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INTRODUCTION 
 

Osteoarthritis (OA) was considered as a prototypical 

arthropathy, which is irrelevant to inflammation [1–3]. 

However, increasing studies have documented that 

synovitis is observed in a many patients with OA [4]. It 

is convincing that there is a close relation between the 

pathogenesis of OA and joint inflammation. The 

mechanism of OA is quite complex, many cell types 

such as articular chondrocytes, synovial cells, and other 

cells of diarthrodial joints, are involved in OA 

development [1]. These cells express inflammatory 

mediators, pro-inflammatory cytokines, and matrix 

degrading enzymes, which are crucial molecules for the 

progression of OA in synovial joints [4, 5]. Therefore, 

targeting inflammation pathways could be a novel 

therapeutic approach for OA. 

NF-κB signaling has essential roles in plenty of cellular 

processes, especially in inflammatory response [6–8]. 

Importantly, NF-κB pathway induces various genes 

expression, which could induce further activation of 

other signaling cascades [9, 10]. There is evidence that 

NF-κB signaling is widely involved in the 

pathophysiology of OA and is confirmed as a potential 

target [11]. 

 

NOD-like receptor family (NLR) is a large protein 

family that act as pro-inflammatory receptors to 

participate in many biological processes [12–14]. 

Accumulating evidence has indicated that a member of 

NLR family, NLRC5, is a critical mediator of 

inflammatory response [15, 16]. Additionally, NLRC5 

inhibits the activation of NF-κB signaling induced by 

LPS, TNF-α or IL-1β [16]. Based on these evidences, 
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ABSTRACT 
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(iNOS), and cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), NO, TNF-α and IL-6, as well matrix 
metalloproteinase 3 (MMP-3) and MMP-13. Consistently, NLRC5 knockdown exhibited opposite effects on the 
production of these inflammatory mediators in IL-1β-induced chondrocytes. Furthermore, overexpression of 
NLRC5 increased the IĸBα expression, while decreased the p-p65 expression, indicating that NLRC5 inhibited 
the activation of NF-κB signaling. Additionally, inhibition of NF-κB by PDTC mitigated the si-NLRC5-mediated 
promotion of IL-1β-induced inflammatory injury in chondrocytes. Finally, NLRC5 treatment ameliorated 
cartilage degeneration in an OA model in rats. Taken together, these findings revealed that NLRC5 attenuated 
IL-1β-induced inflammatory injury in chondrocytes through regulating the NF-κB signaling. 
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we speculated that NLRC5 may be involved in the 

pathogenesis of OA. 

 

Here, we used IL-1β to induce inflammation in 

chondrocytes isolated from OA patients. Then the 

potential roles of NLRC5 in chondrocytes was 

investigated and the underlying mechanism was 

explored. 

 

MATERIALS AND METHODS 
 

Cell culture of primary human OA chondrocytes 

and IL-1β treatment 

 

Cartilage samples from 9 OA patients who underwent 

total knee arthroplasty were collected at Central 

Hospital Affiliated to Shen Yang Medical Collage 

(Shenyang, China). Informed consent was obtained 

from all the patients involved in this study, which was 

approved by the Ethics Committee of the Central 

Hospital Affiliated to Shen Yang Medical Collage. The 

cartilage samples cut with scissors and then digested 

with 0.25% trypsin-EDTA solution for 30 min, 

followed by digestion with 0.4% collagenase II 

(Sigma-Aldrich, St. Louis, MO, USA) for 24 h. Cells 

were cultured in DMEM/F12 growth medium 

containing 10% FBS (Hyclone) and 1% penicillin/ 

streptomycin (Sigma). The OA chondrocytes were 

maintained at 37° C in a humidified atmosphere. 

Chondrocytes were stimulated by IL-1β (10 ng/ml; 

Peprotech Asia, Rocky Hill, NJ, USA) for 24 h to 

induce inflammation. PDTC (5 μM; Sigma) was used 

to block NF-κB activation. 

