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INTRODUCTION 
 

The aging population 
 

Aging is the gradual process of organismal deterioration 

which is associated with a multitude of age-related 

disorders and diseases that make one wonder if aging 

itself is a disease that needs to be addressed [1]. A 

shadow is cast on the benefits of longevity if the elderly 

are faced with the possibility of a decline in their quality 

of life. The world currently has over 700 million people 

who are over the age of 65, a number that is projected to 

grow rapidly in the near future [2]. As advancing age is 

strongly correlated to decreased quality of life and 

increased risk of several age-related diseases [3], these 

demographics seem more dismal in prospering 

countries, with the USA and the UK having about 16–

18% of their population over the age of 65 [4, 5]. With 

the life expectancy of most Western countries steadily 

increasing, majority of people are expected to spend at 

least 2 decades, or 25% of their life, over the age of 65, 

when they are prone to acquiring various age-related 

morbidities [6, 7]. The silver lining to this otherwise 

tragic situation is that results from recent studies 

indicate that the aging process and the pace of 

organismal deterioration is malleable and can be 

influenced greatly by physiological, genetic, dietary and 

pharmaceutical interventions [8–16]. 
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ABSTRACT 
 

Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can 
lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and 
clear senescent cells (SnCs) and cancerous cells, an increased autoimmune response leading to tissue 
damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to 
vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells 
undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism 
as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory 
phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular 
senescence and immunosenescence have been studied extensively and implicated in various pathologies, 
their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that 
disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great 
importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid 
organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the 
aged immune system. 
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The aging immune system 
 

The immune system is a complex network of cells and 

tissues working in coalition to maintain the health of 

an organism. It not only clears foreign pathogens, but 

also helps to maintain the integrity of the organism by 

clearing away dead or dysfunctional cells [17–22]. 

Due to the immune system’s complexity and intricacy, 

7% of the genes from the human genome are allocated 

exclusively for its functioning and maintenance [23]. 

 

Like any other system, the immune system changes 

with age and experiences gradual deterioration. 

Improving our understanding of this phenomenon is of 

great significance because the medical and scientific 

advancements that have facilitated the unprecedented 

increase in average human lifespan have been unable to 

significantly increase the human healthspan [24]. 

Because of this, we have a rapidly increasing aging 

population in a world where there is a substantial risk of 

steep decline in quality of life with age. 

 

Age-associated deterioration and dysfunction of the 

immune system leads to the establishment of an 

incompetent immune response against invading 

pathogens [25, 26]. This could partially provide an 

explanation for the age-dependent increase of 

mortality in patients suffering from infections like 

influenza [27], with people older than 65 accounting 

for more than 90% of the influenza-associated annual 

deaths [28]. Furthermore, the aged immune system 

elicits an inadequate response to vaccines, leaving the 

elderly susceptible to pathogens despite being 

vaccinated against them [29, 30]. This is especially 

poignant in the wake of an ongoing pandemic where 

the mortality rate is disproportionately high in the 

elderly [31]. 

 

Aging of the immune system is also one of the major 

factors that accelerates the deterioration of an organism, 

as its dysfunction not only fails to elicit a strong 

immune response against invading pathogens but also 

drives the accumulation of undesirable and 

malfunctioning cells [25, 32–36]. In some cases, the 

aging immune system also develops an affinity for 

attacking self-antigens, leading to autoimmunity-

associated disorders [37, 38]. 

 

In recent years, there have been many studies that have 

broadened our understanding of the aging immune 

system and immunosenescence (the gradual 

deterioration of the immune system with age) from the 

perspective of genetics, nutrition, physiology, and 

molecular biology [39–42]. Despite this assimilation of 

knowledge, a complete understanding of the dynamics 

of this process is lacking. 

Within a systemic context, the age-related changes and 

adversities in any organ system arise from a complex 

crosstalk between different cells and processes of the 

body. By virtue of the way that research studies are 

designed and funded, many aspects of this complexity 

are often overlooked. In this review, we will discuss one 

such interaction, between cellular senescence and the 

immune system with a focus on the accumulation of 

SnCs in the lymphoid organs of the aging body, which 

is greatly understudied and underappreciated. 

