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INTRODUCTION 
 

Nonalcoholic hepatic steatosis (NHS) is the most 

common liver disease in the world and is associated 

with increased the risk of cardiovascular disease, type-2 

diabetes, and liver-related complications such as 

hepatocellular carcinoma [1–3]. The occurrence and 

progression of NHS result from a combination of 

multiple genetic and environmental factors [1]. 

However, the factors that are currently known represent 

only a small fraction of those involved in disease onset 

and progression. Thus, the mechanisms underlying the 

pathogenesis of NHS are not fully understood, which 

limits the development of drugs for this disease. 

 

Several studies have explored the characteristics of the 

gut microbiota in patients with NHS [1, 4]. Compared 

to healthy individuals, a consistently altered 
microbiome signature, characterized by increased 

abundance of Proteobacteria, Enterobacteriaceae, 

Dorea, and Escherichia and decreased abundance of 

Ruminococcaceae, Rikenellaceae, and Coprococcus, is 
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found in NHS patients [4–9]. However, large 

discrepancies are still observed across studies [4, 5, 7–

10], which may be attributed to the heterogeneity 

arising from distinct geographical regions, ethnicity, 

and population characteristics [4]. Long-term hyper-

glycemia or medications such as metformin were in turn 

reported to be important confounding factors [5]. 

 

Accumulating evidence indicates that the gut microbiota 

affects the health of the host by activating signaling 

along the gut-liver, gut-brain, gut-renal, and gut-lung 

axes [11–14]. Signaling through the gut-liver axis plays 

important roles in NHS by regulating glucose, lipid, and 

amino acid metabolism [5, 15–17]. In this regard, 

several metabolites produced by gut bacteria, notably 

short-chain fatty acids (SCFAs), as well as metabolic 

intermediates of the tryptophan and phenylalanine 

degradation cycles, have been associated with hepatic 

steatosis risk and development [5, 15–17]. However, the 

mechanisms underlying gut-liver signaling pathways 

relevant to NHS in nondiabetic adults are still far from 

clear. Through an integrative multi-omics approach 

combining clinical phenotyping, gut microbiota 

analysis, fecal metabolomics, and fecal microbiota 

transplantation (FMT) assays in germ-free (GF) mice, 

the present study highlights the potential contribution of 

gut microbiota changes and differentially expressed 

microbial-associated metabolites to NHS pathology in 

nondiabetic adults. 

 

RESULTS 
 

Characteristics of the study participants 

 

Sex distribution, but not age, was significantly different 

between controls and NHS patients (P < 0.05). Body 

mass index (BMI), triglyceride (TG), total cholesterol 

(TC), high-density lipoprotein cholesterol (HDL-C), low-

density lipoprotein cholesterol (LDL-C), fasting blood 

glucose, alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), gamma glutamyl transferase 

(GGT), and uric acid were higher in NHS patients than in 

controls (P < 0.05) (Supplementary Table 1).  

 

Gut microbiota composition is altered in NHS 

patients 

 

To identify whether NHS is associated with changes in 

gut microbiota composition, we performed amplification 

of variable regions 3 and 4 of the 16S rRNA gene in 

fecal samples from 91 Chinese individuals. Species 

diversity, indicated by the Shannon index, showed no 

significant differences between groups (Figure 1A). 

However, marked changes in the gut microbiota 

composition of NHS patients were revealed by taxon-

based analysis. Linear discriminant analysis effect size 

(LefSe) showed that the abundance of phyla 

Proteobacteria and Fusobacteria was higher in NHS 

than in controls. The abundance of families Entero-
bacteriaceae, Coriobacteriaceae, Fusobacteriaceae, 

Moraxellaceae, Actinomycetaceae, and Carno-

bacteriaceae was higher, while the abundance of the 

Dehalobacteriaceae family was lower, in NHS 

compared to control samples. Genera analysis showed  

in turn increased abundance of Shigella, Collinsella, 

Megamonas, Leuconostoc, Acinetobacter, and 

Actinomyces and decreased abundance of Lachnospira, 

Anaerostipes, Butyricimonas, Odoribacter, Anaerofustis, 

and Dehalobacterium in NHS subjects relative to 

controls (Figure 1B). 

