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INTRODUCTION 
 

Thyroid cancer (TC) is one of the most commonly 

diagnosed cancers, and approximately 567,000 cases 

were reported worldwide in 2018 [1]. Despite a 

relatively low mortality rate, TC persistence and 

recurrence are still high [2]. Multiple risk factors may 

lead to TC, including smoking, obesity, radiation 

exposure, and overweight [3]. A variety of epigenetic 

and genetic alterations in follicular epithelial cells are 

also considered to be significant for TC initiation and 

progression [4, 5]. Imaging modalities, such as 

ultrasound examination, and some tumors markers are 

usually utilized for detection, while fine-needle 

aspiration (FNA) is the standard method used for TC 

biopsy. However, traditional methods are limited by 

their subjectivity, low sensitivity, and specificity. 

Therefore, reliable biomarkers are urgently needed for 

the accurate monitoring and prognosis assessment for 

malignant thyroid nodules [6].  
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ABSTRACT 
 

Thyroid cancer (TC) is known with a high rate of persistence and recurrence. We aimed to develop a prognostic 
signature to monitor and assess the survival of TC patients. mRNA expression and methylation data were 
downloaded from the TCGA database. Then, R package methylmix was applied to construct a mixed model was 
used to identify methylation-driven genes (MDGs) according to the methylation levels. Furthermore, an MDGs 
based prognostic signature and predictive nomogram were constructed according to the analysis of univariate 
and multivariate Cox regression. Totally 62 methylation-driven genes that were mainly enriched in substrate-
dependent cell migration, cellular response to mechanical stimulus, et al. were found in TC tissues. aldolase C 
(AldoC), C14orf62, dishevelled 1 (DVL1), and protein tyrosine phosphatase receptor type C (PTPRC) were 
identified to be significantly related to patients' survival, and may serve as independent prognostic biomarkers 
for TC. Additionally, the prognostic methylation signature and a novel prognostic, predictive nomogram was 
established based on the methylation level of 4 MDGs. In this study, we developed a 4-MDGs based prognostic 
model, which might be the potential predictors for the survival rate of TC patients, and this findings might 
provide a novel sight for accurate monitoring and prognosis assessment. 
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Some studies have reported the prognostic signatures of 

thyroid cancer using different kinds of methods. Based 

on survival curves, receiver-operator characteristic 

curves, risk score, survival status, and independent 

prognostic analysis, a novel 5 immune-associated genes 

signature for predicting the prognosis of patients with 

thyroid cancer was established [7]. A four miRNA 

signature was identified to predict overall survival of 

Papillary thyroid cancer patients [8]. Glucose 

metabolism features of thyroid cancer were believed to 

be the biological progression markers, and might 

provide clinical implications for risk stratification [9]. 

 

Epigenetic and genetic alterations are significant for the 

process of cancer development and progression [10]. 

Some genetic changes that affect phosphatidylinositol 

3-kinase/AKT pathways and mitogen-activated protein 

kinase in TC have been reported. Additionally [11, 12], 

an increasing number of studies stated that epigenetic 

modifications, especially DNA methylation, are found 

in TC [13, 14]. DNA methylation is a type of the well-

characterized epigenetic process. Methylation 

alterations of the promoter region, which mainly occur 

in cytosines that precede a guanine (CpG), play crucial 

roles, including the maintenance of chromosomal 

stability and regulation of gene expression and DNA 

recombination, in the biological process [15]. Also, The 

aberrant methylation of DNA sequences, including 

hypomethylation of oncogenes and hypermethylation of 

tumor-suppressor genes, have been found to act as 

significant events in thyroid tumorigenesis [16]. 

Identification of DNA methylation alterations can help 

clarify the redundancy and instability of the TC genome 

and provide risk prediction and potential therapeutic 

targets. Thus, studies on DNA methylation may provide 

novel insight for finding effective biomarkers for 

monitoring and prognostic assessment of TC [17].  