 

Cellular senescence 

 

Initially described in 1961, cellular senescence is the 

phenomenon by which cells cease to divide despite the 

availability of adequate growth factors [43]. It was later 

established that upon encountering certain types of 

stress and irreparable damage, cells tend to enter a 

stable cell cycle arrest [44]. From an evolutionary 

perspective, this is widely considered to be a protective 

mechanism to prevent the stressed and damaged cells 

from becoming deleterious to the body. 

 

Like most things optimized by evolution, cellular 

senescence is not of much concern to the younger body 

capable of reproduction while the older body, past its 

reproductive prime, is adversely affected by it. The 

fitness benefits that cellular senescence provides to 

younger, reproductively active animals, such as 

preventing cancer [45], mitigating the progression of 

fibrosis [46–48] and promoting optimal wound healing 

[49], have helped the phenomenon survive the arduous 

tests of natural selection over the millennia. 

Unfortunately, in almost an antagonistically pleiotropic 

manner, accumulation of SnCs is very detrimental to the 

older body [50]. Specifically, SnCs secrete various 

factors classified together as senescence-associated 

secretory phenotype (SASP) which cause instability and 

dysfunction in their surrounding environment [51]. Both 

SnCs and SASP factors have been implicated in many of 

the age-related deteriorations, dysfunctions and diseases 

including but not limited to frailty, hypertrophy of tissue, 

stem-cell exhaustion, bystander effect mediated senescent 

cell accumulation, and cancer [51–63]. 

 

The interactions between SnCs and the immune system 

run in both directions, with the immune system 

surveilling and clearing the SnCs; while the SnCs 

frequently impede the function, and in some contexts, 

generation of immune cells. In young and healthy 

individuals, the immune system can rapidly clear SnCs 

after their induction, which prevents them from 

significantly accumulating and causing adverse effects 

[18, 64]. In older individuals, this turnover is slow and 

leads to the accumulation of SnCs [34]. Ovadya et al. 

demonstrated that accumulation of SnCs is accelerated 
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upon impaired immune surveillance [32]. Since 

advancing age is associated with impairment in immune 

function [65], the decline in the turnover of SnCs with 

age can, at least partially, be attributed to this 

impediment. Despite multiple studies demonstrating 

various mechanisms via which SnCs could evade 

immune clearance [66, 67], the impact of aging on 

immune evasion of SnCs is not yet completely 

understood. Of note, SnCs have been shown to cause 

stem cell exhaustion and dysfunction [62, 68–72]. This 

is of great relevance and importance to the topic of 

immunosenescence because senescence, exhaustion and 

dysfunction of hematopoietic stem cells (HSCs), causes 

myeloid skewing and a decrease in the production of 

immune cells which may be one of the underlying 

causes of age-related immunosenescence. 

With many more possible domains of interaction 

between cellular senescence and the immune system, as 

seen in (Figure 1), this review will discuss literature that 

states or suggests the presence of this interaction, with a 

focus on cellular senescence in the lymphoid organs, 

and raises questions that need to be answered to 

strengthen the foundation of the role of cellular 

senescence in immunosenescence. 

 

CELLULAR SENESCENCE IN THE ORGANS 

OF THE IMMUNE SYSTEM 
 

Bone marrow 

 

Bone marrow is a spongy tissue residing in the core of 

vertebrae, skull and long bones. It is the home of HSCs 

 

 
 

Figure 1. A depiction of the known effects of SnCs and SASP on different cell types and tissues, and how they are relevant to 
the immune system. SnCs possess altered morphology and surface markers and usually fail to perform the tasks of their non-senescence 
counterparts. This makes them the dysfunctional units of a tissue which can impede normal functions such as, immune cell priming and 
transmigration. MMPs produced by SnCs can modify the surrounding matrix and alter the microarchitecture of the lymphoid organs. As these 
organs are precisely organized into zones with specialized functions, such micro-architectural alterations can lead to dysfunction. SASP 
produced by SnCs can act as a chemoattractant to immune cells which can lead to unresolved chronic inflammation in tissues. SASP by itself 
can be inflammatory which can adversely impact neighboring cells. This chronic unresolved inflammation can lead to pathological conditions 
like fibrosis and neoplasia. SASP-mediated signaling and ROS-mediated oxidative stress can impair clonogenicity and functionality of HSCs, 
immune cells and other supporting cells of the immune system. SnCs and SASP can alter the expression profile of supporting cells leading to 
the dysregulation of homing signals required for proper localization of immune cells, and survival factors required for the endurance of 
certain immune cells. SnCs, by means of SASP, can influence the cell fate of differentiating cells and in some cases, cause the accumulation of 
adipocytes in the lymphoid organs. Abbreviations: SnC: Senescent cell; SASP: Senescence associated secretory phenotype; MMPs: Matrix 
metalloproteases; ROS: Reactive Oxygen Species; HSC: Hematopoietic stem cell. 
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which give rise to most of the immune cells [73]. HSCs 