 

Logistic regression analyses with steatosis as the 

dependent variable showed that the changes observed 

in the family Coriobacteriaceae and the genera 

Collinsella, Acinetobacter, and Lachnospira were 

still significant after adjusting for age, sex, and BMI 

(P < 0.05) (Supplementary Table 2). Based on self-

reported dietary intake data, Collinsella abundance 
was associated with intake of processed meat, meat, 

and beverages, while Acinetobacter abundance was 

associated with intake of meat (P < 0.05) 

(Supplementary Figure 1). 

 

Functional alterations in gut microbiota from NHS 

patients  

 

To identify functional NHS-related changes in gut 

microbiota, the Welch’s t-test was applied to examine 

group differences in the relative abundance of Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways. 

Significantly differentially enriched pathways between 

controls and NHS subjects included protein digestion and 

absorption; alanine, aspartate and glutamate metabolism; 

histidine metabolism; valine, leucine and isoleucine 

biosynthesis; valine, leucine and isoleucine degradation; 

glycine, serine and threonine metabolism; lysine 

biosynthesis; cysteine and methionine metabolism; D-

alanine metabolism; arginine and proline metabolism; 

phenylalanine, tyrosine and tryptophan biosynthesis; 

secondary bile acid biosynthesis; and primary bile acid 

biosynthesis (P < 0.05) (Figure 1C). 

 

Association of gut microbiota with clinical indices 

 

To identify correlations between gut microbiota patterns 

and clinical indices, we performed Spearman’s rank 

correlation analysis. As shown in Figure 2, the genus 

Collinsella had positive associations with TG, uric acid, 

ALT, AST, and GGT; the genus Acinetobacter was 
positively associated with TG, HDL-C, ALT, AST, and 

GGT; and the Lachnospira genus was negatively 

associated with ALT and AST (P < 0.05). 
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Fecal metabolomics analysis  

 

To investigate more comprehensively the microbe-host 

interactions with potential impact on NHS, we 

conducted fecal metabolic profiling in the 91 study 

subjects by LC-MS/MS, using both positive and 

negative ion modes. Supervised clustering based on 

orthogonal partial least square-discriminant analysis 

(OPLS-DA) was then performed to discriminate the 

metabolic profiles across groups. OPLS-DA score plots 

for fecal samples from the NHS and control groups are 

shown in Figure 3A and 3B. There were 530 

upregulated and 240 downregulated metabolites in 

positive ion mode and 200 upregulated and 68 

downregulated metabolites in negative ion mode 

between NHS and controls (Figure 3C and 3D). KEGG 

analysis revealed that ‘phenylalanine, tyrosine and 

tryptophan biosynthesis’ and ‘biosynthesis of 

secondary metabolites’ were the main pathways 

enriched by the differentially expressed metabolites 

(Figure 3E and 3F). Based on the results of our KEGG 

pathway analysis of gut microbiota and fecal 

metabolomics, as well as published reports, we 

focused on phenylalanine, tyrosine, and tryptophan 

biosynthesis and metabolism, bile acid biosynthesis 

and metabolism, and SCFAs. With this criterion, 

 

 
 

Figure 1. Analysis of bacterial community structure by 16S rRNA sequencing. (A) Alpha diversity analysis of gut microbiome in 

control and NHS stool samples. (B) LefSe analysis of gut microbiota composition in NHS. (C) KEGG pathway analysis of differentially abundant 
gut microbiota between control and NHS; h: control group; z: NHS group. 
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representative differentially upregulated metabolites 

included kynurenine, 3-indoleacetonitrile, tryptamine, 

3-(3-indolyl)-2-oxopropanoic acid, L-phenylalanine, 

L-homophenylalanine, 3-(2-Hydroxyphenyl)propanoic 

acid,  chenodeoxycholic acid, and cholic acid, whereas 

representative differentially downregulated metabolites 

included L-tryptophan and acetate (Figure 3G). 

