ewing's 

sarcoma; and 2) data with complete clinical 

information. A total of 13 skeletal muscle (vastus 

lateralis) samples were excluded, leaving only the 

skeletal muscle samples as normal controls. Gene sets 

related to glycolysis were downloaded from the gene set 

enrichment analysis (GSEA) database (http://www. 

gsea-msigdb.org/gsea/msigdb/search.jsp). 
 

Differential expression analysis and weighted gene 

co-expression network analysis 
 

We used the programming language R (version 4.0.2) 

for all statistical analyses as well as for the 

visualisation of plots. To fully utilise the information in 

the expression matrix and identify key genes in Ewing's 

sarcoma, we used a combination of the differential 

expression analysis and weighted gene co-expression 

network analysis (WGCNA). Firstly, we performed  

the differential expression analysis of all genes by 

using the ggplot2, limma, and pheatmap packages, with 

cut-off values of |LogFC | > 2.5 and false discovery 

rate (FDR) < 0.01. The weighted co-expression 

network analysis is an advanced analytical method  

in bioinformatics for calculating gene-to-gene co-

expression relationships by establishing and analysing 

a framework for weighted gene co-expression networks 

that allows complete utilisation of the information in 

the gene expression matrix [14]. A gene-to-gene 

similarity network was constructed, and the network 

modules were identified. Then, the relationship 

between the gene expression of cancer and normal 

groups was explored, and subsequently, the key genes 

in the modules were identified. Thereafter, the 

differentially expressed genes (DEGs) identified 

through the differential expression analysis were 

intersected, the modules with the highest tumour 

Pearson correlation coefficient were identified using 

the WGCNA, the glycolysis-related genes were 

downloaded from the GSEA database, and the 

intersected genes were saved for subsequent analysis. 

 

Gene ontology and Kyoto Encyclopedia of Genes 

and Genomes enrichment analyses 

 

To further explore the cellular component, molecular 

function, biological process, and KEGG-enriched 

pathways of these genes, we ID-transformed these 

genes by using the colorspace, stringi, ggplot2, digest, 

and GOplot packages; analysed their gene ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways; and subsequently visualised them. 

 

Univariate cox regression, regression, and multivariate 

cox regression analyses 

 

To construct a prognostic model for Ewing's sarcoma, 

we used the univariate Cox regression analysis, least 

absolute shrinkage and selection operator (LASSO) 

regression analysis, and multivariate Cox regression 

analysis to screen genes from multiple angles and 

directions. First, we performed a single-factor Cox 

regression analysis of the gene-survival data from the 

previous intersection, and the cut-off value was set at  

P < 0.05. Secondly, to refine our prognostic model, we 

constructed a penalty function by using the LASSO 

regression analysis to obtain the optimal number of 
genes required for constructing the model. Finally, we 

used a multivariate Cox regression model for the 

multifactorial analysis of genes and survival status, with 

http://www.gsea-msigdb.org/gsea/msigdb/search.jsp
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the cut-off value set at P < 0.05. Thus, we obtained a 

prognostic model, the gene name for which the 

prognostic model was constructed, and the risk-score 

for each sample. 

 

Survival analysis 
 

We analysed the survival data from several 

perspectives. First, we established Kaplan–Meier 

survival curves for comparing the prognosis between 

high and low gene expression and survival based on the 

relationship between high and low gene expression and 

prognosis of the constructed model. Subsequently, 

based on the constructed model, we divided the patients 

into high- and low-risk groups on the basis of their risk 

values by using the median risk value as a criterion. 

Kaplan–Meier survival curves were constructed for 

comparing the prognosis and survival between high- 

and low-risk groups. 

 

Gene expression and principal component analysis 

of modelled genes 
 

Expression calculations were performed for the gene 

expression of the constructed model based on the high 

and low risk of wind resistance, which was visualised 

as a violin plot. To verify the accuracy of the 

constructed model, we performed a compositional 

analysis of the high- and low-risk groups by using the 

ggplot2 package to investigate the differences between 

the two groups. 

 

Receiver operating characteristic diagnostic curve 
 

To validate the accuracy of the constructed Ewing's 

sarcoma model, we calculated area under the curve 

(AUC) values for 1, 2, and 3 years based on the analysis 

of the SURVIVAL package, SURVEMINER, and 

TIMEROC package for receiver operating characteristic 

(ROC) diagnostic curves, respectively. 

