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INTRODUCTION 
 

Bladder cancer (BLCA), with about 80,470 new patients 

in the United States in 2019, is the major malignant 

tumor of the urinary system [1]. Approximately 25% of 

patients are muscle-invasive or metastatic bladder cancer 

when they are initially diagnosed [2, 3]. Surgical 

resection is the main treatment for localized BLCA [4], 

whereas systematic chemotherapy is the preferred 

treatment for advanced and metastatic BLCA [5]. 

Despite these aggressive therapies, the five-year overall 

survival of bladder cancer remains less than 20% [6]. 

Thus, it is critical to explore alternative treatments and to 

determine promising prognostic indicators in BLCA. 

 

At present, the molecular mechanism of BLCA has not 

yet been described, while growing evidence has revealed 

that immune-related genes (IRGs) and immune cell 

infiltration, play critical roles in the pathogenesis and 

progression of BLCA [7, 8]. In recent years, immune 

checkpoint therapies have provided a promising 

opportunity for the treatment of advanced BLCA patients 
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ABSTRACT 
 

Background: Bladder cancer (BLCA) is the major tumor of the urinary system, and immune-related genes (IRGs) 
contribute significantly to its initiation and prognosis. 
Results: A total of 51 prognostic IRGs significantly associated with overall survival were identified. Functional 
enrichment analysis revealed that these genes were actively involved in tumor-related functions and pathways. 
Using multivariate Cox regression analysis, we detected 11 optimal IRGs (ADIPOQ, PPY, NAMPT, TAP1, AHNAK, 
OLR1, PDGFRA, IL34, MMP9, RAC3, and SH3BP2). We validated the prognostic value of this signature in two 
validation cohorts: GSE13507 (n = 165) and GSE32894 (n = 224). Furthermore, we performed a western blot and 
found that the expression of these IRGs matched their mRNA expression in TCGA. Moreover, correlations 
between risk score and immune-cell infiltration indicated that the prognostic signature reflected infiltration by 
several types of immune cells. 
Conclusion: We identified and validated an 11-IRG-based risk signature that may be a reliable tool to evaluate 
the prognosis of BLCA patients and help to devise individualized immunotherapies. 
Methods: Bioinformatics analysis was performed using TCGA and ImmPort databases. Cox regression was used 
to identify prognostic signatures. Two external GEO cohorts and western blotting of samples were performed 
to validate the IRG signature. 
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[9]. Unfortunately, only approximately 20% of platinum-

refractory and previously untreated patients may benefit 

from immunotherapy [10]. Therefore, it is imperative  

to screen and detect immunotherapy response and 

prognostic predictors to predict prognosis and risk of 

bladder cancer. 

 

In this study, we used transcriptome data from TCGA to 

construct a prognostic signature of 11 differentially 

expressed IRGs. The prognostic IRG-based signature 

was further validated in two independent GEO datasets 

and in proteomics data from our samples. The underlying 

regulatory mechanisms of IRGs were explored using 

bioinformatics methods. This immunogenomic signature 

may be a reliable tool for individualized prediction of 

prognosis in BLCA patients. 

 

RESULTS 
 

Identification of differentially expressed IRGs 
 

Compared with normal tissues, we identified 4876 

differentially expressed genes (DEGs) in BLCA tissues 

including 3453 upregulated and 1423 downregulated 

genes (Figure 1A and Supplementary Figure 1A). We 

extracted 120 upregulated and 140 downregulated IRGs 

corresponding to those identified in the ImmPort 

database (Figure 1B and Supplementary Figure 1B). In 

addition, we performed GO functional enrichment and 

KEGG pathway analyses in 260 differentially expressed 

IRGs (DEIRGs). The top ten functional annotations were 

shown in Supplementary Table 1. The DEIRGs were 

mostly enriched in cell migration, leukocyte migration, 

extracellular matrix, receptor complex, receptor ligand 

activity and cytokine activity (Supplementary Figure 

2A–2C). Furthermore, cytokine–cytokine receptor 

interactions were enriched in the KEGG pathways 

(Supplementary Figure 2D). 

 

Identification of prognosis-associated DEIRGs 

 

To determine possible prognosis-associated DEIRGs, 

univariate Cox regression analysis of DEIRGs were 

performed in the present study. After screening, we 

identified 51 DEIRGs that significantly correlated with 

the overall survival of BLCA patients (Figure 2). 

Similar to the results for the DEIRGs, we found that 

these prognosis-associated DEIRGs were most enriched 

in cell migration, cell proliferation, extracellular matrix, 

receptor ligand activity and growth factor activity 

(Supplementary Table 2 and Figure 3A–3C). Human 

cytomegalovirus infection and the MAPK signaling 

pathway were most enriched in the KEGG analysis 

(Figure 3D). 