 

Associations of gut microbiota with fecal metabolites 

 

The relationship between the 12 most differentially 

represented genera and the 11 representative differential 

metabolites identified in NHS patients was then 

examined by correlation analysis. Results showed that 

abundance of the genus Collinsella was positively 

associated with the levels of kynurenine, 3-

indoleacetonitrile, tryptamine, and 3-(3-indolyl)-2-

oxopropanoic acid, and negatively associated with 

L-tryptophan level (P < 0.05). Abundance of the genus 

Acinetobacter was in turn positively associated with the 

levels of kynurenine, 3-indoleacetonitrile, and 3-(3-

indolyl)-2-oxopropanoic acid (P < 0.05). The genera 

Collinsella and Acinetobacter were both associated with 

tryptophan metabolism. Among the tryptophan 

 

 
 

Figure 2. Correlative relationships between discriminatory gut microbiota and clinical indices. X-axis: clinical indices; Y-axis: 

genus; color scale represents Spearman’s correlation coefficient; red denotes strong negative correlations; blue denotes strong positive 
correlations; *P < 0.05). 

 

 
 

Figure 3. Fecal metabolomics analysis. (A) OPLS-DA score plots in positive ion mode. (B) OPLS-DA score plots in negative ion mode. (C) 

Differentially regulated metabolites in positive ion mode. (D) Differentially regulated metabolites in negative ion mode. (E–F) KEGG pathway 
analysis of differentially expressed metabolites in positive and negative ion modes. (G) Representative differential metabolites. Data are 
mean ± SE; h: control group; z: NHS group; *P < 0.05. 
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metabolites assessed, only with 3-(3-indolyl)-2-

oxopropanoic acid showed an association with diet 

(Supplementary Figure 2). Over 95% of tryptophan is 

metabolized by the kynurenine pathway. Interestingly, 

ROC analysis demonstrated that the combination of 

tryptophan and kynurenine could discriminate NHS 

patients from controls with good statistical power 

[P  <  0.05; AUC = 0.833 (95% CI, 0.747 to 0.918)] 

(Supplementary Figure 3). 

 

Chenodeoxycholic acid level was positively associated 

with the abundance of Collinsella and Acinetobacter and 

negatively associated with the abundance of Lachnospira 

(P < 0.05). Cholic acid level was positively associated 

with the abundance of Acinetobacter and negatively 

associated with the abundance of Lachnospira (p < 0.05). 

L-Homophenylalanine level was positively associated 

with the abundance of both Collinsella and Acinetobacter 

(P < 0.05) (Figure 4). 

 

FMT reproduces clinical and metabolic features of 

NHS in germ-free mice 

 

To further investigate whether activation of gut 

microbiota-kynurenine-liver axis contributes to the 

development of NHS, fecal bacteria from control and NHS 

patients were transplanted into GF mice. Oil Red O 

staining revealed significant intrahepatic lipid 

accumulation in GF mice colonized by gut bacteria from 

NHS patients, compared to mice that received gut 

microbiota from control subjects (Figure 5A). In addition, 

serum kynurenine levels were significantly increased in 

GF mice transplanted with NHS samples (P < 0.05), while 

no significant difference was found between the two 

groups regarding serum L-tryptophan levels (Figure 5B). 

 