 

Risk assessment 
 

We ranked all the patients with Ewing's sarcoma in the 

descending order of their risk-score, and then 

determined the survival status of each patient. Finally, 

we plotted the gene expression by constructing the 

prognostic model for each patient. 
 

Assessment of accuracy of the prognostic model and 

prediction of the survival rate 
 

To validate the accuracy of the constructed prognostic 

model of Ewing's sarcoma, we used the rms package to 

divide the patients into high- and low-risk groups based 

on their risk-score value and plotted calibration plots by 

predicting overall survival at 3 years. To predict 

survival in Ewing's sarcoma, we constructed line graphs 

for predicting the prognosis based on the risk of the 

genes used to construct the model. 

 

Analysis of the immune cell composition 

 

CIBERSORT software was used to analyse the 

composition of immune cells for each patient. The 

CIBERSORT software [15] is an advanced software for 

evaluating the immune cell composition, and it can 

display the immune cell components in the expression 

matrix. The total value of the 22 immune cell 

compositions for each sample was 100%. We also 

constructed a heat map of immune cells to further 

understand the relationship between immune cells in 

Ewing's sarcoma. Finally, we preserved the statistically 

significant immune cell differences in Ewing's sarcoma 

(P < 0.05) for subsequent analyses. 

 

Immunohistochemistry 

 

We used tumour sections and paracancerous tissue 

sections from patients with Ewing's sarcoma who 

underwent surgery at the First Clinical Affiliated 

Hospital of Guangxi Medical University for immuno-

histological studies, which were approved by the 

Ethics Department of the First Clinical Affiliated 

Hospital of Guangxi Medical University, and 

conformed to the World Medical Association 

Declaration of Helsinki. We performed the immuno-

histological analysis of each gene on a total of 24 

pathological sections from 6 pairs (Ewing's sarcoma 

and paraneoplastic tissues). The immunohistochemical 

analysis of the genes, which were used to construct the 

model, was performed to determine their protein 

expression in cancerous and paraneoplastic tissues. 

Antibodies for the immunohistochemical analysis were 

purchased from the Bioss (http://www.bioss.com.cn, 

item numbers: bs-1625R, bs-4042R). Immuno-

histochemical staining of the fixed formalin solution, 

paraffin-embedded Ewing's sarcoma tissue, and 

paraneoplastic tissue was performed. After removal of 

paraffin, hydration, and sealing, we incubated the 

tissue specimens with antibodies overnight at 4° C, all 

at a dilution ratio of 1:500. We used inverted 

microscopy to observe differences in the protein 

expression of individual genes in Ewing's sarcoma 

tissue and paraneoplastic tissue. Subsequently, we 

used Image J software to count the positivity rate of 

specific regions in each immunohistochemical image. 

We imported the positivity rate results for each image 

into IBM SPSS Statistics 25 and performed a 

statistical analysis of the positivity rates by using the t 

test of the two-paired sample means. Finally, we 

http://www.bioss.com.cn/
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visualised the results of positivity rates for these two 

genes by using GraphPad Prism 8. 

 

RESULTS 
 

Data download 

 

The GSE17674 dataset comprised 62 samples, which 

included 44 samples of Ewing's sarcoma, 5 samples of 

skeletal muscle, and 13 samples of skeletal muscle 

(vastus lateralis). According to the inclusion criteria, 

Ewing's sarcoma with a diagnosis of Askin and PNET 

were excluded, and a total of 32 samples with a 

diagnosis of Ewing's sarcoma and 5 normal control 

samples were finally included for the subsequent 

analysis. A total of 13 glycolysis-related gene sets for 

317 glycolysis-related genes were downloaded from the 

GSEA database. 

 

Differential expression analysis and WGCNA 

 

We calculated DEGs from the expression matrices of 

21,655 genes for 32 Ewing sarcomas and 5 normal 

controls, yielding 4314 significant DEGs according to 

pre-specified conditions. We visualised the DEGs as a 

volcano map (Figure 1A) and a heat map (Figure 1B). We 

have placed the details of the top 100 differentially 

expressed genes in Supplementary Table 1. Subsequently, 

we performed a complex WGCNA and obtained a 

dynamic shear tree (Figure 2A) and a significant disease-

related difference module (Figure 2B). The MEblue 

module displayed the highest Person's correlation 

coefficient with Ewing's sarcoma (0.97). Therefore, we 

selected this gene module for further analysis. 

Subsequently, we constructed Venn plots of the MEblue 

module genes of DEGs, WGCNA, and glycolysis-related 

genes, which yielded 83 glycolysis-related genes with 

significant differences (Figure 3). We further filtered  

these genes. 