 

Significant modular analysis based on a PPI network 

 

A PPI network was established utilizing the 51 

prognosis-associated DEIRGs, shown in Figure 4A. In 

the PPI network, 27 hub genes were identified by the 

MCODE plugin of Cytoscape. When the k-core = 2, 

four significant module subgroups were obtained and 

 

 
 

Figure 1. Volcano plot of differentially expressed genes and immune-related genes. (A) Volcano plot of differentially expressed 
genes between bladder cancer (BLCA) and non-tumor tissues. (B) Volcano plot of differentially expressed immune-related genes between 
bladder cancer (BLCA) and non-tumor tissues. The green dots represent downregulated genes, the red dots represent upregulated genes, 
and the black dots represent genes that were not significantly differentially expressed. 
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were showed in different colors, and the most important 

modules, including THBS1, PGF, SPP1, TGFB3, ELN, 

OXTR, PROK1, AGTR1, TACR1, and EDNRA, were 

marked in green (Figure 4B–4E). As shown in Figure 

4F, functional annotation indicated the 27 hub genes 

were mostly related in sprouting angiogenesis, positive 

regulation of leukocyte chemotaxis, regulation of 

smooth muscle cell proliferation, MHC class I peptide 

loading complex, response to testosterone, and embryo 

implantation. 

Construction of a transcription factor (TF) regulatory 

network 
 

Next, we investigated the relationships between the 

DEIRGs in BLCA and the cancer-associated transcription 

factors (TFs). In total, we identified 77 differentially 

expressed TFs between BLCA (n = 414) and para-cancer 

tissues (n = 19) (Figure 5A, Supplementary Figure 3). 

Subsequently, using correlation scores > 0.4 and  

p values <0.05 as reference values, combined with 

 

 
 

Figure 2. Prognosis-associated DEIRGs. Forest plot of hazard ratios showing the prognostic values of IRGs. 
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16 TFs and 51 DEIRGs, we constructed a TF regulatory 

network to illustrate the correlation between TFs and 

IRGs (Figure 5B). 

 

Construction of a prognostic risk model 

 

Multivariate Cox regression analysis were performed  

to calculate a risk score for each patient as follows:  

Risk score = (−0.0067 ×TAP1 (expression)) + (0.0004 

×MMP9 (expression)) + (0.0616 ×ADIPOQ (expression)) 

+ (0.0359 ×PDGFRA (expression)) + (0.01261 × 

AHNAK(expression)) + (0.0295 ×RAC3 (expression))  

+ (0.0066 ×OLR1 (expression)) + (0.0263 ×IL34 

(expression)) + (0.0149 ×NAMPT (expression)) + 

(0.0172 ×PPY (expression)) + (−0.0720 × SH3BP2 

(expression)). Based on the risk scores, patients with 

  

bladder cancer were divided into high-risk (n = 186) and 

low-risk (n = 185) groups. Kaplan–Meier analysis 

revealed that the survival rate significantly favored the 

low-risk group (p < 0.001) (Figure 6A). The AUC of the 

ROC curve was 0.745, suggesting moderate 

effectiveness for the prognostic risk model for 

monitoring survival (Figure 6B). Figure 6C–6E 

represented the risk scores, survival status, and heatmap 

of the ten IRGs between the two groups. 

 

Independent prognostic value of the risk model of 

the cohort 

 

We then performed univariate and multivariate Cox 

regression analysis to determine the efficacy of risk 

score derived from our prognostic risk model as an 

 
 

Figure 3. Gene functional enrichment of prognosis-associated DEIRGs. (A) The top ten most significant biological processes in the 
gene ontology. (B) The top ten most significant cellular components in the gene ontology. (C) The top ten most significant molecular 
functions in the gene ontology. (D) The top ten most significant KEGG pathways. 
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independent predictor after adjusting for other clinical 

parameters (Table 1). Univariate analysis revealed that 

age, clinical stage, tumor stage (T), lymph node (N), 

and risk score were significantly related to the prog-

nosis of BLCA patients (p < 0.05). Multivariate Cox 

regression analysis demonstrated that the risk score was 

independently corelated with the overall survival in the 

cohort (p < 0.001) (Figure 7). 