DISCUSSION 
 

Clinical and animal studies have shown that dysbiosis 

of the gut microbiota represents an independent risk 

factor for NHS [1, 5]. Indeed, since alterations the gut 

microbiota can contribute to insulin resistance, chronic 

inflammation, and disorders of glucose, lipid, and 

amino acid metabolism, the gut microbiota is 

considered an important target for NHS treatment [1, 

18]. Our study showed that the phylum Proteobacteria, 

the family Enterobacteriaceae, and the genera 

Collinsella and Acinetobacter were enriched, while the 

abundance of the genus Lachnospira was decreased, in 

nondiabetic adults with NHS. The observed increase in 

the relative abundance of Proteobacteria and 

Enterobacteriaceae was indeed consistent with the 

results of previous studies [5, 8]. Research showed that 

Proteobacteria facilitate the development of hepatic 

steatosis by regulating endotoxin production and the 

immune response [19, 20]. The risk of developing NHS 

is also increased by overrepresentation of Entero-

bacteriaceae, which augment endogenous ethanol 

production [21]. Increased abundance of the genus 

Collinsella was reported in type 2 diabetes, non-

alcoholic steatohepatitis, and rheumatoid arthritis, 

among other inflammatory conditions [22–27]. 

Collinsella (7α-dehydroxylating bacteria) was reported 

to metabolize bile acids to oxo-bile acid intermediates 

[28–30]. The production of these secondary bile acids 

may disrupt the intestinal mucosal barrier and 

participate in the development of NHS [28–30]. 

Accordingly, reduced Collinsella abundance following 

administration of the antibiotic rifaximin was associated 

with a drop in secondary fecal bile acid concentrations 

[30]. NHS patient samples showed also decreased 

abundance of Lachnospira, which are SCFA-producing 

bacteria. SCFAs have shown to confer many beneficial 

health effects, including maintaining the gut barrier, 

providing energy sources for enterocytes and 

colonocytes, inhibiting the proliferation of hepatic cells, 

and preventing inflammation [31–34]. 

 

Fecal metabolomics results showed that the levels of 

L-phenylalanine and cholic acid were upregulated, 

 

 
 

Figure 4. Correlative relationships between discriminatory gut microbiota and representative fecal metabolites. X-axis: fecal 
metabolites; Y-axis: genus; color scale represents Spearman’s correlation coefficient; red denotes strong negative correlations; blue denotes 
strong positive correlations; *P < 0.05. 
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while those of acetate were downregulated, in fecal 

samples from NHS patients. L-phenylalanine, an 

essential amino acid, may be converted into tyrosine by 

phenylalanine hydroxylase [35]. Abnormal phenyl-

alanine levels are associated with many health 

conditions, such as heart failure, obesity, hyper-

triglyceridemia, and type 2 diabetes [36–39]. Hoyles et 

al. found that plasma PAA, a phenylalanine-derived 

bacterial metabolite, was positively associated with 

liver steatosis severity. They further showed that mice 

treated with PAA for 2 weeks had significantly 

increased hepatic triglyceride accumulation [5]. 

Previous studies reported that increased cholic acid 

levels were associated with dyslipidemia, athero-

sclerosis, and non-alcoholic fatty liver disease 

(NAFLD) [40–44]. Cholic acid, a primary bile acid, is 

formed in the liver by cholesterol 7-hydroxylase 

(CYP7A1), the rate-limiting enzyme that regulates the 

synthesis of bile acids from cholesterol [44]. Yamada et 

al. showed that dietary cholic acid promoted NAFLD in 

pigs by activating local and systemic oxidative stress-

induced signaling leading to macrophage mobilization 

[41]. Decreased production of acetate, a major intestinal 

and circulating SCFA produced by gut bacteria from 

dietary fiber metabolism, was also reported in many 

diseases, including NAFLD, obesity, cardiovascular 

disease, and type 2 diabetes [45–47]. In this regard, Sun 

et al. found that changes in the gut microbiota induced 

by a high-sucrose diet promoted the development of 

NAFLD in rats by reducing microbial production of 

SCFAs [16]. 

 

Several metabolites related to tryptophan metabolism, 

such as L-tryptophan, kynurenine, 3-indoleacetonitrile, 

tryptamine, and 3-(3-indolyl)-2-oxopropanoic acid, 

were also altered in fecal samples from NHS subjects. 