 

Quantitative real-time PCR (qRT-PCR) 

 

Total RNA samples were extracted from chondrocytes 

using Qiazol (Qiagen, Hilden, Germany). RNA was 

quantified and then applied for the generation of cDNA 

using a cDNA Synthesis Kit. The mRNA levels of 

target genes were measured using a SYBR Green qPCR 

master mix on a 7500 Real-Time PCR System. Results 

were calculated using the 2
-ΔΔCT

 method. 

 

Cell transfection 

 

Chondrocytes were inoculated into a six-well plate and 

incubated for 24 h before transfection. Then the cells 

were transfected with NLRC5 siRNA (si-NLRC5) or 

negative control siRNA (si-NC), which were obtained 

from GenePharma (Shanghai, China). The NLRC5 

overexpressing plasmid was constructed by inserting the 

open reading frame of NLRC5 into the pcDNA3.1 

expression vector. Chondrocytes were transfected with 

siRNAs or vectors using RNAiMAX Reagent or 

Lipo2000 transfection reagent (Invitrogen). 

Western blot 
 

Chondrocytes were lysed in RIPA Lysis Buffer containing 

PMSF and phosphatase inhibitor (Beyotime), and the 

lysates were obtained from centrifugation. Proteins were 

separated on 12% SDS-PAGE gels. Then the proteins on 

the gels were transferred to PVDF membranes (Thermo) 

and blocked with 5% skimmed milk powder in TBST 

buffer for 1 h. The membranes were sequentially 

incubated with primary antibodies (anti-NLRC5, iNOS, 

COX-2; were obtained from Abcam, Cambridge, MA, 

USA; anti-p-p65, p65, IĸBα, or β-actin were obtained 

from Santa Cruz Biotechnology (Santa Cruz, CA, USA) 

at 4° C overnight and HRP-conjugated secondary 

antibodies (Santa Cruz) for 2 h. The targeted protein 

bands were developed using ECL reagent (Thermo). 

 

Cell viability assay 

 

Chondrocytes (1 × 10
4
 cells/well) were seeded into 96-

well plates and subjected with indicated transfections 

and treatments. After that, MTT (5 mg/ml) was added to 

the cells to evaluate the cell viability. After incubation 

for 4 h, the products were dissolved by incubating with 

dimethyl sulfoxide (DMSO). Then the OD value at 490 

nm was measured using a microplate reader. 

 

Measurement of NO 

 

Twenty-four hours post indicated treatments, the NO 

production in cell culture samples was measured by a 

nitrate/nitrite colorimetric assay kit. 

 

ELISA 
 

The secretion of prostaglandin E2 (PGE2), TNF-α, IL-

6, MMP-3 and MMP-13 in the supernatants were 

measured using corresponding ELISA kits purchased 

from R&D Systems. 

 

OA model in rats and animal treatment 

 

Six-week-old male Sprague-Dawley rats (200 ± 20 g) 

were purchased from the Animal Center of Chinese 

Academy of Sciences (Shanghai, China). The OA model 

was established as described previously [17]. The rats 

were randomly divided into control group: rats received a 

sham-operation; model group: rats received an operation; 

treatment group (NLRC5 group): 1-week after operation, 

the rats were intraarticularly injected with 50 μl solution 

(10 ng/ml) every 7 days. After 6 weeks of indicated 

treatments, the knee joint tissues were collected and stored 

in 4% paraformaldehyde solution for further histological 

analysis. The animal experiments were approved by the 

Animal Care and Use Committee of Central Hospital 

Affiliated to Shen Yang Medical Collage. 
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Histological analysis 
 

Knee joint tissues were embedded in paraffin and then 

cut into sections (5 μm) using a rotary microtome. Then, 

the sections were stained with hematoxylin-eosin 

(H&E) and Safranin O. The images were captured using 

a light microscope. Cartilage destruction was examined 

by Safranin O staining, finally, the score was evaluated 

using the Osteoarthritis Research Society International 

(OARSI) grading system. 

 

Statistical analysis 

 

The data were expressed as the mean ±SD. Two-group 

comparisons were evaluated by Student’s t test. 

Multiple-group comparisons were analyzed by one-way 

analysis of variance (ANOVA). P < 0.05 was considered 

to indicate a statistically significant difference. 