 

In recent years, growing evidence has suggested that the 

development and progression of TC is a multi-gene, 

multi-factor, and multi-stage process, in which aberrant 

DNA methylation is one of its crucial mechanisms [18, 

19]. In order to further understand the potential 

mechanism of DNA methylation alterations in TC, 

various experiments and bioinformatics analyses were 

performed. The Cancer Genome Atlas (TCGA) 

database provides open access to cancer epigenetic and 

genetic profiles for researchers around the world. Thus, 

the relevant genomic changes and data could be applied 

for exploring alterations caused by DNA methylation. 

The Methylmix is an algorithm that was designed for an 

in-depth analysis of DNA methylation in 2015 and was 

improved in 2018 [20, 21]. Compared with the 

traditional methods, the Methylmix combined DNA 

methylation data and transcriptome data, which 

provides readily available, accurate, and reliable results. 

In this study, the transcriptome, methylation, and 

clinical outcome data of TC patients were downloaded 

from the TCGA database. Then, the Methylmix was 

used to identify cancer methylation status and analyze 

the methylation-driven genes (MDGs). After a series of 

comprehensive validation experiments and 

bioinformatical analysis, a 4-methylation gene 

prognostic signature was found to effectively predict the 

prognosis of TC, which provides a novel insight for TC 

evaluation and prognosis monitoring. 

 

RESULTS 
 

Identification of MDGs in TC 
 

The differentially methylated genes (DMGs) and 

differentially expressed genes (DEGs) were identified 

by using R package Limma and edge, respectively. The 

p-value <0.05, |logFC≥1| were used as the screening 

condition. Totally 486 genes were hypomethylated, and 

397 genes were hypermethylated, while 1679 genes 

were downregulated, and 1751 genes were upregulated. 

Based on the R package methylmix, the DMGs and 

DEGs were reorganized as a normal methylated set, 

methylated cancer set, and gene expression cancer set. 

A p-value<0.05 and |cor|>0.3 were used as a standard 

criterion for the screening of the MDGs. Through a 

mixture model and Wilcoxon rank test, 62 MDGs were 

found. A heatmap was generated according to the 

methylation level of the 62 MDGs, with the R package 

pheatmap (Figure 1A). Also, the plots of correlation and 

the distribution map of the methylation degree were 

shown in Figure 1B, 1C. Representative pictures were 

selected in Figure 1, and the full results for MDGs were 

available in Table 1.  

 

Functional enrichment analysis of the MDGs 
 

We conducted functional enrichment and pathway 

analysis using Metascape online on the base of 62 

MDGs previously obtained. As shown in Figure 2A, the 

methylation-driven genes were mainly enriched in 

substrate-dependent cell migration, cellular response to 

mechanical stimulus, cell-substrate adhesion, cellular 

response to tumor necrosis factor, dendritic cell 

differentiation. Besides, the methylation gene set was 

mainly enriched in the regulation of JAK-STAT, 

activation of MAPK activity pathways (Figure 2B). 

Usually, hypermethylation inhibits transcription, while 

hypomethylation increased the expression of oncogenes. 

The results of the functional analysis revealed the 

potential mechanisms of MDGs. 

 

Furthermore, to investigate the hub genes which play 

significant roles in TC, we constructed a PPI network 

and MCODE to identify the critical units. As shown in 
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Figure 2C, module 1 included 11 edges and 12 nodes 

and involved ALDOC, PTPRC, FAS, etc. Meanwhile, 

module 2 included 1 edge and 2 nodes, and involved 

CLDN1, TACSTD2. 

 

Construction and validation of the MDGs based on 

predictive model 
 

Normalized methylation data with complete clinical 

information were obtained from the TCGA database. 

To enhance the reliability and accuracy of the 

predictive model based on MDGs, we treated 82 

patients from our center as a validation set. Univariate 

cox regression analysis was first performed to identify 

the genes that were significantly associated with the 

prognosis from the 62 MDGs previously obtained. A 

total of 4 MDGs were then found to be prognosis-

related according to their methylation β value (Figure 

3A). Subsequently, Multivariate Cox regression 

analysis was conducted, and 4 MDGs (ALDOC, 

C14orf62, DVL1, PTPRC) were eventually selected to 

construct a predictive model. A risk score of each 

patient was generated as following: (3.23)× β value 

(ALDOC) + (2.98)× β value (C14orf62)+ (-8.96)× β 

value (DVL1) + (18.23)× β value (PTPRC). Then, the 

patients were divided into a high-risk group (n= 253) 

and a low-risk group (n= 254) according to the risk 

scores. The median survival time of patients with high 

risk was significantly higher than that of the patients 

with low risk (Figure 3B). Subsequently, the ROC 

curve was performed to assess the efficiency prognosis 

prediction of this model, and we found the AUC of the 

ROC curve of the predictive model exceeded that of 

the individual genes (Figure 3C).  