Three metabolic pathways of tryptophan in the intestine 

are directly and indirectly controlled by the gut 

microbiota: (a) direct conversion of tryptophan into 

several molecules, including indole-3-aldehyde (IAld) 

and indole-3-acetic acid (IAA); (b) the kynurenine 

pathway in epithelial and immune cells, initiated by 

indoleamine 2, 3-dioxygenase (IDO) 1; and (c) the 

5-hydroxytryptamine (5-HT) production pathway in 

enterochromaffin cells, mediated by Trp hydroxylase 1 

(TpH 1) [48]. Alterations in tryptophan metabolism are 

involved in the occurrence and development of many 

diseases, such as inflammatory bowel disease, irritable 

bowel syndrome, metabolic syndrome, obesity, 

infectious diseases, and neuropsychiatric disorders [48]. 

Our study revealed that fecal kynurenine level was 

higher in NHS patients than in controls. Correlation 

 

 

 
Figure 5. Fecal microbiota transplantation (FMT) findings. (A) Histopathological examination of liver tissue in GF mice colonized with 

gut microbiota from healthy controls or NHS patients (Oil Red O staining). (B) L-tryptophan and kynurenine quantification by UPLC-MS/MS. 
Data are mean ± SE; h: control group; z: NHS group; *P < 0.05. 
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analysis showed that kynurenine level was positively 

associated with the abundance of genera Collinsella, 

Megamonas, Leuconostoc, Acinetobacter, and 

Actinomyces and negatively associated with abundance 

of the genera Anaerostipes, Butyricimonas, and 

Odoribacter. Consistently, FMT experiments showed 

that compared to controls, serum kynurenine was 

increased in GF mice colonized with gut bacteria from 

NHS patients. Kynurenine is a gut microbiota-derived 

metabolite of tryptophan via IDO1 catalysis. IDO1 

upregulation is a hallmark of obesity, and its deletion or 

inhibition improves insulin sensitivity, preserves the gut 

mucosal barrier, decreases chronic inflammation, and 

regulates lipid metabolism in liver and adipose tissues 

[49]. Notably, kynurenine was shown to trigger obesity 

by binding to the aryl hydrocarbon receptor (AhR), and 

blocking IDO or AhR in mice significantly attenuated 

long-term high-fat diet-induced obesity and liver 

steatosis [50]. The abundance of the genus Collinsella 

was positively associated with the levels of kynurenine, 

3-indoleacetonitrile, tryptamine, and 3-(3-indolyl)-2-

oxopropanoic acid, and negatively associated with 

L-tryptophane. Although the association between 

increased Collinsella abundance and NAFLD has been 

reported [25], further work is required to determine 

whether Collinsella promotes the development of NHS 

in nondiabetic adults via the kynurenine pathway. 

 

We acknowledge several limitations in this study. First, 

there was an unequal sex distribution in our study, 

which included more females in the control group and 

more males in the NHS group. Although our regression 

models were adjusted for sex, the effect of sex on gut 

microbiota is well established and may therefore affect 

our results [51]. Second, in our study sample NHS was 

proven by ultrasonic diagnosis. Unlike histology, which 

allows distinguishing between simple steatosis and 

steatohepatitis, ultrasonography allows for reliable and 

accurate detection of moderate-severe fatty liver [52]. 

 

In summary, this study revealed that alterations in  

the gut microbiota are associated with differential 

expression of fecal metabolites in nondiabetic adults 

with NHS. Specifically, our data supports a contributing 

role for kynurenine, a gut microbiota-derived 

tryptophan metabolite, in the pathogenesis of non-

diabetic NHS and suggests that tryptophan/kynurenine 

levels may be reliable clinical biomarkers for this 

condition. 

 

MATERIALS AND METHODS 
 

Samples 

 

A total of 91 subjects were enrolled in this case-control 

study between March 2019 and March 2020 at the Sixth 

People’s Hospital of Shenyang, China. Fifty-nine 

patients proven by ultrasonic diagnosis were included. 