 

RESULTS 
 

NLRC5 expression was down-regulated in IL-1β-

induced chondrocytes 
 

IL-1β signaling plays constructive roles in the 

pathogenesis of OA [18, 19]. IL-1β is frequently used 

for inducing inflammation in chondrocytes to simulate 

OA in vitro [20–22]. Firstly, we investigated NLRC5 

expression in IL-1β-induced chondrocytes. Results 

showed that the mRNA level of NLRC5 was markedly 

down-regulated in chondrocytes after induction with IL-

1β (Figure 1A). Consistently, western blot analysis 

revealed that NLRC5 is lowly expressed in 

chondrocytes stimulated with IL-1β (Figure 1B). 

 

Overexpression of NLRC5 increased chondrocytes 

viability and inhibited inflammatory mediators’ 

production 
 

To further explore the role of NLRC5, pcDNA3.1-

NLRC5 was transfected into chondrocytes to 

overexpress NLRC5. As shown in Figure 2A, a 

dramatical increase of the protein level of NLRC5 was 

observed in the pcDNA3.1-NLRC5-transfected 

chondrocytes. As shown in Figure 2B, overexpression 

of NLRC5 significantly increased cell viability in OA 

chondrocytes. 

 

The iNOS and COX-2 are two important enzymes, 

which are responsible for the production of NO and 

PGE2 [23]. Results indicated that NLRC5-over-

expressing cells exhibited markedly reduced expression 

levels of iNOS and COX-2, as compared to the 

chondrocytes exposed to IL-1β (Figure 2C–2F). 

 

 
 

Figure 1. NLRC5 expression was down-regulated by IL-1β induction in chondrocytes. Chondrocytes were stimulated by IL-1β (10 
ng/ml) for 24 h to induce inflammation. The mRNA and protein levels of NLRC5 were measured using RT-PCR (A) and western blot analysis 
(B). *p < 0.05. 
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Besides, NLRC5 repressed the IL-1β-induced levels of 

NO and PGE2 in the culture supernatants of 

chondrocytes (Figure 2G, 2H). 

 

Knockdown of NLRC5 reduced cell viability and 

increased inflammatory mediators’ production 

 

Additionally, si-NLRC5 was transfected into 

chondrocytes to knock down NLRC5. Transfection 

efficiency assay showed that NLRC5 protein expression 

was dramatically decreased after transfection with si-

NLRC5 (Figure 3A). Knockdown of NLRC5 

significantly enhanced the IL-1β-induced reduction in 

chondrocytes viability (Figure 3B). Transfection with 

si-NLRC5 induced iNOS and COX-2 expression in IL-

1β-stimulated chondrocytes (Figure 3C–3F). Mean-

while, the production levels of NO and PGE2 were also 

elevated by NLRC5 knockdown in IL-1β-induced 

chondrocytes (Figure 3G, 3H). 

 

Overexpression of NLRC5 suppressed the 

production of TNF-α, IL-6, and MMP-3/13 

 

TNF-α and IL-6 are majorly increased in the process of 

OA [24, 25], thus, we examined the effects of NLRC5 on 

TNF-α and IL-6 production. Results in Figure 4A, 4B 

revealed that overexpression of NLRC5 suppressed the 

production of TNF-α and IL-6 in chondrocytes. It has 

been demonstrated that MMPs expression are upregulated 

with the increased proinflammatory cytokines levels. 

MMPs, especially MMP-3 and MMP-13, are implicated 

in the pathogenesis of OA [26]. Our results showed that 

overexpression of NLRC5 also inhibited the production of 

MMP-3 and MMP-13 (Figure 4C, 4D). 

 

Knockdown of NLRC5 increased the production of 

TNF-α, IL-6, MMP-3/13 

 

In contrast to the effects of NLRC5 overexpression, 

knockdown of NLRC5 significantly induced the 

production of TNF-α and IL-6 (Figure 5A, 5B). The 

levels of MMP-3 and MMP-13 in cell culture of IL-1β-

stimulated chondrocytes were increased after 

transfection with si-NLRC5 (Figure 5C, 5D). 