 

Furthermore, to evaluate the reliability and accuracy 

of the predictive model, we validated the power of the 

model in our own center. First, qMSP was performed 

to verify the expression of differentially methylated 

genes. As shown in Figure 4A, 4B, ALDOC, 

C14orf62, DVL1, PTPRC were hypermethylated, and 

their corresponding protein levels were decreased, 

which was consistent with the results from the TCGA 

cohort. Although there was no statistically significant 

difference between the methylation of C14orf62 and 

overall patient survival, the 4 MDGs joint model 

could successfully divide the TC patients into long-

term OS group and short-term OS group, which 

indicated the effectiveness of the predictive model 

constructed based on 4 MDGs (Figure 4C, 4D). The 

AUC of the ROC curves of this model was 0.81 (5-

year OS) (Figure 4E). Besides, as shown in Figure 5, 

we visualized the distribution of the 4 MDGs both on 

the training set and the validation set according to 

their risk scores by using R package ggrisk, 

suggesting that the higher the riskscore, the worse the 

prognosis. Also, the validation cohort was consistent 

with the TCGA cohort. 

 

 
 

Figure 1. Overview of methylation driven genes in TC. (A) Heatmap of 62 methylation driven genes in TC. (B) Representative 
correlation plots of the MDGs, reflecting the correlation between expression and methylation levels of genes. (C) Representative distribution 
plots of MDGs, reflecting the distribution of methylation values. 
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Table 1. Methylation-driven genes in thyroid cancer. 