are self-renewing pluripotent cells that can generate the 

entire hematopoietic system. 

 

With increasing age, the bone marrow microenvironment 

changes dramatically. With advancing age, HSC number 

increases, while their functionality, including self-

renewal and clonogenicity declines. These changes are 

accompanied by myeloid skewing, elevated adipogenesis 

in the bone marrow, and alterations in the bone marrow 

niche [74–78]. Along with the prevalence of significantly 

more apoptotic cells, bone marrow cellularity (volume 

occupied by HSCs) decreases significantly with age 

reaching values lower than 40% [79]. A graphic 

depiction of the aged bone marrow microenvironment is 

illustrated in (Figure 2). 

Myeloid skewing of HSCs with aging may be in part 

attributable to the aged bone marrow microenvironment, 

as even young HSCs develop a myeloid bias upon being 

transplanted into old mice [80, 81]. It has been suggested 

that chemokine ligand 5 (CCL5) is a major factor that 

drives myeloid skewing of HSCs with advancing age. 

Over expression of CCL5 causes a decrease in pro-

lymphoid transcription factors and T-cell differentiation, 

while genetically knocking out CCL5 prevents myeloid 

skewing in mice [82]. Age-related accumulation of 

adipocytes in the bone marrow has been attributed to the 

increased expression of receptor activator of nuclear 

factor kappa-B ligand (RANKL) [83]. These bone 

marrow adipocytes in-turn produce an array of factors 

that have been shown to affect hematopoiesis and skew it 

towards myeloid lineage [84–88]. 

 

 
 

Figure 2. Aged bone marrow microenvironment with accumulated SnCs is not conducive for its normal functionality. SASP 
and ROS mediate dysfunction and DNA damage in HSCs, respectively and lead to a change in the HSC repertoire and exhaustion of the 
functional HSC reservoir. RANKL mediates the accumulation of adipocytes that produce ADFs. CCL5 and ADFs mediate the establishment of 
myeloid skewing in HSCs. SASP mediated inflammation can dysregulate the adequate production of homing signals and survival factors by the 
MSCs which can lead to the depletion of selective immune cell types. The increased ROS and SASP mediated inflammation causes damage to 
the surrounding cells and induces senescence by means of the bystander effect. SnCs such as osteocytes can produce SASP that is 
detrimental to the bone housing which encloses them. In the absence of rapid clearance of SnCs, this becomes a self-perpetuating cycle of 
dysfunction and damage causing severe immunosenescence. Abbreviations: SnC: Senescent cell; SASP: Senescence associated secretory 
phenotype; ROS: Reactive Oxygen Species; HSC: Hematopoietic stem cell; CLP: Common lymphoid progenitor; CMP: Common myeloid 
progenitor; MSC: Mesenchymal stem cell; MCSF: Mesenchymal stem cell derived factors; ADF: Adipocyte derived factors; CCL5: Chemokine 
Ligand 5; RANKL: Receptor activator of nuclear factor kappa-Β ligand. 
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The accumulation of various p16
INK4a

 positive cells [89–

91], SASP factor (like CCL5 and RANKL) generating 

cells [91–94] in aged bone marrow, along with 

increased number of cells harboring DNA damage and 

elevated ROS [95, 96], suggests that age-dependent 

bone marrow changes can be in part attributed to the 

accumulation of SnCs. 