 

NLRC5 inhibited IL-1β-induced NF-κB activation in 

chondrocytes 

 

The levels of p-p65, p65, and IκBα were determined to 

explore the involvement of NF-κB signaling in 

 

 
 

Figure 2. Overexpression of NLRC5 attenuated IL-1β-induced inflammatory injury in human OA chondrocytes. The pcDNA3.1-
NLRC5 or pcDNA3.1 vector was transfected into chondrocytes, followed by IL-1β (10 ng/ml) stimulation for 24 h. (A) The expression levels of 
NLRC5 in chondrocytes were measured using western blot after transfection. (B) Cell viability of chondrocytes was detected using MTT assay. 
(C–F) The mRNA and protein levels of iNOS and COX-2 were measured using RT-PCR and western blot analysis. (G, H) The production of NO 
and PGE2 in chondrocytes. *p < 0.05. 
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inflammatory response. The results implied that the p-

p65 expression was decreased, while IκBα expression 

was increased by NLRC5 overexpression (Figure 6A–

6C), indicating that NLRC5 blocked the activation of 

NF-κB pathway. 

 

Inhibition of NF-κB partially reversed the si-

NLRC5-mediated inflammatory injury 
 

Subsequently, chondrocytes were treated with 

pyrrolidinedithiocarbamate (PDTC, an NF-κB pathway 

inhibitor) to prevent the NF-κB activation. The 

deceased cell viability caused by si-NLRC5 was 

mitigated by PDTC (Figure 7A). Additionally, the si-

NLRC5-mediated increases in expression levels of 

iNOS and COX-2, and production of TNF-α, IL-6, 

MMP-3/13 were attenuated in PDTC-treated cells 

(Figure 7B–7G). 

 

NLRC5 treatment ameliorated cartilage 

degeneration in an OA rat model 
 

The role of NLRC5 in OA was further examined in vivo 

using an OA rat model. Cartilage degeneration in the 

rats were evaluated by H&E and Safranin O staining. 

As compared with the sham group, rats in the OA 

model group presented obvious hypocellularity, 

extensive proteoglycan loss, cartilage erosion, and 

superficial cartilage destruction. Compared to the OA 

model group, rats with intra-articular injection of 

NLRC5 exhibited remarkable alleviation in cartilage 

destruction (Figure 8A, 8B). 

 

DISCUSSION 
 

NLRC5 has been demonstrated to be a critical mediator 

of inflammatory response. Here, we found that NLRC5 

expression was down-regulated in IL-1β-stimulated 

chondrocytes. NLRC5 inhibited IL-1β-induced inflam-

matory response. In contrast, NLRC5 knockdown 

exhibits opposite effect. The underlying mechanism was 

found to be attributed to the regulation of NF-κB 

signaling. Finally, NLRC5 treatment ameliorated 

cartilage degeneration in vivo in an OA model. 

 

NLRC5, an important member of NLR family, is 

involved in inflammation. NLRC5 deficiency promotes 

high fat diet-induced myocardial damage in mice, as 

 

 
 

Figure 3. Knockdown of NLRC5 promoted IL-1β-induced inflammatory injury in human OA chondrocytes. The si-NLRC5 or si-NC 
was transfected into chondrocytes, followed by IL-1β (10 ng/ml) stimulation for 24 h. (A) The expression levels of NLRC5 in chondrocytes 
were measured using western blot after transfection. (B) Cell viability of chondrocytes was detected using MTT assay. (C–F) The mRNA and 
protein levels of iNOS and COX-2 were measured using RT-PCR and western blot analysis. (G, H) The production of NO and PGE2 in 
chondrocytes. *p < 0.05. 
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evidenced by the accelerated fibrosis and inflammation 

response [27]. NLRC5 knockout mice exhibit NF-κB 

activation, indicating NLRC5 might has anti-

inflammatory activity via suppressing NF-κB signaling. 

Additionally, NLRC5 negatively regulates lipoteichoic 

acid (LTA)-induced inflammatory response via the 

TLR2/NF-κB pathway in macrophage cells [28]. These 

findings imply that NLRC5 plays an important role in 

inflammation, which are attributed to its modulation of 

inflammatory pathways. 

