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ABSTRACT 
 

Background: Increasing evidence showed that the clinical significance of the interaction between hypoxia and 
immune status in tumor microenvironment. However, reliable biomarkers based on the hypoxia and immune 
status in triple-negative breast cancer (TNBC) have not been well established. This study aimed to explore a 
gene signature based on the hypoxia and immune status for predicting prognosis, risk stratification, and 
individual treatment in TNBC. 
Methods: Hypoxia-related genes (HRGs) and Immune-related genes (IRGs) were identified using the weighted 
gene co-expression network analysis (WGCNA) method and the single-sample gene set enrichment analysis 
(ssGSEA Z-score) with the transcriptomic profiles from Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC) cohort. Then, prognostic hypoxia and immune based genes were identified in TNBC 
patients from the METABRIC (N = 221), The Cancer Genome Atlas (TCGA) (N = 142), and GSE58812 (N = 107) 
using univariate cox regression model. A robust hypoxia-immune based gene signature for prognosis was 
constructed using the least absolute shrinkage and selection operator (LASSO) method. Based on the cross-
cohort prognostic hypoxia–immune related gene signature, a comprehensive index of hypoxia and immune was 
developed and two risk groups with distinct hypoxia–immune status were identified. The prognosis value, 
hypoxia and immune status, and therapeutic response in different risk groups were analyzed. Furthermore, a 
nomogram was constructed to predict the prognosis for individual patients, and an independent cohort from 
the gene expression omnibus (GEO) database was used for external validation.  
Results: Six cross-cohort prognostic hypoxia–immune related genes were identified to establish the 
comprehensive index of hypoxia and immune. Then, patients were clustered into high- and low-risk groups 
based on the hypoxia–immune status. Patients in the high-risk group showed poorer prognoses to their low-
risk counterparts, and the nomogram we constructed yielded favorable performance to predict survival and risk 
stratification. Besides, the high-risk group had a higher expression of hypoxia-related genes and correlated with 
hypoxia status in tumor microenvironment. The high-risk group had lower fractions of activated immune cells, 
and exhibited lower expression of immune checkpoint markers. Furthermore, the ratio of complete response 
(CR) was greatly declined, and the ratio of breast cancer related events were significantly elevated in the high-
risk group. 
Conclusion: The hypoxia–immune based gene signature we constructed for predicting prognosis was developed 
and validated, which may contribute to the optimization of risk stratification for prognosis and personalized 
treatment in TNBC patients. 
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INTRODUCTION 
 

Triple-negative breast cancer (TNBC) is a special 

subtype of breast cancer that lacks the expression of ER 

(estrogen receptor), PR (progesterone receptor), and 

HER2 (human epidermal growth factor receptor 2). 

TNBC is characterized by high aggression and 

invasiveness that exhibit the most malignant biological 

behavior and the worst clinical outcome [1]. For the 

treatment of TNBC, neither endocrine therapy nor 

targeted therapy for HER2 could be applied in clinical 

practice [2]. Traditional therapeutic methods like 

surgery and systemic chemotherapy are still the first-

line treatment for TNBC. Therefore, it is urgent to 

understand the biological and immunological profiles of 

TNBC to develop novel effective therapeutic strategies. 

 

According to genome-wide expression profile, TNBC has 

been classified into six distinct molecular subtypes, 

including basal-like 1 (BL1), basal-like 2 (BL2), luminal 

androgen receptor (LAR), immunomodulatory (IM), 

mesenchymal (M), and mesenchymal stem-like (MSL) 

groups [3]. Besides, Burstein et al. identified four TNBC 

subgroups based on multi-omics genomic profiling, 

which clustered into Luminal/Androgen Receptor, 

Mesenchymal, Basal-Like Immune Suppressed, and 

Basal-Like Immune Activated groups [4]. Bareche et al. 

observed a higher expression level of immune signatures 

and checkpoint inhibitor genes in the IM subtype, which 

implied a better prognosis [5]. These efforts indicated 

that the heterogeneous immune profile in tumor 

microenvironment, and immunotherapies might be 

practical in some specific subtypes of TNBC. 