 

Based on data showing that the expression profile of 

adipocytes resembles the SASP profile of SnCs [97], it 

is likely that a great proportion of these adipocytes are 

senescent. This became evident after a study where 

clearance of SnCs in INK-ATTAC mice, a genetically 

altered model that clears cells expressing p16
INK4a

, 

showed a significant reduction in the number, size, and 

tissue volume of bone marrow adipocytes [98].  Other 

studies have also shown that, despite the structural and 

functional support provided by adipocytes, they 

adversely influence the hematopoietic environment [99, 

100]. However, whether this is completely attributable 

to senescent adipocytes and their SASP is yet to be 

determined. 

 

A recent study implicated the senescence of bone 

marrow-derived mesenchymal stem cells (BM-MSCs) 

in the age-associated dysfunction of HSCs, in humans. 

This study revealed that a significantly higher portion of 

senescent MSCs were seen in the bone marrow explants 

of the elderly when compared to their younger cohorts. 

This was established by showing increased 

accumulation of cells with DNA damage, elevated ROS 

and SASP expression. They also showed that the 

functionality and clonogenicity of young HSCs were 

impaired when exposed to factors generated by these 

MSCs [95]. The inflammatory environment, created by 

SASP of these SnCs, can alter the expression profile of 

normal MSCs to dysregulate the expression of factors 

necessary for lymphocyte survival [101–105]. 

 

Along with the cell-extrinsic causes for stem cell aging, 

older HSCs show an accumulation of senescence in 

association with increased DNA damage and telomere 

attrition, along with having an increased risk of 

undergoing an inflammatory cell death known as 

pyroptosis [68, 106]. Reactive oxygen species (ROS) 

produced by SnCs play a key role in the bystander 

effect [107]. ROS produced by SnCs in the bone 

marrow environment can cause DNA breaks in HSCs. 

This agrees with the finding that aged HSCs harbor 

more DNA damage compared to their younger 

counterparts [108]. As the DNA damage repair 

mechanism is not robust and quite error prone in the 

quiescent HSCs [109], the constant oxidative stress-

induced DNA damage can progressively deplete and 

alter the functional HSC repertoire with increasing age 

[110]. 

Direct evidence for the adverse role of cellular 

senescence in modulating HSC function during aging 

was provided by demonstrating that knocking out 

p16
INK4a

 conserved HSC functionality and stress 

tolerance with age [68]. A more recent study from our 

lab has shown that clearing SnCs rejuvenated the aging 

HSC repertoire by reducing myeloid skewing and 

improving clonogenicity significantly in mice [63]. 

 

Thymus 
 

The thymus is a primary lymphoid organ located behind 

the breastbone and above the heart, within which 

T-cells mature. In an evolutionarily conserved manner, 

most vertebrates experience an age-associated thymic 

involution, which is characterized by atrophy and the 

development of cavities. An age-dependent alteration in 

thymic cellularity can be seen, with most functional 

cells getting replaced by fibroblasts, fat cells and 

senescent cells [111–116]. 

 

Thymic atrophy is associated with the reduced turnover 

of new T-cells [117], a constricted T-cell receptor 

repertoire [118] and the production of higher 

autoreactive T-cells that could lead to autoimmunity 

[119]. As depicted in (Figure 3) these are characteristic 

features of immunosenescence that play an important 

role in age-associated impaired T-cell function [120]. 

 

Thymic epithelial cells (TECs) from adult human 

thymus stained positive for senescence- associated beta 

galactosidase (SA-βGal) and the thymic tissues from 

these adults also strongly stained positive for markers of 

oxidative DNA damage such as γH2AX and 

8-oxoguanine [121]. A similar finding of high γH2AX 

staining was seen in the thymus of old mice, which was 

indicative of DNA damage and cellular senescence 

[111]. This also correlated with the increased 

inflammatory environment of the aged thymus seen in 

humans [122]. Despite the abundance of evidence 

suggesting accumulation of SnCs in atrophied thymus, 

whether cellular senescence plays a causal role in 

thymic involution needs to be further studied, as the 

accumulation of SnCs could be a consequence of 

thymic involution. But the possibility of a causal 

involvement of SnCs and their SASP seems likely 

because the administration of IL-6, a known SASP 

factor, has been shown to induce thymic atrophy [122]. 