 

GO enrichment and KEGG pathway enrichment 

analyses 

 

To further investigate the functions of these genes and the 

pathways involved, we performed the GO and KEGG 

enrichment analyses. Results of the GO enrichment 

analysis illustrated that GO is mainly enriched in the 

pyruvate metabolic process, carbohydrate biosynthetic 

process, glucose metabolic process, hexose metabolic 

process, monosaccharide metabolic process, and 

carbohydrate catabolic process (Figure 4A). The KEGG 

pathway analysis indicated significant enrichment 

 of carbon metabolism, glycolysis/gluconeogenesis, bio-

synthesis of amino acids, pyruvate metabolism, glucagon 

signalling pathway, citrate cycle (TCA cycle), amino 

sugar and nucleotide sugar metabolism, starch and sucrose 

metabolism, and pentose phosphate pathway  

(Figure 4B). 

 

Univariate cox, LASSO, and multivariate cox 

regression analyses 

 

We performed univariate Cox, LASSO, and 

multivariate Cox regression analyses of the 83 

significantly different glycolysis-related intersecting 

genes. After the univariate Cox regression analysis,  

the remaining 12 genes were found to meet our 

requirements. After a more complex and rigorous 

LASSO regression analysis (Figure 5A, 5B), only 7 

genes met our requirements. Finally, we performed the 

multivariate Cox regression analysis, and only the 

remaining GLCE and TPI1 genes were found to meet 

our requirements after screening (Figure 5C). We also 

obtained risk scores for each sample and divided all 

samples into the high-risk and low-risk groups. 

 

Survival analysis 

 

To utilise the survival information data, we analysed the 

survival information from two perspectives. As shown in 

Figure 6A, the patients with Ewing's sarcoma with high 

GLCE gene expression were found to have lower 

mortality and better prognosis compared with those 

having low GLCE gene expression, and the difference 

was found to be statistically significant (P < 0.01). 

However, high expression of the TPI1 gene exhibited a 

worse prognosis compared with low expression (Figure 

6B), and the difference was found to be statistically 

nonsignificant (P > 0.05). Kaplan–Meier survival curves 

plotted using the constructed prognostic model (Figure 

6C) exhibited that the prognosis of patients in the high-

risk group is much lower than in the low-risk group, and 

the difference was found to be statistically significant  

(P < 0.001). 

 

Model gene expression and principal component 

analysis 

 

We further analysed the two genes GLCE and TPI1, for 

which the model was constructed, to analyse the 

differential gene expression in the high- and low-risk 

groups. The expression of GLCE was found to be higher 

in the low-risk group than in the high-risk group, and the 

difference was statistically significant (P < 0.001) (Figure 

7A). However, the expression of TPI1 was found to be 

higher in the high-risk group than in the low-risk group, 

and the difference was statistically significant (P < 0.01). 

According to the constructed principal components 

analysis plot, the high-risk patients were concentrated 
 on the right side of the PC1 axis, whereas the  

low-risk patients were located on the left side of this axis 

(Figure 7B). 
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Figure 1. The volcano plot and heat map of differentially expressed genes. (A) The volcano plot; red dots are upregulated genes, 

green dots are downregulated genes, and black dots are nonsignificant differentially expressed genes. (B) The heat map; red rectangular 
blocks are highly expressed genes, and green rectangular blocks are poorly expressed genes. 
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Figure 2. Weighted gene co-expression network analysis dendrograms and correlation plots. (A) The dendrogram. (B) The 
correlation high heat map of the modules. 
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ROC diagnostic curve 

 

The constructed ROC diagnostic curves indicated the 

AUC values for predicting survival to be much higher 

than 0.5; AUC values of 0.892, 0.881, and 0.928 for 

predicting 1-year survival, 2-year survival, and 3-year 

survival, respectively, were obtained (Figure 8). This 

finding also demonstrated the accuracy of the 

prognostic model constructed for Ewing's sarcoma. 

 

Risk assessment 

 

We ranked the patients in the descending order of their 

risk score (Figure 9A). In terms of patient survival, the 

number of deaths increased with the risk value (Figure 

9B). The GLCE expression exhibited a decreasing 

trend, whereas TPI1 expression exhibited an increasing 

trend from the high-risk group to the low-risk group 

(Figure 9C). 