External validation of the prognostic risk model in 

the GSE13507 and GSE32894 cohorts 
 

To validate the reliability of our IRG-based prognostic 

risk model, we utilized two external validation cohorts, 

GSE13507 and GSE32894. Similarly, patients in the 

high-risk group showed poorer survival than in the  

low-risk group (Figure 8A, 8B). In addition, the results  

 

 
 

Figure 4. Significant modular analysis and functional enrichment analysis based on the PPI network. (A) Construction of a PPI 
network using a total of 51 prognosis-associated DEIRGs. (B) The most significant module subgroup of the hub genes, identified by MCODE 
plug-in, contains ten genes. (C) Module 2 contains ten hub genes. (D) Module 3 contains four hub genes. (E) Module 4 contains three hub 
genes. (F) Functional enrichment analysis of the 27 hub genes in the PPI network. 
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Figure 5. TF regulatory network. (A) Volcano plot of differentially expressed TFs. The green dots represent downregulated TFs, the red 
dots represent upregulated TFs, and the black dots represent TFs that were not significantly differentially expressed. (B) Regulatory network 
of TFs and IRGs; the yellow nodes represent TFs that correlated with the IRGs, the red nodes represent IRGs with hazard ratios < 1 (p < 0.05), 
the purple nodes represent IRGs with hazard ratios > 1 (p < 0.05) (correlation coefficient > 0.4 and p < 0.05), the green lines indicate negative 
regulatory relationships, and the red lines indicate positive regulatory relationships. 

 

 
 

Figure 6. Prognostic risk model of the cohort. (A) Kaplan–Meier curve analysis showed that patients with a high-risk score were 
correlated with a worse survival outcome (p < 0.05). (B) ROC curve analysis of the prognostic risk model. (C) Risk score distribution of patients 
in the prognostic risk model in the cohort. (D) Survival status scatter plots for patients in the prognostic risk model. (E) Heatmap showing the 
distribution of the expression of the 11 immune-related genes in the cohort. 
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Table 1. Univariate and multivariate Cox regression analyses of the cohort. 

 
Univariate analysis Multivariate analysis 

HR 95%CI P-value HR 95%CI p-value 

Age 1.029 1.001-1.057 0.04545 1.022 0.993-1.052 0.13814 

Gender 0.616 0.352-1.078 0.08953 0.873 0.466-1.635 0.67126 

Stage 1.863 1.293-2.683 0.00084 1.064 0.519-2.181 0.86637 

T 1.769 1.193-2.622 0.00453 1.440 0.857-2.418 0.16832 

M 2.167 0.779-6.025 0.13822 0.907 0.274-3.000 0.87234 

N 1.573 1.196-2.070 0.00121 1.227 0.728-2.068 0.44174 

Risk score 1.398 1.265-1.544 4.33e-11 1.327 1.174-1.500 6.28e-06 

HR, hazard ratio; CI, confidence interval; T, tumor stage; M, metastasis; N, Lymph nodes. 
 

were also shown with a KM curve and a ROC curve 

(Figure 8C–8F). The cumulative results imply that the 

IRG-based prognostic risk characteristics based on 

IRGs can be used as a reliable prognostic model. 

 

Validation of the IRGs in the proposed signature by 

western blot 
 

To further validate the proposed signature at the protein 

level, we performed western blotting on bladder cancer 

tissues, adjacent tissues, SV-HUC-1, and T24 cells 

lines. Comparing the gene levels of RNA-seq from 

TCGA dataset (data not shown) with the expression 

levels of WB protein, our results indicated that the 

protein levels of ADIPOQ, NAMPT, TAP1, OLR1, 

AHNAK, PDGFRA, IL34, MMP9 and RAC3 were 

consistent with their RNA expression trends (Figure 9). 

 

Clinical application of the prognostic model 

 

To assess the efficacy of our model in predicting the 

progression of BLCA, we evaluated the correlations 

 

 
 

Figure 7. Univariate and multivariate independent prognostic analysis of the cohort. (A) Univariate Cox regression analysis 
showed clinical stage, tumor, lymph nodes, and risk score were associated with the prognosis of BLCA patients. (B) Multivariate Cox 
regression analysis revealed that the risk score was independently associated with OS in the cohort. 
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Figure 8. Validation of the risk signature in GSE13507 and GSE32894 datasets. (A, B) Heatmap of the 11 IRGs expression 
distribution, risk score distribution, and survival status between the low-risk group and high-risk group in the validation cohort. (C, D) Kaplan–
Meier curve showed shorter survival time in the high-risk group patients. (E, F) ROC curve illustrated the prognostic value of the risk 
signature. 
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between the risk signatures and clinical parameters 

including age, sex, pathological grade and clinical stage 

in the TCGA data cohort (Table 2). As the levels  

of PPY, NAMPT, ADIPOQ, IL34, RAC3, TAP1, 

AHNAK, PDGFRA and the risk score increased, the 

pathological grade of BLCA patients increased (p < 

0.01) (Figure 10A–10I). With the increase of the other 

factors (risk score and PDGFRA and AHNAK levels), 

the clinical stage and the tumor stage of patients with 

BLCA also increased (all p < 0.01) (Figure 10J–10O). 