 

Close attention has been given to the progression of 

immunotherapy in TNBC. Several immune-checkpoint 

inhibitors, including anti-cytotoxic T-lymphocyte-

associated protein 4 (anti-CTLA-4), anti-programmed 

death-1 (anti-PD1), and anti-PD1 ligand (anti-PD-L1) 

monoclonal antibodies have been applied for selected 

advanced TNBC, which present favorable prognostic 

value in clinical trials [6–9]. The cooperation between 

tumor cells and extracellular microenvironment has 

been proved as an important indicator for therapeutic 

response and prognosis of TNBC [10–14]. Increasing 

evidence showed that the interaction between hypoxia 

and immune status in tumor microenvironment 

promotes the proliferation, migration, and invasion of 

TNBC [15–18]. 

 

Hypoxia is an intrinsic feature of solid tumors due to the 

imbalance between the proliferation rate of tumor cells 

and insufficient nutrient supply of vascular [19]. 

Increasing studies have recognized the important roles 

played by hypoxia in driving tumor immune 

suppression and immune escape. For instance, hypoxia 

increases the expression level of immunosuppressive 

cytokines (e.g., PD-1) and suppressive cells [e.g., 

regulatory T cells (Tregs) and myeloid-derived 

suppressor cells (MDSCs)], which in turn impede 

immune effector cells and induce immune escape [16]. 

Moreover, hypoxia triggers the IL-1β/IL1R1 signaling 

that leads to proliferative and invasive response of 

TNBC cells and promotes an aggressive feature of 

cancer-associated fibroblasts (CAFs) in TNBC [20]. 

Given that the interdependence between hypoxia and 

immune status in tumor microenvironment might affect 

the immune activity, therapeutic response and prognosis 

in TNBC, a comprehensive analysis of hypoxia and 

immune status might have promising prognostic value, 

and offer additional introspection and improvement for 

transformation studies and therapeutic decisions in 

TNBC. 

 

In this study, by performing a comprehensive bio-

informatics analysis based on cross-public datasets, we 

aimed to establish and substantiate a combined hypoxia 

and immune-related gene signature to predict prognosis, 

risk stratification, and therapeutic response in TNBC 

patients. 

 

MATERIALS AND METHODS 
 

Data acquisition and preparation 
 

The Schematic diagram is depicted in Figure 1. TNBC 

patients with clinical features and survival data across 

different platforms were enrolled in this study. The 

microarray dataset GSE58812 (N = 107) were downloaded 

from GEO (http://www.ncbi.nlm.nih.gov/geo/) [21], the 

normalized RNA-Seq data of 142 TNBC samples were 

procured from The Cancer Genome Atlas (TCGA) 

(https://portal.gdc.cancer.gov/repository), and the 

expression profiles of the Molecular Taxonomy of 

Breast Cancer International Consortium (METABRIC) 

TNBC dataset (N = 221) was obtained from cBioportal 

(http://www.cbioportal.org/) [22]. 

 

R package „limma‟ was applied for gene expression 

normalization [23]. All transcriptomic data contained in 

this study were normalized. This study strictly followed 

the acquirement procedures of the METABRIC, TCGA, 

and GEO datasets. This research also complied with the 

instruction of the Declaration of Helsinki. 

 

Identification of hypoxia status and hypoxia-related 

genes 
 

The hallmark gene sets of hypoxia which including 

200 genes were obtained from the Molecular 

Signatures Data base (MSigDB) (https://www.gsea-

msigdb.org/gsea/msigdb/). First, we evaluated the 

http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/repository
http://www.cbioportal.org/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
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hypoxia status in TNBC from the METABRIC dataset 

by the ssGSEA algorithm (R package „gsva‟) [24]. 

Then, we established a scale-free co-expression network 

and determine the hypoxia-related module by the 

package „wgcna‟ [25]. The interaction between 

distinctive genes with hypoxia ssGSEA score were 

quantified by Gene significance (GS), and the 

correlation of gene expression profiles and module 

eigengenes were represented by module membership 

(MM). With a threshold of GS p < 0.05, 840 candidate 

genes from the „pink module‟ were selected. 