 

A recent study has shown that NLRC5 expression was 

increased in synovial tissues of rheumatoid arthritis 

(RA) rats [29]. Overexpression of NLRC5 also comes 

with the rise of expression of inflammatory cytokines 

and exacerbated proliferation of fibroblast-like 

synoviocytes (FLSs). While NLRC5 silencing exhibits 

inhibitory effects on cell proliferation and inflammatory 

cytokine production via inhibiting NF-κB activation 

[29]. Moreover, NLRC5 expression level was found to 

be higher in the synovial tissues from adjuvant arthritis 

rats compared with that from control rats [30]. 

Increased NLRC5 expression is associated with  

high levels of inflammatory cytokines and FLSs 

proliferation. However, our results showed that NLRC5 

was down-regulated in IL-1β-stimulated chondrocytes. 

Overexpression of NLRC5 suppressed IL-1β-induced 

inflammation through inhibiting the production of 

multiple inflammatory mediators and MMPs in 

chondrocytes. Consistently, NLRC5 knockdown 

enhanced the IL-1β-induced production of these 

inflammatory mediators in chondrocytes. Furthermore, 

NLRC5 blocked NF-κB activation in IL-1β-stimulated 

chondrocytes. These findings suggest that NLRC5 

 

 
 

Figure 4. Overexpression of NLRC5 suppressed the production of inflammatory cytokines in IL-1β-stimulated human OA 
chondrocytes. After transfection with pcDNA3.1-NLRC5 or pcDNA3.1 vector and the following incubation with IL-1β, (A–D) the production 
of TNF-α, IL-6, MMP-3 and MMP-13 were detected using ELISA. *p < 0.05. 
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Figure 5. Knockdown of NLRC5 increased the production of inflammatory cytokines in IL-1β-stimulated human OA 
chondrocytes. After transfection with si-NLRC5/si-NC and the following incubation with IL-1β, (A–D) the production of TNF-α, IL-6, MMP-3 
and MMP-13 were detected using ELISA. *p < 0.05. 

 

 
 

Figure 6. NLRC5 inhibited IL-1β-induced NF-κB activation in chondrocytes. After transfection with pcDNA3.1-NLRC5 or pcDNA3.1 
vector, the chondrocytes were stimulated by IL-1β (10 ng/ml) for 24 h. (A–C) The expression levels of p-p65, p65, IĸBα were determined using 
western blot analysis. *p < 0.05. 
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regulates NF-κB signaling can differ profoundly among 

cell types and experimental conditions. 

 

Additionally, our results showed that NLRC5 caused an 

increase in IκBα expression, while reduced the 

expression of p-p65, indicating that NLRC5 inhibited 

the activation of NF-κB signaling. Moreover, inhibition 

of NF-κB by PDTC mitigated the si-NLRC5-mediated 

promotion of inflammatory injury in chondrocytes, 

suggesting that NLRC5 attenuated IL-1β-mediated 

 

 
 

Figure 7. Inhibition of NF-κB partially reversed the si-NLRC5-mediated promotion of IL-1β-induced inflammatory injury in 
chondrocytes. Chondrocytes were treated with PDTC (5 μM) to prevent the activation of NF-κB signaling pathway. (A) Cell viability of 
chondrocytes was detected using MTT assay. (B, C) The mRNA levels of iNOS and COX-2 were measured using RT-PCR. (D–G) The production 
of TNF-α, IL-6, MMP-3/13 in chondrocytes. *p < 0.05. 

 

 
 

Figure 8. NLRC5 treatment ameliorated cartilage degeneration in an OA model in rats. (A) HE and Safranin O staining in each 
group (100×). (B) OARSI scores of each group to assess cartilage degeneration. *p < 0.05 vs sham group, #p < 0.05 vs OA group. 
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inflammatory injury through regulation of NF-κB 

pathway in chondrocytes. Interestingly, Cui et al. [31] 

demonstrated that NLRC5 controls innate immunity 

through inhibiting NF-κB activation. Our results 

together with the previous study indicated that NLRC5 

might exert anti-inflammatory in IL-1β-induced 

chondrocytes via inhibiting NF-κB signaling. 

 

In conclusion, NLRC5 attenuated IL-1β-induced 

inflammatory injury in chondrocytes through regulating 

the NF-κB signaling. 
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