These results demonstrate that the dysregulation of the 

expression of the DEIRGs is significantly associated 

with the development of BLCA. 

 

Inferred immune cell fractions of the high- and low-

risk groups 
 

To clarify whether our prognostic risk model can reflect 

the status of tumor immune microenvironment in BLCA 

patients, we evaluated the correlation between risk  

 

 
 

Figure 9. Validation of the IRGs by western blot. Validation 
of the IRGs by western blot on bladder cancer tissues and 
adjacent tissues, human normal bladder epithelial cells (SV-HUC-
1), and a bladder cancer cell line (T24). 

scores and immune cell infiltrations estimated by the 

CIBERSORT algorithm (Figure 11). The correlations 

between the risk score of the prognostic signature and 

immune cell infiltration are shown in Figure 12. As the 

risk score increased, the numbers of neutrophils, M2 

macrophages, and CD8
+
 T cells in BLCA tissues 

increased (Figure 12). 

 

DISCUSSION 
 

Although cancer immunotherapy has expanded the 

treatment possibilities for BLCA, only a subset of 

patients responds to immunotherapy [11–14]. Thus, it is 

crucial to identify immune-related biomarkers for the 

progression of BLCA patients to improve the effect of 

immunotherapy. Recent studies have reported genome-

wide profiling investigating the role of multiple 

immune-related signatures in predicting tumor out-

comes [15–17]. However, very few of these studies 

gained constructive therapeutic implications. Here, we 

established a robust immune-related risk signature of 

BLCA by integrated analysis of transcriptional profiles 

in TCGA. We also conducted external validation on 

overall survival rate and cancer-specific survival rate 

through two GEO datasets (GSE13507, n = 256; 

GSE32894, n = 308). Moreover, we performed western 

blotting in bladder tissues and cell lines to validate the 

IRGs at the protein level. As expected, the western blot 

demonstrated that the protein levels of the IRGs 

matched their RNA-seq levels derived from TCGA  

and GEO datasets. 

 

Here we used univariate Cox regression analysis to 

assess the relationships between 260 DEIRGs and the 

prognosis of BLCA patients. We found that the 

expression of 51 DEIRGs significantly correlated with 

overall survival. To explore the underlying modulators 

related to these IRGs, a TF regulatory network 

comprising 77 differentially expressed TFs and DEIRGs 

that potentially regulate hub IRGs were constructed. 

Our results reveled that STAT1, TAP1, TAP2 and 

CXCL10 played central roles in this network, suggesting 

they are hub gene regulators. The transporter associated 

with antigen processing (TAP) is necessary for T-cell 

recognition [18]. Recent studies have demonstrated that 

TAP plays a critical role in cell differentiation, 

proliferation, the development and progression of 

cancer [19–21]. In addition, TAP detection has been 

recognized as a new independent indicator for the 

course of chemotherapy and clinical monitoring of 

several type of cancers [22, 23]. STAT1 is considered as 

an oncogene that promotes cell adhesion, migration, and 

proliferation in bladder cancer [24]. Furthermore, the 

TF–IRG regulatory network emphasized that these hub 

TFs are closely associated with the prognostic signature 

genes, such as ADIPOQ, PDGFRA, MMP9 and RAC3. 
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Table 2. Relationships between prognostic model associated IRGs and clinical variables of patients with BLCA. 

Variables Age (≤65/≥65) t(p) 
Gender 

(Female/Male) t(p) 

Pathological grade 

(High grade/Low 

grade) t(p) 

Clinical stage 

(3&4/1&2) t(p) 

Tumor stage 

(T3&4/T1&2) t(p) 

Lymph nodes 

(N1&2/N0) t(p) 

TAP1 1.132(0.259) -0.104(0.917) 9.129(3.073e-13) 1.298(0.197) 1.006(0.316) 1.492(0.137) 

MMP9 -0.974(0.331) -0.888(0.376) 1.663(0.097) -1.16(0.247) -1.206(0.229) -1.003(0.318) 

ADIPOQ -2.377(0.018) 1.167(0.246) 3.645(3.115e-04) -0.339(0.735) -0.662(0.509) 0.233(0.816) 

PDGFRA 0.366(0.714) 1.446(0.150) 4.534(9.997e-05) -3.645(3.199e-04) -4.011(7.503e-05) -1.492(0.137) 

AHNAK 0.087(0.931) 0.901(0.369) 6.793(2.305e-07) -3.435(7.172e-04) -2.989(0.003) -2.321(0.021) 

OLR1 -0.016(0.987) -0.369(0.712) 2.12(0.047) -1.851(0.066) -2.358(0.019) -0.388(0.698) 