Gene symbol LogFC P value Adj.P value Correlation 

TNFRSF12A -1.293 7.15E-30 6.37E-28 -0.345880771 

CLDN1 -0.39085 6.72E-28 5.98E-26 -0.646378569 

RAET1E -0.40497 1.25E-26 1.11E-24 -0.595721852 

RDH5 -1.12623 1.98E-24 1.76E-22 -0.634947221 

ITGA2 -0.31327 2.69E-23 2.40E-21 -0.436472079 

PGA5 0.325305 6.34E-23 5.64E-21 -0.462713424 

AGR2 -0.24707 2.93E-22 2.61E-20 -0.423001137 

LGALS1 -0.95989 1.24E-21 1.11E-19 -0.365578312 

TNFRSF10B -0.18754 2.49E-21 2.22E-19 -0.428823826 

CTSH -0.37149 2.66E-21 2.37E-19 -0.320484242 

DUSP5 -0.56389 1.07E-20 9.52E-19 -0.552547133 

C15orf62 -0.72257 2.24E-20 2.00E-18 -0.337596483 

ODAM 0.289174 5.35E-20 4.76E-18 -0.477121602 

NPC2 -0.38227 5.55E-20 4.94E-18 -0.498572189 

CSF2 -0.33614 6.66E-20 5.93E-18 -0.479273032 

DCSTAMP -0.24137 6.31E-19 5.62E-17 -0.721570243 

HSD17B14 0.35519 8.08E-19 7.19E-17 -0.354144306 

SLPI -0.45521 9.77E-19 8.69E-17 -0.316453977 

SRRD 0.315083 1.05E-18 9.39E-17 -0.458191351 

RNF115 -0.23051 3.86E-18 3.44E-16 -0.412335706 

TNFRSF1A -0.25335 4.36E-18 3.88E-16 -0.644852304 

MYO1G -0.27485 1.12E-17 1.00E-15 -0.455049343 

CTXN1 -0.31385 2.58E-17 2.30E-15 -0.554055233 

CDSN -0.21699 4.65E-16 4.14E-14 -0.487963678 

REC8 0.357252 4.75E-16 4.23E-14 -0.422275448 

PLAU -0.07261 1.65E-15 1.47E-13 -0.424509492 

S100A16 -0.27573 2.95E-15 2.63E-13 -0.483665008 

RIN1 -0.2118 2.95E-13 2.63E-11 -0.566552552 

CLCF1 -0.52872 4.17E-13 3.71E-11 -0.450370881 

CDC42SE1 -0.16058 3.53E-12 3.14E-10 -0.330411639 

IP6K3 0.057686 3.80E-12 3.38E-10 -0.439770241 

FAS -0.20232 9.38E-12 8.35E-10 -0.514968025 

DNAJB5 -0.30803 2.44E-11 2.18E-09 -0.44279819 

TMEM100 -0.23471 3.97E-11 3.53E-09 -0.520397785 

AHR -0.09629 4.18E-11 3.72E-09 -0.424275388 

SLC1A5 -0.26678 5.12E-11 4.56E-09 -0.548239819 

ZNF100 -0.11242 7.13E-11 6.35E-09 -0.319994708 

FN1 -0.06458 2.84E-10 2.53E-08 -0.538405427 

STK17B -0.23421 5.21E-10 4.64E-08 -0.384776697 

PLA2R1 0.186105 6.66E-10 5.93E-08 -0.400548646 

ITPRIPL1 0.178554 1.35E-09 1.20E-07 -0.411437091 

ALDOC 0.219977 2.18E-09 1.94E-07 -0.568851978 

SGCB -0.0891 1.57E-08 1.40E-06 -0.336380891 

B3GALT2 0.084146 2.05E-08 1.82E-06 -0.618203613 

CCDC8 0.157095 1.04E-07 9.22E-06 -0.615784507 

TRPV2 -0.16571 1.14E-07 1.01E-05 -0.337809304 

SHARPIN -0.07134 4.31E-07 3.83E-05 -0.392771059 

BIRC7 -0.05422 5.21E-07 4.64E-05 -0.527657422 

NKAPL 0.182314 8.63E-07 7.68E-05 -0.458131626 

NFE2L3 -0.18721 9.14E-07 8.13E-05 -0.705485784 

TACSTD2 -0.38532 1.28E-06 0.000114 -0.724847508 
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SLC43A3 0.371821 1.36E-06 0.000121 -0.623501436 

DUOXA2 0.490037 1.73E-06 0.000154 -0.384749995 

DVL1 -0.01633 1.73E-06 0.000154 -0.349618498 

SMR3A 0.039536 1.09E-05 0.000967 -0.373153773 

CASP1 -0.1587 1.45E-05 0.001289 -0.614554241 

GTSF1 0.026805 2.72E-05 0.002421 -0.467370091 

GRAMD1A -0.361 6.69E-05 0.005956 -0.435419813 

NOSTRIN -0.07267 0.000156 0.013913 -0.522905715 

PTPRC 0.046445 0.000304 0.027035 -0.533390616 

DAPP1 -0.04872 0.000378 0.033663 -0.769055711 

TRIM61 -0.02568 0.000472 0.041989 -0.542713508 

 

 

 
 

Figure 2. Functional analysis of 62 MDGs based on the metascape. (A) Bar graph of enriched terms across input gene lists, colored by 
p-values. (B) The network of enriched terms colored by cluster-ID, where nodes that the same cluster-ID are typically close to each other. (C) 
Protein-protein interaction network identified in the MDGs. 



 

www.aging-us.com 20169 AGING 

Construction and validation of the nomogram 
 

To develop an effective method that could help predict 

an individual's prognostic risk of TC, we developed a 

nomogram based on the panel of these 4MDGs in the 

training set and validation set (Figure 6A, 6C). 

Calibration plots for predicting the 5-year survival rate 

showed that the nomograms performed well as 

compared with an ideal model both in the training set 

and validation set (Figure 6B, 6D). 

 

Knockdown of ALDOC, C14orf62, DVL1, and 

PTPRC significantly promoted the the proliferation, 

migration, and invasion of TC cells. 
 