In addition, increased oxidative stress and DNA damage 

in the stromal cells, especially TECs, has also been 

shown to accelerate thymic aging [123]. 

 

With the existing knowledge that TECs play a crucial 

role in the positive and negative selection of maturing 

T-cells [124], the role of senescent TECs in the 

thymic environment should also be explored in the 
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context of positive and negative selection of T-cells. 

For example, it has yet to be determined whether the 

interaction of the developing T-cells with SnCs of the 

thymus play a role in the development of T-cells with 

auto-reactivity. 

 

Interestingly, the recruitment of T-cell progenitors to 

the thymus is similar between young and old mice 

[125]. The reduced T-cell output has been attributed to 

the defective microenvironment of the thymus and other 

secondary lymphoid organs [125–127]. Though there is 

a significant functional decline in thymic activity, the 

aged thymus still retains a portion of its function [128], 

which leads us to believe that the therapeutic clearance 

of SnCs could help to restore thymic function in the 

elderly. Thymic regeneration strategies so far have 

largely failed to improve the production of functional of 

T-cells, in part due to the lack of a systemic approach, 

because rejuvenating the thymus alone still leaves the 

secondary lymphoid organs too impaired to support the 

naïve T-cells being produced [127, 129]. 

 

It would be intriguing to replicate these studies with a 

senolytic combinatorial therapy to see how it changes 

the outcome. It should be a promising venture, because 

caloric restriction, a dietary intervention known to 

reduce cellular senescence [130] and SASP [131, 132], 

has been shown to delay thymic involution and mitigate 

thymic adipogenesis [133].  

 

Spleen 

 

The spleen is a secondary lymphoid organ that acts as a 

blood filter to remove damaged red blood cells. It plays 

a crucial role in maintaining the optimal populations of 

white blood cells and platelets. The spleen can detect 

pathogenic invaders in the blood and mobilize the 

immune system to fight against the pathogens [134]. 

 

 
 

Figure 3. Aged thymus is dysfunctional. With advancing age, thymus loses its cellularity while accumulating adipocytes and fibroblasts. 
Aged thymus develops an inflammatory environment with high levels of oxidative stress. This is evident by the accumulation of senescent 
TECs with elevated markers of DNA damage and oxidative stress. Despite the adequate recruitment of T-cell progenitors, aged thymus 
generates inadequate number of naïve T-cells which leads to the age-associated depletion of TCR repertoire and ultimately a change in the 
immune cell landscape. Due to the impaired negative selection of dysfunctional T-cells, the aged thymus shows an increase in the output of 
dysfunctional and autoreactive T-cells leading to the establishment of low-grade chronic inflammation. Abbreviations: SnC: Senescent cell; 
SASP: Senescence associated secretory phenotype; ROS: Reactive Oxygen Species; TEC: Thymic epithelial cell; TCR: T-cell receptor. 
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With advancing age, the cellularity and microarchitecture 

of the spleen changes significantly accompanied by 

altered localization of various cells [135]. The distinct 

demarcation of T-cell and B-cell regions within the 

white pulp becomes obscure with advancing age. Also, 

an alteration in the organization and function of 

stromal cells, marginal zone macrophages and 

marginal metallophilic macrophages can be seen 

[136]. An accumulation of SnCs with advancing age 

has been demonstrated to happen in the spleen. This 

was shown not only by means of elevated expression 

of p16
INK4a

 and SASP factors, but also by means of 

cell accumulation with elevated DNA damage
 
[50, 

137]. It has also been shown that the stromal cell 

populations of the aged spleen, exhibit an upregulated 

expression of IL-6, a SASP factor, implying that at 

least a proportion of these cells could be senescent 

[138]. 

 

Age-dependent changes in the splenic microenvironment 

impair the phagocytic capacity of macrophages in the 

marginal zone. While the phagocytic capacity of 

macrophages from the aged spleen seemed to be less 

efficient in vivo, their in vitro phagocytic capacity was 

similar to those from young mice [139]. Interestingly, 

induction of SnCs accumulation in the spleen after 

radiation has been shown to impart similar functional 

impairments to splenic macrophages in mice, and the 

clearance of such SnCs was able to restore macrophage 

function [140]. Microenvironment-dependent dysfunction 

and impaired migration of B-cells can also be seen in 

the aged spleen [141]. Even B-cells originating from 

young HSCs in an aged recipient showed signs of 

dysfunction, providing support to the idea that B-cell 

dysfunction is mainly attributable to the aged splenic 

environment [135]. 