Assessment of the prognostic model accuracy and 

prediction of the survival rate 

 

We further constructed calibration plots to validate the 

rigour of the Ewing's sarcoma prognostic model (Figure 

10A). The red line in Figure 10A almost coincides with 

the grey line, indicating that the difference between the 

predicted and the actual value is small. We also created 

a line graph (Figure 10B) for predicting survival based 

on GLCE and TPI1 gene expression values, which 

could be used to predict 1-, 2-, and 3-year survival in 

patients with Ewing's sarcoma. 

 

Immune cell composition analysis 

 

To analyse the relationship between Ewing's sarcoma 

and immune cells, we evaluated the immune cell 

composition of each sample by using CIBERSORT 

software. The immune cell components of each sample 

 

 
 

Figure 3. Venn diagram. 83 intersecting genes for the blue module, differentially expressed genes and glycolysis-related genes identified 
using the WGCNA. 
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Figure 4. GO and KEGG pathway analyses of glycolysis-related genes. (A) Represents the GO pathway analysis; each colour 
represents a GO entry, and the top 10 GO entries are shown. (B) Represents the KEGG pathway analysis; each colour represents a pathway, 
and the innermost layer represents the size of the logFC value of the gene. 



 

www.aging-us.com 17524 AGING 

were visualised (Figure 11A), and the co-expression 

relationships between immune cells were also analysed 

(Figure 11B). Finally, we observed a significant 

association of naïve B cells, CD8 T cells, activated NK 

cells, and M0 macrophages with Ewing's sarcoma  

(P < 0.05) (Figure 12). 

Immunohistochemical analysis 

 

We performed the immunohistochemical staining 

analysis of six pairs (Ewing's sarcoma and 

paraneoplastic tissue) of a total of 24 pathological tissue 

sections for each gene. The antibodies used were 

 

 
 

Figure 5. Plots of LASSO regression and multifactor Cox analyses. Plots (A, B) show the minimum penalty coefficients constructed 

using LASSO regression. Plots (C) indicates the multifactor Cox analysis, with P < 0.05 for both genes. 
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specific for GLCE and TPI1, and brown-stained areas in 

the tissue sections are the result of a specific reaction 

between the antigen and antibody. As shown in Figure 

13A1–13B2, GLCE expression was higher in 

immunohistochemically stained regions in Ewing's 

sarcoma than in paraneoplastic tissue. On the other hand, 

TPI1 was lower in immunohistochemically stained 

regions in 11. Immunohistochemical analysis of Ewing's 

sarcoma than in normal tissues (Figure 13C1–13D2). 

“Amend to”, as shown in Figure 13A1–13B2, GLCE 

expression was higher in immunohistochemically stained 

regions in Ewing's sarcoma than in paraneoplastic  

tissue. On the other hand, TPI1 was lower in 

immunohistochemically stained regions of Ewing's 

sarcoma than in normal tissues (Figure 13C1–13D2). In 

addition, we counted the positivity rate of a total of 24 

specific immunohistochemical stains derived from GLCE 

and TPI1. Furthermore, we statistically analysed the 

positivity rate of Ewing's sarcoma staining and that of 

paraneoplastic tissue for both antibodies by using the t 

test for two-paired sample means in IBM SPSS Statistics 

25. Results of the statistical analysis indicated the 

positivity rate of GLCE immunohistochemical-specific 

staining (Figure 13E) and implied that the mean number 

of samples positivity for GLCE in Ewing's sarcoma  

was higher than in the paraneoplastic tissue; the 

difference was found to be statistically significant. On the 

other hand, the rate of positivity staining for 

immunohistochemical-specific expression of TPI1 was 

found to be higher in paraneoplastic tissues than in 

 

 
 

Figure 6. Plots of survival analysis. Plots (A, B) represent survival curves based on high and low expression of GLCE and TPI1. Plot  

(C) shows survival curves based on high and low risk of the model. 
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Figure 7. Violin plots and principal component analysis plots of model gene expression based on high and low risk. (A) The 
plot showing that GLCE expression values in the low-risk group are higher than those in the high-risk group; TPI1 expression values in the 
high-risk group are higher than those in the low-risk group. (B) The principal component analysis plot; red points representing localisation of 
the high-risk group on the right side of the PC1 axis and that of the low-risk group on the left side of the PC1 axis. 
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Ewing's sarcoma (Figure 13F), and the difference was 

found to be statistically significant. This finding was 

found to be consistent with those of our bioinformatics 

analysis, which further confirmed the accuracy of our 

analysis. 