To investigate the regulation of ALDOC, C14orf62, 

DVL1, and PTPRC on the proliferation, migration, and 

invasion of TC cells, the knockdown vectors of 

ALDOC, C14orf62, DVL1, and PTPRC were 

constructed. We found that the cell proliferation ability 

was remarkably increased after treatment with sh-

ALDOC, sh-C14orf62, sh-DVL1, and sh-PTPRC 

(Figure 7A). In addition, sh-ALDOC, sh-C14orf62, sh-

DVL1, and sh-PTPRC significantly promoted the cell 

invasion (Figure 7B, 7C) and migration ability  

(Figure 7D, 7E). 

 

DISCUSSION 
 

Thyroid cancer (TC) is one of the most commonly 

diagnosed cancers with a high rate of persistence and 

recurrence, and its incidence continues to be on the rise 

[22]. A variety of factors, including smoking, obesity, 

and radiation exposure, are considered as risk factors in

 

 
 

Figure 3. Construction of MDGs based prognostic signature. (A) Kaplan-Meier plots of ALDOC, C14orf62, DVL1, PTPRC. (B) The Kaplan-
Meier plot of the prognostic signature based on the median of the risk score. (C) The ROC curve for assessing the prediction value of the 
signature. 
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TC. Despite the use of standard treatment methods, such 

as surgery or radioactive iodine, the prognosis of TC is 

still not completely elucidated. The mechanisms of TC 

remain unclear. Therefore, in-depth studies that screen 

for effective biomarkers are urgently needed for the 

early detection and treatment of TC. Recently, many 

studies have indicated that the over-expression of genes 

caused by hypomethylation and the low-expression of 

genes caused by hypermethylation play significant roles 

in the generation and progression of various tumors 

[23–25]. Aberrantly methylated genes may lead to gene 

expression disorders, transcriptional disorders, and 

abnormal cell differentiation [26, 27]. For example, 

Sugimoto et al. identified that the aberrant methylated 

GRWD1 gene may serve as a protective factor in cancer 

development. GRWD1 is an oncogene that can promote 

cell proliferation, and aberrant methylated GRWD1 

inhibits its expression [28]. The aberrant methylation of 

other genes, such as FHIT [29], HOXA9 [30], NNK 

[31], and MSH3 [32] have also been found to be 

associated with cancer progression. With the use of 

databases such as GEO and TCGA, some information 

related to epigenetic and genetics can be studied. For 

instance, Lu and his colleagues investigated

 

 
 

Figure 4. Validation of constructed prognostic signature. (A) The methylation level was detected by qMSP. (B) The protein level was 
detected by IHC. (C) The Kaplan-Meier plots of the ALDOC, C14orf62, PTPRC. (D) The Kaplan-Meier plot of the prognostic signature based on 
the median of the risk score in the validation set. (E) The ROC curve for assessing the prediction value of the signature in the validation set. 
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methylation-driven genes by using the R package 

methylmix with data from TCGA and found potential 

prognostic biomarkers and aberrantly methylated sites 

associated with patient survival [33]. Also, Adib et al. 

used the framework to integrate multiple-cohort to 

identify methylation-driven subnetworks [34]. 

Therefore, the intersection between experiments and 

bioinformatics analysis is suitable for the screening of 

potential biomarkers for tumor patients. 

 

In this study, in order to identify the MDGs in thyroid 

cancer, we used the R package methylmix to construct a 

mixed model to study the methylation levels of the 

genes. For this step, normalized methylation and gene 

expression data were used as the input matrix. Then, the 

62 MDGs were found based on gene expression and 

corresponding methylation levels, while the correlation 

test was also performed using the Methylmix. 

Subsequently, functional analysis was used to study the 

potential mechanisms of these 62 MDGs. Among them, 

the results revealed that the MDGs were mainly 

enriched in substrate-dependent cell migration, cellular 

response to mechanical stimulus, cell-substrate 

adhesion, cellular response to tumor necrosis factor, 

dendritic cell differentiation. These findings not only 

suggest that aberrant methylation leads to cancer 

development, but also provides valuable information for 

understanding the mechanisms of TC development. 