 

Identification of the immune status and immune-

associated genes 
 

For the IRGs, 22 immune signatures were measured for 

their enrichment levels in respective TNBC cases by 

ssGSEA score [26, 27]. Patients were hierarchically 

clustered into three groups (high, median and low 

immune group) based on the ssGSEA score. Differential 

Expression Genes (DEGs) between high and low 

immune groups were identified by the “limma” 

package. Furthermore, genes with |log2 value (FC)| >1 

and p < 0.05 after adjusting for FDR were considered as 

the immune-related DEGs. Finally, 1793 DEGs were 

identified from the above analyses. 

 

Construction and verification of the prognostic value 

of hypoxia and immune related gene signatures 

 

In total, 788 HRGs and 1175 IRGs were selected in the 

cross-cohort. Next, we analyzed the prognostic 

significance of these HRGs and IRGs by univariate 

Cox regression using the R package „survival‟. 

 

 
 

Figure 1. Schematic diagram of this study. A panel of prognostic hypoxia-related and immune-related genes were determined from 
the METABRIC, TCGA, and GSE58812 datasets. A comprehensive hypoxia and immune related genes were constituted using the LASSO 
regression model. The prognostic value, hypoxia and immune status, and therapeutic response were further validated in multiple cohorts. 
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Subsequently, we selected the most robust prognostic 

gene signatures in LASSO regression model using the R 

package „glmet‟ [28]. Then, a hypoxia-immune related 

risk score (HIRS) was calculated by the corresponding 

coefficients of selected signatures. The HIRS formula 

was established as follows: 

Score = Σi Coefficient (mRNA) × Expression (mRNA) 

[29]. 

According to the median value of HIRS, patients were 

divided into low-risk and high-risk groups. 

 

Tumor microenvironment analysis 

 

CIBERSORT was performed to analyze the divergent 

immunocyte infiltrating proportion between low-risk 

and high-risk groups in conformity with LM22 

signatures with 1000 permutations [30]. The immune-

related efficiency and fibroblasts were estimated using 

the „MCPcounter‟ package [31]. immune and stromal 

components which reflect by immune and stromal 

scores were estimated using the „estimate‟ package 

[32]. Moreover, the expression of key hypoxia and 

immune profiles between different risk groups were 

analyzed. 

 

Functional study and therapeutic response 
 

Gene set enrichment analysis (GSEA) [33] was 

performed to investigate the signaling enrichment 

between different risk groups using prognosis index 

with Clusterprofile package. The FDR q < 0.25 and P 

< 0.05 was considered statistical significance. 107 

patients with survival information from GSE103091 

cohort were obtained to validate the indicative 

significance of the hypoxia and immune gene 

signature. The data from GSE18864 and GSE90505 

cohorts were obtained to analyze the indicative role of 

the hypoxia and immune gene signature for therapeutic 

response. Furthermore, a webtool GSCALite was 

applied to analyze the relationship between the 

expression profile of hypoxia-immune gene signature 

and IC50 data of different molecules in breast cancer 

cell lines [34]. 

 

Statistical analysis 
 

The cross-cohort prognostic HRGs and IRGs were 

identified by Univariate Cox regression with a cutoff 

value of P < 0.1. Vital prognostic hypoxia and immune 

related genes were selected by the LASSO regression 

model. Multivariate Cox regression including HIRS and 

clinical characteristics was performed using the 

„survival‟ package. The survival of different risk groups 

was evaluated using the Kaplan–Meier survival analysis 

with the log-rank test. A nomogram was plotted using 

the R package „rms‟ to predict the prognosis for 

individual patients [35]. Time-dependent receiver 

operator characteristic (ROC) analyses were conducted 

to measure the predictive power of the nomogram using 

the „time-ROC‟ package [36], and the areas under the 

curve (AUC) of all variables were compared. The 

divergence between immune cell fragments was 

estimated by the Wilcoxon test. HIRS-related analysis 

was estimated by Spearman‟s correlation test. Statistical 

analyses were applied using R software (Version 4.0.4). 

A two-tailed P < 0.05 was considered statistical 

significance. 

 

Data availability statement 

 

This study is based on public datasets, which obtained 

from the Cancer Genome Atlas Program (TCGA), the 

cBio Cancer Genomics Portal (cBioportal), and Gene 

Expression Omnibus (GEO). 