RAC3 -1.8(0.073) 0.886(0.377) 4.227(1.542e-04) -1.774(0.078) -1.059(0.291) -0.581(0.562) 

IL34 -0.849(0.397) 0.352(0.725) 5.066(7.503e-07) -1.974(0.049) -2.444(0.015) -2.053(0.042) 

NAMPT -0.698(0.486) 2.224(0.028) 4.5(1.488e-04) -1.933(0.054) -1.62(0.106) 0.682(0.495) 

PPY -1.385(0.167) -0.174(0.862) 4.995(9.603e-07) -1.524(0.128) -1.795(0.074) 0.139(0.890) 

SH3BP2 0.983(0.327) -2.401(0.017) -0.586(0.566) 2.384(0.019) 1.327(0.186) 1.974(0.049) 

Risk Score -1.426(0.155) 1.464(0.146) 5.272(2.433e-07) -4.304(2.323e-05) -3.926(1.101e-04) -1.371(0.172) 

t, t value determined using the Student t test; p, p value determined using the Student t test. 
 

We then determined the risk-stratification value of these 

prognosis-related DEIRGs and identified 11 prognostic 

IRGs as potential prognostic indicators in clinical 

practice. Furthermore, our results revealed that  

the prognostic model was independent of clinical 

characteristics. Moreover, the signature illustrated  

the ability to discriminate the overall survival and 

cancer-specific survival in both the GSE13507 and 

GSE32894 datasets. 

 

Our IRG-based signature highlighted eleven IRGs, 

ADIPOQ, PPY, NAMPT, TAP1, AHNAK, OLR1, 
 

 
 

Figure 10. Relationships between prognostic-model-associated IRGs and clinical variables in the TCGA cohort. (A) PPY 
expression and pathological grade. (B) NAMPT expression and pathological grade. (C) ADIPOQ expression and pathological grade.  
(D) IL34 expression and pathological grade. (E) RAC3 expression and pathological grade. (F) TAP1 expression and pathological grade. (G) 
AHNAK expression and pathological grade. (H) PDGFRA expression and pathological grade. (I) Risk score and pathological grade. (J) AHNAK 
expression and clinical stage. (K) PDGFRA expression and clinical stage; (L) Risk score and clinical stage. (M) AHNAK expression and tumor 
stage. (N) PDGFRA expression and tumor stage. (O) Risk score and tumor stage. 
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Figure 11. Summary of the 22 immune cell subtypes estimated by the CIBERSORT algorithm. The bar charts exhibit the cell 
proportions of BLCA patients and various colors represent the 22 immune cells with annotations below the legend. 
 

 
 

Figure 12. The correlation between the risk score and immune cell infiltration in the cohort. (A) B cells memory. (B) Dendritic 
cells activated. (C) Dendritic cells resting. (D) Eosinophils. (E) Macrophages M0. (F) Macrophages M1. (G) Macrophage M2. (H) Mast cell 
activated. (I) Mast cell resting. (J) Monocytes. (K) Neutrophils. (L) NK cells activated. (M) NK cells resting. (N) Plasma cells. (O) T cells CD4 
memory activated. (P) T cells CD4 memory resting. (Q) T cells CD4 naïve. (R) T cells CD8. (S) T cells follicular helper. (T) T cells gamma delta. 
(U) T cells regulatory (Tregs). 
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PDGFRA, IL34, MMP9, RAC3, and SH3BP2. Several 

studies showed that upregulation of MMP9 could 

promote the proliferation and invasion of bladder cancer 

[25, 26]. ADIPOQ has been proposed to be a mediator of 

obesity-associated metabolism and to have direct effects 

on the development and progression of various types of 

malignancies [27, 28]. Recent studies have identified 

NAMPT as a potential bladder cancer biomarker [29]. 

The subcellular localization of AHNAK exhibited 

different between BLCA tissues and normal tissues [30]. 

LOX-1 was upregulated in 57% of bladder cancer cells, 

and was associated with tumor invasion and metastasis 

[31, 32]. Furthermore, expression of PDGFRA has been 

reported in BLCA specimens [33, 34]. Moreover, 

upregulation of RAC3 in bladder cancer predicted an 

adverse clinical outcome and increased tumor immune 

response [35, 36]. 

 

Gene functional annotation indicated that our IRGs 

were involved in cell migration, cell proliferation, 

cytokine interactions, and chemokine pathways. 

Cytokines and chemokines, the gene products of 

transcription factors, played important roles in BLCA 

progression, and metastasis [37–39]. In addition, a PPI 

network was conducted to elucidate the regulatory 

mechanisms influence on the IRGs at the protein level. 