Then, we turned our attention to the relationship 

between the 62 MDGs with prognosis. Clinical 

information was obtained through TCGA and was 

merged together with corresponding gene expression 

and methylation data. A set of 4-MDGs (ALDOC, 

C14orf62, DVL1, and PTPRC) based signature was 

constructed according to the univariate and multivariate 

COX regression analysis. It is noteworthy that although  

 

 
 

Figure 5. Visualization of the prognostic signature. (A) Visualization of the signature in the TCGA cohort. (B) Visualization of the 
signature in the validation cohort. 
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Figure 6. Construction and validation of nomogram. (A) The nomogram for predicting the survival with 3- and 5-year OS. (B) The 
calibration plot for validation of the model. (C) The nomogram for predicting the survival with 3- and 5-year OS in the validation set. (D) The 
calibration plot for validation of the model in the validation set. 

 

 
 

Figure 7. Influence of ALDOC, C14orf62, DVL1, and PTPRC on the proliferation, migration, and invasion of TC cells. (A) 
Influence of ALDOC, C14orf62, DVL1, and PTPRC on the proliferation of TC cells. (B) Influence of ALDOC, C14orf62, DVL1, and PTPRC on the 
invasion of TC cells (Scale bar=50 µm). (C) Quantitative analysis of the influence of ALDOC, C14orf62, DVL1, and PTPRC on the invasion of TC 
cells. (D) Influence of ALDOC, C14orf62, DVL1, and PTPRC on the migration of TC cells (Scale bar=500 µm). (E) Quantitative analysis of the 
influence of ALDOC, C14orf62, DVL1, and PTPRC on the migration of TC cells. 
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some of these genes were studied dysregulated in 

tumors, their methylation levels were rarely 

mentioned. For instance, ALDOC has been elucidated 

upregulated in gallbladder carcinoma (GBC) and 

reported to promote the growth of GBC by binding 

with MUC16 C-terminal [35]. ALDOC could directly 

activated transcription of the gene in melanoma cells 

[36]. EPB41 suppressed the Wnt/β-catenin signaling 

in non-small cell lung cancer by sponging ALDOC 

[37]. DVL1 might be involved in the early stages of 

astrocytoma malignancy [38]. Downregulated miR-

1247-5p associated with poor prognosis and facilitates 

tumor cell growth via DVL1 in breast cancer [39]. 

DVL1 localized to CYP19A1 and regulated aromatase 

mRNA in breast cancer cells [40]. In addition, DVL1 

was found to be associated with oxidative stress and 

may serve as an oxidation marker [41, 42]. However, 

there is no literature about the relationship between 

methylated DVL1 and TC. PTPRC, also known as 

CD45, GP180, has been extensively studied. As 

shown in Almanzar G et al. study, methylated PTPRC 

was participated in pro-inflammatory cytokine 

production, causing diffuse cutaneous systemic 

sclerosis [43]. Moreover, other studies have the 

aberrant methylation of PTPRC performing  

important functions in many biological processes [44, 

45]. The reliability and stability of the  

proposed model were tested by performing  

qMSP and IHC using patient tissues from  

our center. These 4 MDGs were hypermethylated in 

the TC group, which consistent with the  

TCGA cohort. Additionally, the predictive model was 

also validated in our external verification, which 

provided a novel method for TC prognostic 

assessment.  

 

Although the methylation signature was quite 

favorable, further reliability of the predictive model 

could be enhanced through the inclusion of more 

samples. The clinical risk factors, such as pathological 

subtype, gender, age, and staging, could be  

considered to integrate into the model. Further 

experiments and investigations are still needed to 

understand the mechanism of TC development  

and investigate effective approaches for the treatment 

of TC. 

 

CONCLUSIONS 
 

In this study, we developed a favorable prognostic 

signature for TC based on the DNA methylation level 

of genes. The 4-MDGs (ALDOC, C14orf62, DVL1, 

and PTPRC) based prognostic model might be used to 

predict the survival rate of TC patients. This study 

provides a novel sight for accurate monitoring and 

prognosis assessment. 