 

RESULTS 
 

Identification of gene signature related to hypoxia in 

TNBC 

 

Based on the ssGSEA method and cancer hallmarks from 

MsigDB dataset, we calculated the hypoxia ssGSEA 

Zscore of TNBC patients from the METABRIC dataset 

(Figure 2A). Then, with transcriptomic profiles and 

hypoxia ssGSEA Z-scores in the METABRIC dataset, 

WGCNA was applied to screen for hypoxia related 

candidates (Figure 2B). the optimal soft threshold was 

determined with a power of β = 4 (Figure 2C), 47 

modules were established (Figure 2D), and the pink 

module showed the highest correlated with hypoxia 

(Figure 2E), 840 promising candidates were identified 

from the pink model. Finally, 788 promising candidates 

related to hypoxia were screened in the three datasets 

(Figure 2F). 

 

Identification of gene signature related to immune in 

TNBC 
 

Based on the ssGSEA scores that specified the 

abundance and efficacy of immune cell fractions, 

TNBC samples in the METABRIC cohort were 

hierarchically assembled in immune-high, -median 

and -low groups, which displayed distinct abundance 

and efficacy of immunocytes (Figure 3A). Then, 

immune-related DEGs were obtained via comparing 

gene expression in the immune-low group with those 

in the immune-high group (Figure 3B), 1793 

promising candidates were identified and 1175 cross-

cohort IRGs were extracted in the three datasets 

(Figure 3C).  
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Construction of a hypoxia and immune-related gene 

signature for predicting prognosis 

 

Based on the available 788 HRGs and 1175 IRGs, 9 

cross-cohort prognostic genes were classified by 

performing the univariate Cox regression analysis 

(Figure 3D). Then, LASSO regression model was 

applied to select the most valuable markers for 

survival (Figure 4A). With the optimal log λ value of 

–3.36 generated, an ensemble of 6 genes (SERPINE1, 

IL2RG, CXCL11, CXCL13, LRSAM1, TAPBPL) 

remained with their distinctive LASSO coefficients 

(Figure 4B and Supplementary Table 1). Then, the 

selected genes were exerted to the formula above and 

HIRS was calculated in all cohorts. Spearman‟s 

correlation test implied that HIRS was notably 

associated the selected genes (Figure 4C and 

Supplementary Figure 1A–1B). 

 

 
 

Figure 2. Identification of potential HRGs in TNBC. (A) Hypoxia ssGSEA scores were estimated in the METABRIC cohort. (B) WGCNA was 
applied with whole-transcriptome profiling data and hypoxia ssGSEA Z-scores. (C) The optimal soft threshold to confirm a scale free 
co-expression network. (D) A total of 47 non-grey modules were identified. (E) The pink module depicted the highest correlation (r = 0.64, 
p = 2e−24) with hypoxia. (F) Venn diagram suggested 788 hypoxia related genes in the three cohorts. 
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HIRS serves as a risk factor for prognosis in TNBC 

patients 

 

Compared with alive patients, HIRS was remarkably 

increased in patients who dead during follow up in all 

datasets (Figure 4D and Supplementary Figure 1C–1D). 

Furthermore, worse prognosis has been exhibited in 

patients with higher HIRS than those with lower HIRS 

(Figure 4E–4F and Supplementary Figure 2A–2D). 

Among different clinicopathological parameters, 

multivariate Cox regression model showed that HIRS 

(HR = 2.28, p < 0.001) also as an independent risk 

factor for OSin the METABRIC cohort (Figure 4G). To 

validate the prognostic value of HIRS in external 

samples, it was further validated in the GSE103091 

cohort. HIRS was remarkably increased in metastatic 

and dead patients (Supplementary Figure 3A, 3D). 

Distributions of risk score, expression profile, and 

survival status and of signature genes showed that 

patients with higher HIRS predicted worse MFS and OS 

than lower HIRS patients (Supplementary Figure 3B, 

3C and 3E, 3F). 