The inclusion criteria were: (1) Age 18–72 years; (2) no 

alcohol, or alcohol consumption equivalent to <210 g 

and <140 g of ethanol per week, for men and women, 

respectively; and (3) non-alcoholic hepatic steatosis 

proven by ultrasonic diagnosis. The exclusion criteria 

were: (1) hepatic steatosis caused by alcoholic liver 

disease, genotype 3 hepatitis C virus infection, 

autoimmune hepatitis, hepatolenticular degeneration, 

drugs (tamoxifen, amiodarone, sodium valproate, 

methotrexate, glucocorticoids, etc.), total parenteral 

nutrition, inflammatory bowel disease, celiac disease, 

hypothyroidism, Cushing’s syndrome, beta lipoprotein 

deficiency, lipid atrophy diabetes, Mauriac syndrome, 

etc.; (2) long-term drinkers (≥210 g ethanol/week for 

men, ≥140 g ethanol/week for women); (3) liver 

cirrhosis, liver malignant tumor, acute biliary tract 

infectious disease, and those who were taking or have 

taken hepatotoxic Chinese medicine and/or Western 

medicine in the past 3 months; (4) systolic blood 

pressure higher than 160 mm Hg and/or diastolic blood 

pressure higher than 100 mm Hg after standard 

antihypertensive treatment; (5) malignant tumors, 

congenital heart disease, acute myocardial infarction, 

post-PCI, severe arrhythmia, acute cerebral infarction 

and brain bleeding, chronic obstructive pulmonary 

disease, pulmonary heart disease, respiratory failure, 

renal insufficiency (blood BUN or Cr exceeding 1.5 

times the upper limit of the reference value),  

and hematopoietic system diseases; (6) psychiatric 

disorders; (7) diabetes; (8) severe diarrhea (3 or more 

watery stools per day in the past 3 months); (9) severe 

constipation (2 or fewer bowel movements per week in 

the past 3 months, accompanied by difficulty in 

defecation); (10) pregnant and lactating women; (11) 

subjects who have taken antibiotics, steroidal anti-

inflammatory drugs and probiotics in the past 3 months; 

(12) diets containing probiotics such as yogurt for the 

past 1 week. The control group consisted of 32 age-

matched healthy volunteers from the Sixth People’s 

Hospital of Shenyang with normal serum lipids, blood 

glucose, liver enzymes and abdominal ultrasonography 

findings. This study was approved by the Ethics 

Committee of the Sixth People’s Hospital of Shenyang 

(No.2018-05-002-02), and informed consent was 

obtained from all subjects. 

 

Biochemical measurements 

 

Blood samples were drawn after an overnight fast 

from an antecubital vein. TG, TC, HDL-C, LDL-C, 

fasting blood glucose, ALT, AST, GGT, and uric acid 
were determined using biochemical kits. The 

experimental procedures followed the corresponding 

specifications. 
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Diet assessment  

 

Dietary intake assessment over the past year referred to 

the semi-quantitative food frequency questionnaire [53–

54]. Diet items included rice, flour, dessert, fried foods, 

coarse grains, tubers, processed meat, meat, seafood, 

nuts and legumes, vegetables, mushrooms, fruits, dairy 

foods, beverages, and eggs. Frequency of food intake 

ranged from “≤1/month” to “≥3/day”. Portion size 

ranged from “50 g or below” to “250 g or above”. For 

dairy foods, portion size ranged from “50 ml or below” 

to “400 ml or above”; for beverages, intake per serving 

ranged from “100 ml” to “550 ml or above”; for eggs, 

portion size ranged from “half and below” to “three or 

above”. 

 

16S ribosomal RNA (rRNA) sequencing  

 

Total genomic DNA samples were extracted from 

stool samples using the OMEGA Soil DNA Kit 

(D5625-01) (Omega Bio-Tek, USA) according to the 

manufacturer’s instructions. The quality and quantity 

of extracted DNA were measured using agarose gel 

electrophoresis and a NanoDrop ND-1000 spectro-

photometer (Thermo Fisher Scientific, USA), 

respectively. PCR amplification was performed for the 

V3-V4 regions of bacterial 16S rRNA genes. PCR 

amplicons were purified and quantified. Sequencing 

libraries were prepared with Illumina's TruSeq Nano 

DNA LT Library Prep Kit. Pair-end 2 × 250 bp 

sequencing was performed using the Illumina MiSeq 

platform. QIIME2 and R packages (v3.2.0) were used 

for sequence data analyses. Raw sequence data were 

demultiplexed using the demux plugin. Sequences were 

then quality filtered, denoised, and merged, and 

chimeras were removed using the DADA2 plugin. 