MATERIALS AND METHODS 
 

Human tissues 

 

The samples were collected from patients that underwent 

surgery at the department of thyroid surgery, the affiliated 

Hospital of Putian University. The study was approved by 

the Ethics Committee of Affiliated Hospital of Putian 

University (Approval number: 2019-036), and all patients 

or their guardians signed the consent form. Totally 82 TC 

tissues and adjacent normal tissues were used as a 

validation cohort. All tissues were immediately frozen in 

liquid nitrogen after the resection and stored at -80° C 

according to the manufacturer's protocol. The inclusion 

criteria is that the TC patients should be diagnosed via 

biopsy and histological testing. The exclusion criteria is 

that (1) Pregnant patients; (2) Significant 

immunodeficiency disease patients; (3) Patients with 

severe underlying diseases. 

 

DNA extraction, bisulfite modification and qMSP 

assay 

 

Genomic DNA was extracted from the 82 TC tissues 

and paired normal tissues by using the TIANamp 

Genomic DNA Kit (#DP304, TIANGEN, Beijing, 

China). EZ Methylation-Direct Kit (#D502, Zymo 

Research, Irvine, CA, USA) was used for bisulfite 

conversion of 1000 ng from each sample according to 

the requirement of the instruction. The purified DNA 

was stored at −20° C. The purity/quality of DNA was 

measured using OD 260 nm/280 nm method, and the 

was OD 260 nm/280 nm value was 1.96 detected using 

NanoDrop 8000 (Thermo, Waltham, Massachusetts, 

USA). 

 

qMSP was used to quantify methylation levels of the 

MDGs. The qMSP reaction consisted of a 1×ABI 

master mix containing Taq polymerase, dNTPs, 10 ng 

bisulfite-converted DNA, SYBR green dye and ROX as 

a passive dye (Thermo, Waltham, Massachusetts, USA) 

and 200 nM of specific primers. Specific primers for the 

promoter region of target genes were designed 

(Supplementary Table 1). Moreover, the ACTB gene, 

which did not contain any CpG dinucleotide, was used 

as a reference. The relative methylation level of each 

MDG was calculated using 2
(ΔCttarget- ΔCtreference)

. 

 

Data acquisition and pretreatment 
 

The normalized mRNA expression and methylation data 

of TC were downloaded from the TCGA database. All 

data were transferred from the Genome Data Commons 

(GDC, https://gdc.cancer.gov/). The data includes 

mRNA expression from 568 specimens, including 510 

tumor specimens and 58 normal specimens, as well as 

https://gdc.cancer.gov/
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methylation level from 571 specimens, including 515 

tumor specimens and 56 normal specimens. The R 

package edge was used to process the downloaded data 

to obtain levels of normalized expression and 

methylation. In addition, 507 samples with TC, which 

were accompanied by both clinical and expression 

information, were obtained from TCGA. The study was 

performed under the publication guidelines of TCGA 

and no restrictions were imposed in this research.  

 

Methylation-driven genes in TC 
 

The methylmix is an efficient and accurate algorithm 

used for automatically analyzing the aberrantly 

methylated genes and the correlation between gene 

expression and methylation level. Before the application 

of the methylmix, preparation of documents for three 

datasets: cancer methylation data (METCancer), normal 

methylation data (METnormal), and matched gene 

expression data (GECancer), were normalized and 

obtained from the previous step. The 3 mentioned files 

were served as input files and then submitted to the 

methylmix according to the requirements of the 

algorithm. Briefly, three main steps were carried out: 

The first step was to identify the methylation status of 

genes by using the β-mixed model, which was applied 

for avoiding overfitting according to the Bayesian 

information criterion. Second, the Wilcoxon rank-sum 

test was performed to compare the methylation state 

between tumor and normal tissues to identify the 

significant difference on the basis of a Q-value of 0.05, 

which was performed using P-value multiple testing 

correction with false discovery rate (FDR). Finally, 

linear regression was used to model the expression of 

genes in terms of their DNA methylation. Considering 

the numbers of samples, |cor|> 0.3 was used as a 

standard criterion.  

 

Functional and pathway analysis 
 

Furthermore, to explore the underlying mechanisms of 

these MDGs, gene ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analysis 

were performed via the Metascape database 

(http://metascape.org). Additionally, the protein-protein 

interaction (PPI) network was used to identify the 

densely connected regions further. Here, P-value < 0.05 

was used as a cutoff. 