 

Then, a nomogram was constructed based on HIRS and 

other clinicopathological parameters in the METABRIC 

dataset to predict the survival for individual patients. As 

shown in Figure 5A, HIRS was an important predictor 

of OS in the visual model. Moreover, tROC and AUC 

were performed according to data availability (Figure 

5B–5D and Supplementary Figure 4D–4F), the 

prediction accuracy of the nomogram for survival 

probability implied a promising predictive value of 

HIRS in the calibration analysis (Figure 5E and 

Supplementary Figure 4A–4C). Moreover, we analyzed 

the prediction accuracy of the nomogram in the 

GSE103091 cohort, the AUC values of the nomogram 

 

 
 

Figure 3. Identification of gene signature related to immune in TNBC. (A) immune related ssGSEA scores were estimated in the 
METABRIC cohort. (B) volcano plot demonstrated distinctive expressed immune-related genes between immune low and immune high 
groups (C) Venn diagram suggested 1175 immune related genes in the three cohorts. (D) Venn diagram suggested 9 prognostic hypoxia and 
immune related genes in the three cohorts. 



 

www.aging-us.com 19492 AGING 

to predict 1-, 3- and 5-year MFS was 0.854, 0.759 and 

0.711, respectively (Supplementary Figure 7A). The 

AUC values of the nomogram to predict 1-, 3- and 

5-year OS was 0.860, 0.754 and 0.707, respectively 

(Supplementary Figure 7E). The calibration curves 

suggested that the nomogram-based predictive outcome

 

 
 

Figure 4. Construction of a hypoxia and immune-related gene signature for prognosis. (A, B) The LASSO coefficient profiles were 
constructed from 9 prognostic hypoxia and immune-related genes, and the tuning parameter (λ) was calculated based on the minimum 
criteria for OS with ten-fold cross validation. Six genes were selected according to the best fit profile. (C) Correlation between risk score and 
the selected 6 genes in the METABRIC cohort. (D) HIRS was remarkably increased in patients who died during follow-up. (E–F) Distributions of 
risk score, expression profile, and survival status of the gene signature. (G) Multivariate Cox regression model showed that HIRS as an 
independent risk factor for OS in the METABRIC cohort. 
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had good consistency with the actual prognosis results 

(Supplementary Figure 7). The results revealed that the 

HIRS could be a promising marker for predicting 

clinical outcome in TNBC patients. 

 

Validation of hypoxia and immune profiling in HIRS 

 

Next, we analyzed the correlation between the 

hypoxia-immune related gene signature and HIF1A. 

SERPINE1 was shown to positively correlate with 

the expression of HIF1A (Figure 6A and 

Supplementary Figure 5A, 5D). Besides, HIRS was 

significantly associated with hypoxia-related genes, 

implied that HIRS might reflect hypoxia status in the 

tumor microenvironment (Figure 6B and 

Supplementary Figure 5B, 5E). With the hypoxia 

gene set from MSigDB, GSEA analyses revealed that 

the association of hypoxia status and HIRS in the 

METABRIC dataset (Figure 6C). Furthermore, 

natural killer cell mediated cytotoxicity, toll-like 

receptor signaling pathway, antigen processing and 

presentation, T-cell activation, and B-cell activation 

were significantly enriched in the high-risk group 

according to the GSEA analyses (Figure 6D and 

Supplementary Figure 5C, 5F). 

 

ESTIMATE algorithm indicated that HIRS was 

negatively correlated with the immune score in all 

cohorts (Figure 6E and Supplementary Figure 6A, 6F). 

Interestingly, an expressing reverse correlation between 

HIRS and the stromal score was also identified (Figure 

6F and Supplementary Figure 6B, 6G). Meanwhile, 

MCP-counter suggested that patients with lower HIRS 

value had a higher level of tumor-infiltrating cytotoxic 

immune cells (Figure 6G and Supplementary Figure 6C, 

6H). Furthermore, CIBERSORT algorithm (Figure 6H 

and Supplementary Figure 6D, 6I) confirmed that 

patients in the low-risk group were qualified with more 

antitumoral immune cells (plasma cells, activated 

dendritic cells, activated memory CD4 + T cells and NK 

cells), while patients in the high-risk group were 

characteristics of more regulatory T cells and M2 

macrophages. Moreover, low-risk patients were 

correlated with a remarkably higher expression of 

immune checkpoint markers, like PD-1, PD-L1, 

CTLA-4, T-cell immunoglobulin and mucin-domain 

containing-3 (TIM-3), lymphocyte activation gene-3 

(LAG3), and T Cell Immunoreceptor with Ig and ITIM 

Domains (TIGIT) comparative to that in the high-risk 

group (all P < 0.01) (Figure 6I and Supplementary 

Figure 6E, 6J).  