 

Splenic priming of T-cells is a crucial step in the 

establishment of an appropriate T-cell response [142]. It 

is known that the senescent splenic environment impairs 

the recruitment of T-cells to the spleen. In addition, as 

depicted in (Figure 4), the microenvironment-mediated 

impairment of the functionality of antigen-presenting 

cells such as B-cells, macrophages and dendritic cells 

(DCs) in the aged spleen may explain why even T-cells 

originating from young HSCs were dysfunctional and 

showed a delayed response to stimulation in an aged 

splenic microenvironment [143, 144].  

 

 
 

Figure 4. Remarkable differences between the young and aged splenic environment. With advancing age, the stromal cells in the 
lining of sinuses, that demarcate follicular zone from the marginal zone, become less organized accompanied with an altered localization of 
various cell types. The inflammatory environment created by the accumulation of SnCs impairs the functionality of several cells residing in the 
spleen. This functional impairment mediated improper antigen presenting capabilities lead to the establishment of an inadequate T-cell 
response against pathogenic invasion. Abbreviations: SnC: Senescent cell; SASP: Senescence associated secretory phenotype; ROS: Reactive 
Oxygen Species. 
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Though not deeply explored in these studies, it is 

apparent that the splenic environment of the old mice 

is not conducive for the proper functionality of various 

immune cells. Apart from SASP-mediated micro-

environmental alterations, SnCs, by virtue of their 

altered morphology, can imbue structural alterations 

to the aged spleen. With senolytics [14, 15, 145–148] 

and senostatics [149] becoming more accessible, 

further insights into SASP-independent mechanisms 

of SnCs involvement in immunosenescence should be 

explored.  

 

Lymph nodes 
 

Lymph nodes are small bulbous structures that form a 

crucial part of the lymphatic system along with the 

lymphatic vessels. They filter the lymph fluid obtained 

from the surrounding tissues before it re-enters the 

blood stream [150].  

 

Lymph nodes house various immune cells including 

T-cells, B-cells and DCs and play an essential role in 

establishing a strong immune response [151–154]. With 

advancing age, there is a significant decline in the 

number, integrity, and functionality of lymph nodes 

[135, 155–158]. Alterations in cellularity and 

functionality of different cell types of lymph nodes have 

been shown to occur with advancing age (reviewed here 

[158]). Increased adiposity and fibrosis have also been 

described in lymph nodes of patients older than 60 years 

[155, 156]. 

 

It has been speculated that lymphatic endothelial 

cells and high endothelial venules of the lymph 

nodes show signs of aging similar to that of the 

vascular system. This includes altered permeability, 

accumulation of SnCs, and increased inflammation, 

which could act as causal factors that adversely 

affect the migration and recruitment of immune cells 

like naïve T-cells [158]. It has also been shown that 

the age-dependent increase in the level of 

prostaglandin-2 in the lungs inhibits the migration 

of DCs to the draining lymph nodes, leading to the 

establishment of an improper T-cell response to 

viral infections like SARS-CoV [159]. This is 

interesting since prostaglandin production is 

upregulated in SnCs [160], and provides evidence 

on how cellular senescence in other organs can 

indirectly impact the function of lymph nodes.  

 

Stromal cells from aged lymph nodes have reduced 

replicative potential upon stimulation [161, 162] and 

were unable to support naïve T-cell homeostasis 

[127]. Though not explored as a possibility in these 

studies, this could be an indication that at least a 

portion of these stromal are senescent. Another 

interesting study sheds light on the role of 

chemokine ligand 2 (CCL2) produced by the stromal 

cells of lymph nodes in the mitigation of antibody 

response [163]. Despite this being an important 

function that prevents the establishment of 

unnecessary germinal centers in the absence of an 

antigen, CCL2 is a SASP factor, which raises the 

question of whether senescent stromal cells that 

perpetually produce CCL2 are responsible for the 

age-dependent impairment of lymph nodes to 

support germinal centers [157].  