 

DISCUSSION 
 

In the present study, glycolysis-related genes with 

significant differences were found to be enriched 

mainly in the pyruvate metabolic process, carbohydrate 

biosynthetic process, glucose metabolic process, hexose 

metabolic process, monosaccharide metabolic process, 

and carbohydrate catabolic process. The KEGG 

pathway analysis indicated the significant enrichment of 

mainly the glycolysis/gluconeogenesis, biosynthesis of 

amino acids, pyruvate metabolism, glucagon signalling 

pathway, citrate acid cycle (TCA cycle), amino sugar 

and nucleotide sugar metabolism, starch and sucrose 

metabolism, and pentose phosphate pathway. 

Glycolysis plays a crucial role in cancer, and cancer 

cells derive energy in the form of lactic acid from 

glycolysis [16]. The metabolism of cancer cells differs 

from that of normal cells, and the metabolic rate of 

cancer cells is higher than that of normal cells, which 

enables cancer cells to maintain a sufficiently high 

proliferation rate to counteract cell death signals in the 

body. Additionally, glycolysis is enhanced in cancer 

cells [17]. Research on the cancer cell glycolysis, a 

pathway that may be integral to the development of 

cancer, has been conducted on a large scale [18–21]. In 

this study, we also observed that the glycolysis-related  

 

 
 

Figure 8. ROC diagnostic curves. The green line indicates the 
predicted 1-year survival rate; the blue line indicates the 
predicted 2-year survival rate; and the red line indicates the 
predicted 3-year survival rate. 

genes GLCE and TPI1 can be used to construct a 

prognostic model of Ewing's sarcoma and that their 

high-risk group corresponds to a significantly poor 

survival status. This finding provides evidence for a role 

of glycolytic genes in Ewing's sarcoma. 

 

Glucuronic acid epimerase (GLCE), is primarily 

associated with spherocytosis. A study conducted in 

2011 on GLCE in cancer reported that the ectopic re-

expression of GLCE exerts an antitumour effect and 

hence, it is a potential cancer suppressor gene [22]. In 

recent years, GLCE has been identified as one of the 

key enzymes involved in the biosynthesis of acetyl 

heparin sulfate, which plays a tumour-suppressive role 

in the pathogenesis of breast cancer [23]. A study on 

GLCE exhibited that a prognostic model consisting of 9 

genes, including GLCE, displays shorter survival in the 

high-risk group than in the low-risk group [24]. This 

finding is concurrent with that of our study. The present 

study indicated that patients in the high GLCE 

expression group have a better prognosis compared with 

the low expression group, whereas the prognostic model 

of Ewing's sarcoma consisting of GCLE and TPI1 

demonstrated a worse prognosis in high-risk patients. 

TPI1, which is also a protein-coding gene, is primarily 

associated with triosephosphate isomerase deficiency 

and giardiasis. TPI1 is located in the cytoplasmic and 

extracellular regions and can serve as a biomarker for 

the diagnosis of liver metastasis in colon cancer  

[25]. Recent studies have observed that TPI1  

expression is significantly upregulated in intrahepatic 

cholangiocarcinoma, and that the upregulated TPI1 

expression is strongly associated with high recurrences 

in patients with intrahepatic cholangiocarcinoma [26]. 

Studies on TPI1 have reported that the gene plays a role 

not only in colon cancer but also in pancreatic cancer. 

Follia et al. reported that patients with enhanced 

glycolysis have earlier disease progression and poorer 

prognosis than other patients, leading to overexpression 

of TPI1 [27]. This finding is consistent with that of our 

study. The present study indicated that a high 

expression of TPI1 in Ewing's sarcoma has an overall 

poor prognosis compared with low TPI1 expression. 

Here, the prognostic model for Ewing's sarcoma that 

comprised TPI1 exhibited that the prognosis of patients 

in the high-risk group is much lower than that of 

patients in the low-risk group. 

 

We not only established a prognostic model but also 

analysed immune cells associated with Ewing's 

sarcoma. Characteristics of B cells such as naïve B 

cells, the ease with which they can be activated, and 

their lifespan are likely to be the indispensable factors 
for the malignant transformation of chronic lymphocytic 

leukaemia [28]. CD8+ T cells are the immune cells that 

are generally preferred for the targeted cancer therapy. 
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However, during cancer development, the tumour 

immune microenvironment causes immunosuppression, 

which results in adaptive immune resistance. Thus, 

CD8+ T cells play an antitumour role in cancer [29]. An 

increasing number of studies have shown that NK cells 

are capable of exhibiting cytotoxic activity against a 

wide range of tumour cells and that enhancing the 

antitumour immunity of NK cells is a vital approach to 

immunotherapy for cancer [30]. Stimulation of M0 

macrophages with apoptotic SKOV3 cells enables these 

macrophages to allow tumour cell migration and 

proliferation [31]. The present study revealed that all 

 