 

 
 

 

Figure 5. Combination of HIRS and clinicopathological features optimize risk stratification and survival prediction in the 
METABRIC cohort. (A) A nomogram was developed to analyze risk appraisal for individual patients. (B–D) Calibration analysis suggested 
a high accuracy of 1-, 3-, and 5-years OS prediction. (E) time-ROC analysis showed that the nomogram was a stable and reliable predictor 
for OS. 
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HIRS severs as a potential marker of therapeutic 

resistance 

 

Considering tumor hypoxia and immune status always 

promote resistance to chemotherapy, whether the gene 

signature we constructed is a marker of therapeutic 

resistance needs further investigation. Patients from 

GSE90505 and GSE18864 were used to validate the 

prediction. As shown in Figure 7A–7B, the high risk 

group showed worse outcomes after chemotherapy in 

the GSE18864 and GSE90505 cohorts. Moreover, a 

landscape plot was explored by GSCALite to exhibit the 

relationship between drug reactions and the expression 

level of hypoxia-immune related genes (Figure 7C). The 

bubble heatmap depicted significant correlations 

between individual genes with IC50 data in BRCA cell 

lines. Thoroughly, SERPINE1 conferred drug resis-

tance, while IL2RG exhibited drug sensitivity, which 

may help to explore targeted drugs to improve the 

clinical outcomes for TNBC patients. 

 

Validation for the indicative role of the HIRS in 

external cohort 

 

For the validation cohort, patients from GSE103091 

were separated into different risk groups according to 

the median value of HIRS. Correlations of the gene 

signature with HIF1A expression were shown in Figure 

8A. The immune and stromal scores were negatively 

associated with HIRS (Figure 8B, 8C). MCP-counter 

suggested that patients with lower HIRS value 

presented with a higher percentage of tumor-infiltrating 

cytotoxic immune cells (Figure 8D), and the 

CIBERSORT results showed that the high-risk group 

were qualified with more immune suppressive cells 

(Figure 8E). Meanwhile, patients with higher HIRS 

 

 

 

Figure 6. Hypoxia-related sketch, immune-related sketch, and tumor infiltrating immune cells in the HIRS based groups in 
the METABRIC cohort. (A) Correlation between the gene signature and HIF1A. (B) Correlation between HIRS and hypoxia-related genes. 
(C) GSEA confirmed the hypoxia status in the HIRS-based groups. (D) GSEA of immune-related signaling in the HIRS-based groups. (E–F) 
ESTIMATE analyses between different risk groups. (G) MCP-counter analyses between different risk groups. (H) CIBERSORT analyses between 
different risk groups. (I) the expression of immune checkpoint targets between different risk groups. 
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were exhibited significantly lower expression of PD-1, 

PD-L1, CTLA-4, LAG3, TIGIT, and TIM-3 com-

parative to those in the low- risk group (all P < 0.01) 

(Figure 8F). Furthermore, GSEA showed that immune 

related signaling were notably enriched in the high-risk 

group (Figure 8G–8J). 

DISCUSSION 
 

To date, some hypoxia and immune related gene 

signatures for therapeutic response and prognosis have 

been established in different cancer types, like head and 

neck, gastric, breast cancer, and oral squamous cell 

 

 
 

Figure 7. The risk classifier serves as a favorable biomarker of resistance to chemotherapy. (A) The ratio of complete response 
(CR) from GSE18864 cohort, and (B) the ratio of breast cancer related events from GSE90505 cohort in the HIRS based groups. (C) The 
relationship between gene signature and IC50 of different molecules in BRCA cell lines. PD, progressive disease; PR, partial remission, SD 
stable disease. 
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carcinoma [37–40]. However, unavoidable deficiencies 

existed in previous studies. For instance, the hypoxia and 

immune-related gene signatures established in previous 

studies are roughly based on some public datasets or 

literature-reported genes, ignoring the fact that hypoxia 

and immune microenvironment as significant cancer 

hallmarks involving gene expression profiles. 