MMP9, NAMPT, CXCL12, ADIPOQ, CXCL10, TAP1, 

TAP2, and STAT1 figured prominently in the PPI 

network. Functional annotation of the core genes 

derived from the PPI network also showed these hub 

genes were mainly enriched in sprouting angiogenesis, 

positive regulation of leukocyte chemotaxis, and 

regulation of smooth muscle cell proliferation. 

 

Our results showed that after adjusting other clinical 

characteristics including age, clinical stage, T and M, 

the risk score could be used as an independent predictor. 

Multivariate analysis revealed that the risk score was 

independently associated with the overall survival in the 

cohort with a considerable hazard ratio. To determine 

the significance of the predictive values of the DEIRGs, 

we evaluated the correlations between the signa- 

tures and the clinicopathological factors age, sex, 

pathological grade, clinical stage, and tumor stage. We 

found that the levels of PPY, NAMPT, ADIPOQ, IL34, 

TAP1, RAC3, PDGFRA and AHNAK, combined  

with the risk scores, positively correlated with the 

progression of BLCA. Thus, combining this signature 

with other clinical factors may serve as a tool for 

predicting the prognosis of BLCA patients. 

 

Accumulating evidence indicates that immune 

infiltration plays vital roles in the prognosis of BLCA 

patients [40, 41]. Immune infiltration is an important 

determinant of treatment response and prognosis in 

BLCA patients, which is further supported by the 

findings of our present statistical analyses showing that 

the risk score positively correlated with the infiltration 

of tumors with CD8+ T cells, M2 macrophages, and 

neutrophils. The results establish the reliability of  

our signature to predict the prognoses of patients  

with BLCA. Limitations of our study include the 

intrinsically limited information acquired from 

bioinformatics analysis of transcriptome data, which 

may not reflect the entirety of the pathologically 

significant aspects of the antitumor immune response. 

In addition, as a retrospective study, our results still 

have a bias be-cause of their heterogeneity, and so 

further preclinical and clinical investigations are 

required to identify the specific mechanisms of the 

effects of IRGs on BLCA. 

 

In conclusion, we identified and validated an 11-IRG-

based risk signature. The IRGs were mainly involved  

in tumor-related functions and pathways. Our immune-

genomic signature may be a reliable tool to evaluate 

the prognosis of BLCA patients and help guide 

individualized immunotherapies. Nonetheless, further 

experiments are required to verify our present 

findings. 

 

MATERIALS AND METHODS 
 

Clinical samples and data collection 
 

Clinical and transcriptome RNA-seq data of 433 BLCA 

samples, including 414 BLCA patients and 19 matched 

normal samples, downloaded from the TCGA cohort. 

IRGs downloaded from the ImmPort portal database 

included 2498 IRGs [42]. ImmPort is a curated dataset to 

promote the reuse of immunological research data 

generated by intramural and extramural programs of the 

United States National Institutes of Health, and privately 

funded investigators [43]. 

 

Analysis of DEGs 
 

DEGs were identified via the effective and convenient 

limma R package. We analyzed differential gene 

expression of all transcriptional data and IRGs using the 

cut-off values as follows: FDR < 0.05 and log2 |FC| > 1. 

The pheatmap R software package was used to display 

the DEGs and DEIRGs. Subsequently, prognosis-

associated DEIRGs were analyzed using univariate and 

multivariate Cox analysis. 

 

Functional annotations and PPI network 
 

GO enrichment analysis and KEGG pathway analysis 

were conducted with the clusterProfiler package [44]. In 

addition, we used STRING database to predict the PPI 

network of the prognosis-associated DEIRGs and to 
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evaluate the degree of interactions between proteins 

[39]. Cytoscape (version 3.5) was utilized to visualize 

the interactive network data [45]. Cytoscape plug-ins 

including MCODE, ClueGO, and CluePedia were used 

as previously described [46–48]. Specifically, MCODE 

was used to screen the most significant modules of hub 

genes from the PPI networks with selection criteria as 

follows: node score cut-off = 0.2, degree cut-off ≥ 2, 

and k-score = 2. The GO and KEGG pathway analyses 

of the selected hub genes were visualized utilizing 

ClueGO and CluePedia plug-ins. 

 

Construction of a regulatory network linking TFs and 

IRGs 
 

Cistrome Cancer is a comprehensive resource for 

predicting targets of TFs (http://cistrome.org/ 

CistromeCancer/). Target prediction is based on 

integration of correlations of expression levels among 

samples in each cancer included in TCGA, as well as 

the genomic TF binding patterns included in the ChIP-

seq data. The Cistrome Cancer database contains a list 

of 318 TFs [49]. We analyzed differentially expressed 

TFs and constructed a regulatory network linking TFs 

and IRGs. 