 

It seems highly likely that cellular senescence is 

involved in this age-related lymph node deterioration. 

Further studies exploring the presence of SnCs in the 

aged lymph nodes and their role in lymph node-

mediated immune response are needed. 

 

Mucosa associated lymphoid tissue 
 

Mucosa-associated lymphoid tissue (MALT) is a part 

of the immune system that localizes on the surface of 

the mucosal tissues. Depending on their location, 

MALT is classified into different types, such as 

inducible bronchus-associated lymphoid tissue 

(iBALT) [164, 165], conjunctiva-associated 

lymphoid tissue (CALT) [166, 167], larynx-

associated lymphoid tissue (LALT) [168] and 

inducible skin-associated lymphoid tissue (SALT) 

[169, 170]. The most commonly studied MALT 

representatives are nasopharynx-associated lymphoid 

tissue (NALT) [171, 172] and gut-associated 

lymphoid tissue (GALT) [173]. 

 

In humans, the adenoids of the nasopharynx, tonsils of 

oropharynx, and a few more lymph nodes in the region 

form the Waldeyer’s ring [174, 175]. They are 

considered to be a part of the MALT and are analogous 

to the NALT in rodents [172]. They are crucial for 

immunization through intranasal vaccination [176]. 

Similarly, GALT is comprised of Peyer’s patches, 

mesenteric lymph nodes (MLNs) and isolated lymphoid 

follicles (ILFs) [177].  

 

The MALT functions in a complex manner (reviewed 

here [178]), which is known to be affected by the 

process of aging, as seen in mice by the age-

dependent reduction in the establishment of oral 

tolerance to novel antigens [179]. This deterioration 

varies regionally, with NALT conserving its 

functionality for longer than GALT, making nasal 

immunizations an attractive alternative for 

vaccinating the elderly [180, 181]. 

 

Though cellular senescence has been shown to be 

present in the tonsils of patients with tonsillitis and 
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tonsillar hypertrophy, it is still unclear whether SnCs 

play a role in these pathological conditions [182, 

183]. Despite knowing that tonsillar mesenchymal 

stem cells can undergo cellular senescence [184, 

185], the implications of cellular senescence in 

alterations of the function of NALT has not yet been 

studied. 

 

Extensive studies in mice show that GALT exhibits a 

similar age-associated alteration in the cellular 

composition and decline in functionality like many of 

the other parts of the immune system. There is a 

decline in naïve T-cell and B-cell repertoires which 

are primarily replaced by memory cells [186, 187]. 

An age-dependent impairment in proliferative 

response to mitogenic stimulus is also seen in GALT 

[188]. There is a quantitative decline in dendritic 

cells accompanied by impaired functionality [189, 

190] that yields a similarly impaired priming of 

T-cells, which is seen in the aged spleen [135, 140, 

141]. This impaired immune function, with possible 

senescence accumulation could explain the age-

associated increased rate of cancer incidence in the 

gastrointestinal tract. 

 

Despite the lack of direct evidence, with the support 

of pre-existing knowledge of age-associated 

functional decline and senescence accumulation in 

organs [191–194] and systemic vasculature [195, 

196] associated with these mucosal lymphoid tissues, 

it is exceedingly convincing that there is an age-

dependent accumulation of SnCs in these sites and/or 

that their functionality is somehow impacted by this 

accumulation. A speculative supporting argument for  

this is that the mucosal surfaces are exposed to more 

environmental stressors than most other organs, 

which could possibly cause low-grade chronic 

activation of their immune system and SnCs 

accumulation. This could explain why we see a 

relatively early onset in the aging of the mucosal 

immune system compared to the systemic immune 

system [180, 181, 186, 197].  

 

Apart from all the circumstantial and correlative 

evidence, more studies are required to further our 

understanding of the role of cellular senescence in age-

associated changes in MALT and how or if senolytics 

can rejuvenate them.  

 

CONCLUSION 
 

As summarized in (Table 1), even at an organ level, 

the age-associated changes that contribute to 

immunosenescence are multifaceted with a wide 

variety of undesirable phenotypic manifestations. 