 
 

Figure 9. Risk assessment graph. (A) The risk score of the patients; (B) survival and death of the patients, and (C) the expression of the 

two genes in the high- and low-risk groups. 
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Figure 10. Calibration and column line plots. (A) The calibration plot; the red line segments denote the predicted line segments and the 

grey line segments denote the true-case segments. (B) The column line plots for the predicted prognosis. 
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four immune cells are strongly associated with Ewing's 

sarcoma, and our findings might provide a new 

therapeutic direction for Ewing's sarcoma with a poor 

prognosis. 

 

In the present study, we screened the significant 

preliminary differences in glycolysis-related genes by 

combining the differential expression analysis with the 

WGCNA and then intersecting with glycolytic genes. 

Subsequently, we used univariate Cox, LASSO, and 

multifactorial Cox regression analyses of the genes, 

which were used to construct an accurate prognostic 

model for Ewing's sarcoma. To validate the accuracy of 

the model, we analysed patient survival information  

in relation to the model, gene expression based on  

high- and low-risk groups, principal components 

analysis, ROC diagnostic curves, risk assessment, 

calibration plots, and line graphs. We performed the 

immune cell evaluation of Ewing's sarcoma by using 

CIBERSORT software and observed that naïve  

B cells, CD8+ T cells, activated NK cells, and M0 

macrophages are all strongly associated with the 

disease. Finally, we confirmed our analysis through the 

immunohistochemical analysis. The GLCE expression 

was significantly higher in Ewing's sarcoma than in 

paraneoplastic tissues, whereas the TPI1 expression was 

 

 
 

Figure 11. Immune cell compositions and correlation heat map. (A) Plot showing the composition of immune cells for each sample. 

(B) Plot showing the correlation heat map between each immune cells. Red indicates positivity correlation and blue indicates negative 
correlation. 
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Figure 12. Immune cell violin plot showing that naïve B cells, CD8+ T cells, activated NK cells, and M0 macrophages are 
significant in Ewing's sarcoma (P < 0.05). 
 

 

 

Figure 13. Statistical analysis of immunohistochemistry and positivity rate. (A1, A2) Show 100x magnification and 400x magnification 

of GLCE expression in cancerous tissue. (B1, B2) Show 100x magnification and 400x magnification of GLCE expression in paraneoplastic tissue. 
(C1, C2) Show 100x magnification and 400x magnification of TPI1 expression in cancerous tissue. (D1, D2) Show 100x magnification and 400x 
magnification of TPI1 expression in paraneoplastic tissue. (E) Indicates the statistical results of the positive rate of all immunohistochemical 
pictures of GLCE, “**” indicates P < 0.01. (F) Indicates the statistical results of immunohistochemical positivity rate for all TPI1, “**” indicates P 
< 0.01. 
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significantly higher in paraneoplastic tissues than in 

Ewing's sarcoma, which is consistent with our 

bioinformatics analysis results. 

 

Tumour cells are known to avoid death through 

immune evasion [32]. Interestingly, in our study, the 

expression profile of Ewing's sarcoma was compared 

with that of immune cells by using the bioinformatics 

algorithm, which indicated that naïve B cells, CD8+ T 

cells, activated NK cells, and M0 macrophages differ 

significantly in Ewing's sarcoma (P < 0.05). 

Therefore, we believe that the role played by these 

immune cells in the development of Ewing's sarcoma 

requires further investigation, which could provide  

a new guideline for immunotherapy of Ewing's 

sarcoma. We believe that in the upcoming 5 years, 

research on tumour immunity will be strengthened 

and provide novel and effective strategies for better 

treatment of tumours. 

 

The present study has some limitations. First, the 

sample size was inadequate; we could not obtain a large 

sample size for the analysis. Second, we did not 

specifically analyse the typology of Ewing's sarcoma, 

despite the presence of various types of Ewing's 

sarcoma. Finally, we analysed only the survival 

information of Ewing's sarcoma and did not further 

analyse other clinical information. 

 

CONCLUSIONS 
 

The prognostic model of Ewing's sarcoma constructed 

using GCLE and TPI1 indicated that survival of the 

high-risk group is much lower than that of the low-risk 

group and that GCLE and TPI1 can serve as prognostic 

biomarkers for Ewing's sarcoma. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Graph of the top 100 differentially expressed genes. 