 

Metabolomics analysis 

 

Stool (100 mg) was homogenized with ice-cold water 

(300 μl) and mixed and vortexed with cold steel balls 

(5 min). The homogenized stool was then added to 

pure methanol (500 μl), vortexed, incubated on ice 

(10 min), and centrifuged (12,000 rpm, 4°C, 10 min). 

Then, 600 μl of supernatant was added to another 

centrifuge tube and concentrated. The dried product 

was added to 5% methanol-water (100 μl), vortexed 

and centrifuged (12,000 rpm, 4°C, 10 min). Finally, 

the supernatant was used for LC-MS/MS analysis 

using a Waters ACQUITY UPLC HSS T3 C18 

column (1.8 µm, 2.1 mm×100 mm). Spectral data 

were obtained in positive and negative ion modes. 

The original data file was converted into mzML 
format by Proteo Wizard software. Then, the XCMS 

program was used to perform peak extraction and 

alignment and retention time correction. Peak area 

was corrected by the “SVR” method and peaks with 

deletion rates >50% in each group of samples were 

filtered. Metabolic identification information was 

obtained by searching the public database metDNA 

(http://metdna.zhulab.cn) and our laboratory’s self-

built database. 

 

GF mice and FMT procedures 

 

Fifteen six-week-old GF male mice were fed in a 

sterile isolator in the Experimental Animal Center at 

Shanghai Shrek Experimental Animal Co., Ltd. 

(temperature: 20–22°C; humidity: 50–60%; day/night 

cycle: 12 h/12 h). Drinking bottles and cages were 

sterilized under high temperature and pressure (121°C, 

60 min) and water, feed, and bedding materials were 

irradiated (50 kGy) prior to use or administration. 

Donors with nonalcoholic hepatic steatosis (n = 4, two 

men and two women) and control subjects (n = 2, one 

man and one woman) were randomly selected. For 

each group, 100 mg of combined stool samples were 

resuspended with a vortex in 600 μl of reduced PBS 

(PBS with 0.5 g/l cysteine and 0.2 g/l Na2S). The 

mixture was centrifuged (2500 rpm, 1 min) to remove 

insoluble materials and the supernatant was transferred 

to a new sterile test tube. GF mice were fed with a 

balanced diet for 4 weeks and gavaged once daily with 

100 μL of fecal suspension over the first 4 days of this 

feeding cycle. On the day of sampling, the mice were 

anesthetized using 1% pentobarbital (0.2 ml/mouse). 

Mice were then sacrificed by CO2 euthanasia method 

and liver histology and serum L-tryptophan and 

kynurenine quantification performed as described 

below. 

 

Oil Red O staining 

 

Liver samples were dehydrated in 15% and 30% 

sucrose and then embedded with optimal cutting 

temperature compound (OCT) to prepare frozen 

sections (8–10 μm). The frozen sections were stained 

with Oil Red O and a Nikon E100 microscope was used 

to acquire images. 

 

L-tryptophan and kynurenine quantification by 

UPLC–MS/MS 

 

Standard mix solution and 50 μL serum with 50 μL 

protein precipitation agent (including NVL) were 

mixed and centrifuged (13,200 rpm, 4 min). Eight 

microliters of supernatant and 42 μL of labeling buffer 

were then mixed and centrifuged. Then, 20 μL of 

derivatization solution was added, centrifuged, and the 
sample was derivatized (55°C, 15 min). After 

derivatization, the sample was cooled in a refrigerator, 

centrifuged at 13,500 rpm instantly, and 50 μL 

http://metdna.zhulab.cn/
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collected for UPLC–MS/MS analysis using a Waters 

MSLab 45+AA-C18 column (5 µm, 150 mm × 4.6 mm). 