Thus, it would be ill-advised to address each of these 

problems individually. A more feasible and effective 

way to deal with immunosenescence would be to 

tackle the fundamental aspects of aging that drive 

immunosenescence. With studies showing that 

clearing SnCs can rejuvenate entire tissues and organs 

of the aged immune system [63, 140], cellular 

senescence is certainly one such fundamental aspect, 

which has the potential to address immunosenescence.  

 

Cellular senescence, because of its involvement in 

several age-related dysfunctions and disorders, has 

become an essential area of interest in the field of 

aging research. Despite a great deal of assimilated 

knowledge on this phenomenon, there still remain 

unanswered questions. The role of cellular senescence 

in immunosenescence is one such key area needing 

further exploration. With few publications addressing 

the direct involvement of cellular senescence in 

specified immunological contexts, and many more 

studies providing evidence for a possible role of 

cellular senescence in impeding the function of the 

immune system, this is an area of research that 

deserves further exploration and an investment of 

resources. 

 

In this proposed pursuit, there are several “low-

hanging fruit”. A few such addressable questions 

include: Do SnCs play a direct or indirect role in age-

related disparities seen in inflammatory pathological 

conditions like sepsis? Does SnCs accumulation in the 

peripheral tissues of the body impact the functionality 

of immune cells in the central nervous system? Can 

clearing SnCs hinder the pace of thymic involution? 

Can clearing SnCs in combination with thymic 

rejuvenation therapies in the elderly improve thymic 

function? Does cellular senescence drive age-

associated autoimmunity? Can clearing SnCs or 

inhibiting SASP boost the functionality of different 

immune cells? Does cellular senescence play a direct 

role in the impaired vaccination efficacy in the 

elderly? Is there a senostatic/senolytic regimen that 

can be followed before and after vaccination to boost 

its efficacy in the elderly?  

 

The increasing array of genetic models of SnCs 

clearance along with a growing panel of senolytic and 

senostatic agents, provide a unique opportunity for 

scientists to answer these questions to lay a strong 

foundation to this new avenue of research in 

immunosenescence. Ultimately, gaining a deeper 

understanding of the interaction between cellular 

senescence and immunosenescence will help in the 

development of improved therapeutics that will aid in 

the conservation of our vitality as we age. 
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Table 1. Age-associated changes in the lymphoid organs that contribute to immunosenescence. 

Organ Age-Associated Changes References 

Bone Marrow 

↑ Senescent Hematopoietic Stem Cells [106, 198] 

↑ Senescent Mesenchymal Stem Cells [95] 

↑ Adiposity [83, 88, 99] 

↑ Myelopoiesis [88] [78, 80, 82] 

↓ Lymphopoiesis [88] 

↑ Oxidative Stress [95, 96] 

↑ DNA damage [63, 94, 95, 108, 199] 

↑ Inflammation [95, 102] 

↓ HSC functionality [63, 68, 77, 200] 

Thymus 

↓ Structural Integrity [111, 112] 

↑ Senescent Thymic Epithelial Cells [121] 

↑ Adipocytes [112] 

↑ Fibrosis [129, 201] 

↑ Inflammation [122] 

↑ DNA damage [121] 

↑ Oxidative Stress [121] 

↓ Naïve T-cell turnover [125, 126] 

Spleen 

↓ Structural Integrity [135] 

↓ Macrophage Phagocytosis [139] 

↑ Cellular Senescence [50, 137] 

↓ Migration of B-cells [135, 141] 

↓ Antigen Presenting Functionality [135, 144] 

↓ Recruitment of T-cells [143] 

Lymph Nodes 

↓ Number [135, 155] 

↓ Structural Integrity [135, 156] 

↓ Functionality [158, 162, 202] 

↑ Adiposity [155, 156, 158] 

↑ Fibrosis [155, 156, 158] 

Mucosa Associated 
Lymphoid Tissue 

↓ Naïve B-cell repertoire [186] 

↓ Naïve T-cell repertoire [186] 

↑ Memory B-cells [186] 

↑ Memory T-cells [186] 

↓ Functionality [188, 189] 

↓ Dendritic Cell Number [190] 

↓ Dendritic Cell Functionality [189, 190] 
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