 

Previous studies have addressed that hypoxia could 

reprogram the tumor microenvironment, resulting from 

the suppression of immune status in TNBC [16, 41, 42]. 

Given that hypoxia moderators and immune checkpoint 

inhibitors have been shown to present latent clinical 

application value in TNBC patients [41–44], we 

investigated the potential value of a combined hypoxia 

and immune gene signature for TNBC in this study. By 

using the ssGSEA and WGCNA methods, we evaluated 

the hypoxia and immune status in TNBC to choose the 

hypoxia related genes and immune related genes firstly, 

which promising the specificity and exclusivity of the 

gene signature we established in TNBC patients. Then, 

we selected 6 gene signatures that robust reflect the 

prognosis of TNBC patients using univariate cox 

regression and LASSO regression model. 

 

Survival analyses demonstrated the six gene 

signatures were significantly associated with the 

prognosis of TNBC patients, and worse prognoses 

were observed in patients with higher HIRS. 

Moreover, the nomogram we constructed in this study 

had a favorable predictive performance for prognosis 

in TNBC patients. Both calibration plots and tROC 

curves indicated the stable and dependable 

performance of the nomogram for survival prediction 

in TNBC patients. As for hypoxia correlation, the key 

biomarkers of hypoxia (VEGFA, SLC2A1, ALDOA, 

ENO1CA9, etc.) are increasingly expressed in the 

high-risk group compared with their counterparts, 

implying a hypoxia status in the high-risk groups. 

Besides, GSEA analyses showed that patients from 

the high-risk group was significantly associated with 

hypoxia status. 

 

 
 

Figure 8. Validation of the hypoxia and immune related gene signature in the GSE103091 cohort. (A) Correlation network 
between the gene signature and HIF1A. Correlation between the risk score and immune score (B) and stromal score (C). (D) Association of 
MCP-counter-estimated infiltrating cells with the risk score. (E) Comparison of infiltrating immune cells (CIBERSORT) between different risk 
groups. (F) the expression of immune checkpoint targets between different risk groups. (G–J) GSEA of enriched immune-related signaling in 
the HIRS-based groups. 
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For the association between the risk model with 

immune characteristics, Estimate analyses showed 

that both immune and stromal score were negatively 

correlated with HIRS, which indicated heterogeneous 

immune status within the different risk groups. In 

addition, MCP-counter demonstrated that activated 

immune cells including T cells, B cells and NK cells 

were sharply decreased for patients with high HIRS, 

implying an immune defect profile in this group. 

Besides, CIBERSORT revealed that patients with 

high HIRS had a remarkably higher percentage of M2 

macrophages and Tregs phenotype. Whilst, immune-

effective cells, like plasma cells, activated T cells and 

NK cells were decreased in the high-risk group, 

indicating that the risk model we constructed in this 

study may effectively predict the immune micro-

environment. Immune checkpoints execute a vital 

role in carcinogenesis by espousing tumor 

immunosuppressive activities. Tumor cells can 

protect themselves from immune attack by activating 

immune checkpoint targets. Accumulating evidence 

suggested that patients with PD-L1 expression in 

tumor cells and stromal immune cells are more likely 

to respond to chemotherapy and immunotherapy and 

exhibit better prognosis [9, 45–47]. Previous study 

showed that hypoxia could induce high expression of 

PD-L1 on MDSCs and macrophages in tumor micro-

environment, then suppresses the immune system to 

evade immune attack [48–50]. In our study, the 

expression of immune checkpoint markers was 

notably decreased in the high-risk group, which 

meant that the hypoxia-immune status in tumor 

microenvironment may affect the response to the 

immune checkpoint inhibitors (ICIs) therapy. 

Moreover, results from external cohorts and the 

GSCALite dataset indicated that the gene signatures 

we obtained could effectively depict the drug response 

of TNBC patients. Patients from the high-risk group 

showed worse outcomes after chemotherapy in 

GSE18864 and GSE90505 cohorts, which may explore 

targeted therapy to TNBC patients. 