 

Construction of a prognostic risk model 
 

Gene-weighted values were calculated using the 

regression coefficients of the multivariate Cox 

regression model. The equation used in this analysis 

was as follows: 

 

1

Risk score  Coe (gene ) Exp (gene )

n

i

i i



   

 
“Coe (gene i)” represents the regression coefficient of 

gene i estimated from the multivariate Cox analysis, and 

“Exp (gene i)” is the expression of gene i. The prognostic 

risk model was used to calculate the risk score of each 

patient. Furthermore, KM curve was performed using the 

“survival” and “survminer” R packages. 

 

External validation of the proposed signature in the 

GSE13507 and GSE32894 cohorts 

 

We utilized the same risk score formula and cut-off 

value in two external validation cohorts, GSE13507 and 

GSE32894, to validate the IRG-based prognostic risk 

model. The prognostic model was presented in each 

dataset that contained the differentially expressed genes, 

a risk plot, and the distribution of risk score. 

Additionally, we evaluated the area under the ROC 

curve with the “survival ROC” package to assess the 

survival differences in the external datasets. 

Validation of IRGs in the risk model by western blot 
 

Bladder cancer tissues and normal adjacent tissues were 

obtained from six patients admitted to Shandong 

Provincial Hospital Affiliated to Shandong First 

Medical University. T24 cells were cultured in RPMI 

1640, and SV-HUC-1 cells were maintained in F-12K 

medium. The medium was refreshed every other day. 

Bladder tissues and urothelial cell lines were lysed with 

RIPA buffer. 25 µg of protein quantified by BCA kit in 

the samples were subjected to 6–10% SDS-PAGE and 

transferred to a polyvinylidene fluoride membrane. The 

membrane was blocked with 5% skim milk and 

incubated with primary antibodies at 4° C overnight 

(Supplementary Table 3). After hybridization of 

secondary antibodies, the protein expression level was 

detected by the chemiluminescence method (Amersham 

Imager 600, GE, USA). 

 

Inference of immune cell infiltration in BLCA 

tissues 
 

Here we estimated immune infiltration between high 

and low risk score groups with the LM22 (22 types of 

immune cells) signature file via the CIBERSORT 

algorithm. After 1000 permutations of CIBERSORT, 

the distribution of 22 subtypes of immune cells in each 

patient was exhibited, along with the p-values, 

correlation coefficients, and root mean squared error 

(RMSE), which evaluates the accuracy of the results of 

each sample. 

 

Statistical analysis 
 

Statistical analysis was conducted using R software, 

and p < 0.05 indicated a significant difference. To 

evaluate the accuracy of the prognostic risk model, the 

“survivalROC” package was used to calculate the 

AUC. The t test was used to evaluate continuous 

variables, and the χ2 test was used to compare 

categorical variables. Multivariate analysis was 

performed to determine the independent prognostic 

significance of the immune-related risk signature. The 

relationships between the risk score and the clinical 

characteristics were evaluated using the “beeswarm” 

package. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Heatmap of differentially expressed genes and immune-related genes. (A) Heatmap of differentially 
expressed genes between bladder cancer (BLCA) and non-tumor tissues. (B) Heatmap of differentially expressed immune-related genes 
between bladder cancer (BLCA) and non-tumor tissues. The purple to red spectrum indicates low to high gene expression. 
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Supplementary Figure 2. Gene functional enrichment of differentially expressed genes. (A) The top ten most significant biological 
processes in the gene ontology. (B) The top ten most significant cellular components in the gene ontology. (C) The top ten most significant 
molecular functions in the gene ontology. (D) The top ten most significant KEGG pathways. 
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Supplementary Figure 3. Heatmap of differentially expressed TFs. Heatmap of differentially expressed TFs, the purple to red 
spectrum indicates low to high TF expression. 
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Supplementary Tables 
 

Supplementary Table 1. Gene ontology analysis of differentially expressed immune-related 
genes. 