 

Prognostic risk model construction 
 

To further search for MDGs with prognostic value, 

Cox regression analysis was applied to assess 

univariate and multivariate associations of risk factors 

with the development of TC. Univariate Cox 

regression analysis was first performed to identify 

survival-associated MDGs. MDGs with a p-value < 

0.05 were considered to be target genes. Multivariate 

Cox regression analysis was then applied to eliminate 

non-independent prognostic predictor genes. The 

prognostic model was established based on these 

target genes weighted by their estimated regression 

coefficients. Subsequently, Areceiver operating 

characteristic (ROC) was constructed to evaluate the 

predictive value of the prognostic model. The area 

under curve (AUC) was used to determine the 

efficiency of the model. The R package survival was 

applied in this section based on the Rstudio (Version 

1.3.1073). Here, the data obtained from TCGA was 

used as a training set, and the 82 samples from our 

center were employed as the validation set. 

 

Construction and validation of the nomogram 
 

The risk target genes obtained mentioned above were 

used for the nomogram model building to generate the 

predictive probability of 3-year and 5-year overall 

survival (OS). The C-index and calibration curves were 

applied to evaluate the internal validation of the 

nomogram. Besides, external validation of the 

predictive model was evaluated in a validation cohort. 

The R package rms was used to plot nomograms and 

calibration curvesbased on the Rstudio (Version 

1.3.1073). 

 

Immunohistochemistry validation 
 

Immunohistochemistry was performed according to 

the manufacturer's instruction. Sections were 

incubated with primary antibodies against aldolase C 

(AldoC), C14orf62, dishevelled 1 (DVL1), and 

protein tyrosine phosphatase receptor type C (PTPRC) 

overnight at 4° C. The image was captured at an 

appropriate magnification in the microscope (Nikon 

Microsystems, Shanghai, China). 

 

CCK8 assay 

 

Cells were plated into the 96-well plate. After treatment 

with sh-ALDOC, sh-C14orf62, sh-DVL1, and sh-

PTPRC for 48 h, the CCK-8 kit (#C0037, Beyotime, 

Beijing, China) was applied to detect cell proliferation. 

20 μL regent was added to each well, OD at 450 nm 

was measured after 1 h incubation. 

 

Wound healing method 
 

Cells were seeded into 6-well plates firstly. After 

reaching 70% confluence, 200 µL pipette tip was used 

to drawn a line in the middle plate. The medium was 

replaced with new medium. Then, the cells were 

incubated on the condition of 5% CO2 and 37° C. The 

http://metascape.org/
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cells were captured at 0 h and 48 h, and the relative 

migrated distance was analyzed. 

 

Transwell assay 
 

The transfected cells were seeded into the upper 

chamber of a Transwell plate. The lower chambers were 

supplemented with 15% FBS (Gibco, Langley, OK, 

USA). After incubation (48 h), the cells were fixed 

using 70% ethanol (30 min). After staining with 0.2% 

crystal violet (10 min), the cells in the lower chamber 

were counted using a microscope. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Supplementary Table 1. Primer sequence for the DNA methylation. 

Gene Methylated suquence 

ALDOC 
5′-TTTAGGTTCGGTATCGTTTCGC-3′ 

3'-CGAACTAAAAACGATACGCCG-5′ 

C14orf62 
5′-GCCTAACGAAAAAAAATACGCG-3′ 

5'-ATTTTTTAGGTTTCGTTTCGGC-3' 

DVL1  
5′-AAAGATTCGGCGACCACCGAACGAC-3' 

3′-GACTCAAACTCGAAAACTCGAA-5′ 

PTPRC 
5′-CTGGTGCAGTATTTGATAGTGTA-3′ 

3′-TGAAAATGGTCAGAGAAACCTTTA-5′ 

ACTB 
5′-GCTAAGTGTGCTGGGGTCTTGGGAT-3′ 

3′-GCTCTTTTTCTGGTGTTTGTCTCTC-5′ 

 

 