 

The comprehensive hypoxia–immune related gene 

signature we constructed indicated that personalized 

treatment should be exerted in distinct risk subgroups. 

For instance, immunotherapy, like anti-PD1/PD-L1 

treatment, might be more effective in patients with 

low-risk feature. A lower HIRS was suggestive of a 

higher level of activated immune cells and higher 

efficacy for immunotherapy. Patients from the high-

risk group had worse survival outcomes, a higher 

HIRS might indicate a hypoxia microenvironment, and 

limited probable benefit from immune checkpoint 

inhibitors. The findings indicated that further 

successive immunotherapy might effective after 

hypoxia modification. 

Meanwhile, some limitations in this study should be 

noted. First, this is a cross-cohort and retrospective 

study, further verification in prospective trials is 

warranted. Second, the nomogram we developed need 

to be validated in external cohort to examine its 

performance and accuracy. Third, further experimental 

studies are needed to elucidate the underlying 

mechanism of the hypoxia and immune gene signatures 

in TNBC. 

 

CONCLUSIONS 
 

In summary, a novel hypoxia and immune related gene 

signature to predict survival and discriminate high-risk 

patients with TNBC were developed and cross-cohort 

validated. The hypoxia and immune related risk model 

could be a powerful tool to select patients for hypoxia-

targeted therapies and immunotherapies. Large-scale, 

multi-center and prospective studies are warranted to 

validate the efficacy of the HIRS model we constructed 

in the future. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Correlation between HIRS and the selected gene signatures in the TCGA (A) and GSE58812 cohorts (B). HIRS was 
remarkably increased in patients who died during follow-up in the TCGA (C) and GSE58812 cohorts (D). 
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Supplementary Figure 2. Disposition risk score, expression profile, and survival status of gene signatures in the TCGA (A–B) and GSE58812 
cohorts (C–D). 
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Supplementary Figure 3. Verification of the prognostic value of the hypoxia and immune gene signature in the GSE103091 
cohort. HIRS was remarkably increased in patients who had metastases (A) and died (D) during follow-up. Distributions of risk score, 
expression feature of signature genes and MFS (B–C), and OS (E–F). 
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Supplementary Figure 4. Time-ROC analysis proved that the nomogram was a stable and reliable predictor for OS in the TCGA (A), GSE58812 
(B), and GSE103091 (C). (D–F) Calibration analysis indicated a high accuracy of 1-, 3-, and 5-years OS prediction in the TCGA cohort. 
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Supplementary Figure 5. Hypoxia and immune related profiling between distinct HIRS groups in the TCGA and GSE58812 
cohorts. (A) Correlation between the gene signature and HIF1A in the TCGA (A) and GSE58812 (D) cohorts. Correlation between the risk 
score and hypoxia-related genes in the TCGA (B) and GSE58812 (E) cohorts. GSEA of immune-related signaling in distinct HIRS groups in the 
TCGA (C) and GSE58812 (F) cohorts. 
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Supplementary Figure 6. Immune-related sketch, and tumor-infiltrating immune cells between distinct HIRS groups in the 
TCGA and GSE58812 cohorts. ESTIMATE analyses between distinct risk groups in the TCGA (A, B) and GSE58812 (F, G) cohorts. MCP-
counter analyses between distinct risk groups in the TCGA (C) and GSE58812 (H) cohorts. CIBERSORT analyses between distinct risk groups in 
the TCGA (D) and GSE58812 (I) cohorts. The expression of immune checkpoint targets between distinct risk groups in the TCGA (E) and 
GSE58812 (J) cohorts. 
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Supplementary Figure 7. Validate the prediction accuracy of the nomogram in the GSE103091 cohort. 1-, 3 -, and 5-years 
receiver operating characteristic curves for MFS (A) and OS (E). The calibration plots for predicting patient survival at 1-, 3- and 5-year point 
for MFS (B–D) and OS (F–H). 
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Supplementary Table 
 

Supplementary Table 1. The distribution of LASSO coefficients of the gene signature. 

Gene Coef 

IL2RG –0.04006 

CXCL13 –0.10619 

LRSAM1 0.12198 

CXCL11 –0.06781 

SERPINE1 0.023619 

TAPBPL –0.13158 

 