GO ID Description p.adjust Count B
io

lo
g
ical  p

ro
cess 

GO:0032103 positive regulation of response to external stimulus 2.51E-25 41 

GO:0050920 regulation of chemotaxis 1.58E-24 35 

GO:0060326 cell chemotaxis 3.91E-20 35 

GO:0030335 positive regulation of cell migration 7.70E-20 44 

GO:0050900 leukocyte migration 1.07E-18 42 

GO:0050921 positive regulation of chemotaxis 1.79E-18 25 

GO:0048660 regulation of smooth muscle cell proliferation 1.79E-17 25 

GO:0048659 smooth muscle cell proliferation 2.67E-17 25 

GO:0030595 leukocyte chemotaxis 4.67E-17 28 

GO:0033002 muscle cell proliferation 1.61E-15 27 C
ellu

lar  co
m

p
o

n
en

t 

GO:0043235 receptor complex 1.01E-07 24 

GO:0009897 external side of plasma membrane 8.15E-04 15 

GO:0031012 extracellular matrix 8.15E-04 20 

GO:0005788 endoplasmic reticulum lumen 8.15E-04 15 

GO:0060205 cytoplasmic vesicle lumen 8.15E-04 16 

GO:0031983 vesicle lumen 8.15E-04 16 

GO:0034774 secretory granule lumen 14.3E-03 15 

GO:0002116 semaphorin receptor complex 1.23E-02 3 

GO:0030670 phagocytic vesicle membrane 1.23E-02 6 

GO:0005884 actin filament 1.23E-02 7 M
o

lecu
lar  fu

n
ctio

n
 

GO:0048018 receptor ligand activity 1.51E-74 90 

GO:0008083 growth factor activity 2.53E-34 39 

GO:0005125 cytokine activity 6.50E-33 42 

GO:0005126 cytokine receptor binding 1.14E-28 42 

GO:0005179 hormone activity 7.88E-19 24 

GO:0001664 G-protein coupled receptor binding 2.52E-15 29 

GO:0008009 chemokine activity 3.33E-13 14 

GO:0042379 chemokine receptor binding 1.28E-12 15 

GO:0070851 growth factor receptor binding 3.03E-12 19 

GO:0005539 glycosaminoglycan binding 3.33E-12 23 

Blue, green and red bars represent biological process, cellular component and molecular function, 
respectively. 
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Supplementary Table 2. Gene ontology analysis of prognosis-associated DEIRGs. 

GO ID Description p.adjust Count B
io

lo
g
ical  p

ro
cess 

GO:0048660 regulation of smooth muscle cell proliferation 3.64E-12 12 

GO:0048659 smooth muscle cell proliferation 3.64E-12 12 

GO:0033002 muscle cell proliferation 2.06E-10 12 

GO:0044706 multi-multicellular organism process 6.25E-09 11 

GO:0007565 female pregnancy 2.69E-08 10 

GO:0030335 positive regulation of cell migration 1.24E-07 13 

GO:0048661 positive regulation of smooth muscle cell proliferation 9.48E-07 7 

GO:0006874 cellular calcium ion homeostasis 3.24E-06 11 

GO:0055074 calcium ion homeostasis 3.76E-06 11 

GO:0002685 regulation of leukocyte migration 4.66E-06 8 C
ellu

lar  co
m

p
o

n
en

t 

GO:0009897 external side of plasma membrane 1.19E-02 6 

GO:0031012 extracellular matrix 1.40E-02 7 

GO:0031093 platelet alpha granule lumen 2.11E-02 3 

GO:0033116 
Endoplasmic reticulum-Golgi intermediate 

compartment  membrane 
2.11E-02 3 

GO:0030670 phagocytic vesicle membrane 2.11E-02 3 

GO:0043034 costamere 2.12E-02 2 

GO:0031091 platelet alpha granule 2.50E-02 3 

GO:0060205 cytoplasmic vesicle lumen 2.50E-02 5 

GO:0031983 vesicle lumen 2.50E-02 5 

GO:0043235 receptor complex 3.16E-02 5 M
o

lecu
lar  fu

n
ctio

n
 

GO:0048018 receptor ligand activity 1.84E-11 16 

GO:0008083 growth factor activity 1.62E-06 8 

GO:0005125 cytokine activity 1.73E-04 7 

GO:0005126 cytokine receptor binding 6.01E-04 7 

GO:0005178 integrin binding 6.53E-04 5 

GO:0050431 transforming growth factor beta binding 6.53E-04 3 

GO:0005179 hormone activity 6.53E-04 5 

GO:0005539 glycosaminoglycan binding 7.57E-04 6 

GO:0019838 growth factor binding 8.01E-04 5 

GO:0008201 heparin binding 1.64E-03 5 

Blue, green and red bars represent biological process, cellular component and molecular function, respectively. 
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Supplementary Table 3. Antibody information. 

Antibody Source Catalog number Dilution ratio 

ADIPOQ Abcam ab133347 1:5000 

PPY Sigma ZRB939 1:1000 

NAMPT Abcam ab236874 1:1000 

TAP1 Cell Signaling Technology 12341S 1:1000 

AHNAK Abcam ab168104 1:1000 

OLR1 Abcam ab214427 1:1000 

PDGFRA Abcam ab203491 1:1000 

IL34 Abcam ab101443 1:1000 

MMP9 Abcam ab76003 1:5000 

RAC3 Abcam ab129062 1:5000 

SH3BP2 Absin abs132638 1:1000 

GAPDH Abcam ab9485 1:2500 

 