 

Statistical analysis 

 

ASV-level alpha diversity indices (Shannon diversity 

index) were calculated. LEfSe was performed to detect 

differentially abundant taxa across groups using the 

default parameters (LDA Effect Size >2 and P < 0.05). 

Logistic regression was performed to investigate the 

association between steatosis and gut microbiota after 

adjusting for age, sex, and BMI. Phylogenetic 

reconstruction of unobserved states (PICRUSt2) was 

used to predict and analyze species functions 

according to amplicon sequencing data. For metabo-

lomics analysis, univariate analysis (Student’s t-test) 

and multivariate analysis (orthogonal partial least 

squares discriminant analysis; OPLS-DA) were 

applied. Correlations between gut microbiota at genera 

level, clinical indices, and fecal metabolites were 

tested with Spearman’s correlation. The latter was also 

used to explore correlations between gut microbiota at 

genera level, fecal metabolites, and diet. Receiver-

operating characteristic (ROC) curves were plotted and 

area under the ROC curve (AUC) was used as an 

accuracy index for evaluating the diagnostic 

performance of the tryptophan-kynurenine metabolites. 

Student’s t-test was used to detect differences in serum 

L-tryptophan and kynurenine values across groups. 

QIIME2, R packages (v3.2.0), and SPSS 21.0 were used 

for data analyses.  
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Correlative relationships between discriminatory gut microbiota and diet. X-axis: diet; Y-axis: gut 

microbiota (phylum/family/genus); color scale represents Spearman’s correlation coefficient; red denotes strong negative correlations; blue 
denotes strong positive correlations; *P < 0.05. 

 

 

 

 
 

Supplementary Figure 2. Correlative relationships between discriminatory tryptophan metabolites and diet. X-axis: diet; Y-axis: 

tryptophan metabolites; color scale represents Spearman’s correlation coefficient; red denotes strong negative correlations; blue denotes 
strong positive correlations; *P < 0.05. 
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Supplementary Figure 3. ROC analysis of the combination of tryptophan and kynurenine in the diagnosis of NHS. The area 

under the ROC curve (AUC) is 0.833, and the 95% confidence interval (CI) is 0.747–0.918. 
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Supplementary Tables 
 

Supplementary Table 1. Characteristics of the study participants. 

Variables Controls (n = 32) Nonalcoholic hepatic steatosis (n = 59) P 

Sex (male/female) (12/20) (40/19) P < 0.05 

age 45.84 ± 13.83 49.15 ± 11.22 P > 0.05 

BMI 22.68 ± 2.45 26.62 ± 3.02 P < 0.05 

TG 1.00 ± 0.29 2.24 ± 1.32 P < 0.05 

TC 4.78 ± 0.60 5.19 ± 1.18 P < 0.05 

HDL-C 1.73 ± 0.45 1.43 ± 0.39 P < 0.05 

LDL-C 2.91 ± 0.60 3.34 ± 0.89 P < 0.05 

fasting blood-glucose 4.63 ± 0.43 4.99 ± 0.56 P < 0.05 

ALT 15.15 ± 9.00 30.49 ± 32.00 P < 0.05 

AST 18.17 ± 6.00 23.00 ± 10.00 P < 0.05 

GGT 18.95 ± 17.00 31.15 ± 39.00 P < 0.05 

uric acid  267.08 ± 73.08 350.23 ± 81.48 P < 0.05 

 

 

Supplementary Table 2. Logistic regression analyses with steatosis as dependent variable. 

Variables B SE P 

Coriobacteriaceae 61.17 26.68 P < 0.05 

Collinsella 55.46 28.15 P < 0.05 

Acinetobacter 7690.89 3551.86 P < 0.05 

Lachnospira −1551.01 592.79 P < 0.05 

All gut microbiota (log10 (1+phylum/family/genus)) are analyzed. These models were adjusting for age, sex and BMI.  


