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INTRODUCTION 
 

Accelerated loss of muscle mass is one of the dramatic 

changes associated with aging and reflects muscle 

remodeling in elderly population [1, 2]. Age-related low 

muscle mass leads to lower mobility, disability and 
increased mortality in elderly population [1, 2]. The 

diagnosis is particularly based on the evaluation of 

appendicular lean mass (ALM) by dual X-ray 

absorptiometry (DXA). Among the methods used to 

identify LMM, the criterion defined by Newman et al. 

in 2003 [1] is based on ALM measurement adjusted for 

total fat mass [3, 4]. Therefore, it seems to identify 

more individual with sarcopenia, particularly those with 

sarcopenic obesity [3, 4]. In a previous study, we define 

the Newman residual specific to our population and 

demonstrated that LMM is a risk factor for increased 

mortality in elderly men and women [4]. In our 
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ABSTRACT 
 

Despite the well-established association of gene expression deregulation with low muscle mass (LMM), the 
associated biological mechanisms remain unclear. Transcriptomic studies are capable to identify key mediators 
in complex diseases. We aimed to identify relevant mediators and biological mechanisms associated with age-
related LMM. LMM-associated genes were detected by logistic regression using microarray data of 20 elderly 
women with LMM and 20 age and race-matched controls extracted from our SPAH Study (GSE152073). We 
performed weighted gene co-expression analysis (WGCNA) that correlated the identified gene modules with 
laboratorial characteristics. Gene enrichment analysis was performed and an LMM predictive model was 
constructed using Support Vector Machine (SVM). Overall, 821 discriminating transcripts clusters were 
identified (|beta coefficient| >1; p-value <0.01). From this list, 45 predictors of LMM were detected by SVM and 
validated with 0.7 of accuracy. Our results revealed that the well-described association of inflammation, 
immunity and metabolic alterations is also relevant at transcriptomic level. WGCNA highlighted a correlation of 
genes modules involved in immunity pathways with vitamin D level (R = 0.63, p = 0.004) and the Agatston score 
(R = 0.51, p = 0.02). Our study generated a predicted regulatory network and revealed significant metabolic 
pathways related to aging processes, showing key mediators that warrant further investigation. 
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Brazilian community a residual that yielded the best 

performance of sensitivity and specificity to define 

LMM in elderly women was −1.32 [4]. 

 

Multiple factors are involved in the development of age-

related low muscle mass, including several known age-

related factors, such as neuromuscular degeneration, 

abnormal protein turnover, decreased hormone levels and 

sensitivity, chronic inflammation, oxidative stress, and 

lifestyle (nutritional status and physical inactivity) [5]. 

Despite the well-described contribution of these factors, 

current therapies are only limited to lifestyle changes by 

mainly targeting resistance training and/or protein 

supplementation [6, 7]. There is no drug specifically 

approved for sarcopenia treatment [8]. Owing to the high 

prevalence of the clinical complications of LMM in 

elderly women, further studies are needed to identify 

possible effective therapies. Thus, defining key cellular 

and molecular mechanism underlying this condition is a 

crucial step to identify new relevant therapeutic targets. 

However, these mechanisms are not fully elucidated. We 

believe a global transcriptomic portrait of the systemic 

implications of LMM would advance our understanding 

of the biological processes associated with this condition, 

thereby paving the way to more efficient clinical 

intervention. 

 

So far, the pathophysiological mechanisms of muscle 

mass loss in elderly women are not fully understood. 

Several studies have already pointed the contribution of 

genetic associations to low muscle mass process and its 

complications [9]. Application of transcriptomic 

technologies to muscle of sarcopenia patients has 

already identified key alterations of biological processes 

specific to human and murine muscle tissue [10, 11]. 

However, most studies have focused on local 

perturbations, rather than systemic implications of 

LMM at transcriptomic level. 

 

In this study, we aim to identify gene sets and biological 

processes that differentiate elderly women with LMM 

from age-matched controls. Our study identified 

predictors of LMM at transcriptomic level and revealed 

the molecular mechanisms underlying the disease. Gene 

co-expression analysis revealed gene modules correlated 

with relevant laboratorial and clinical data of the 

patients, providing rather than a classical transcriptomic 

profile analysis, relevant clinical information associated 

with LMM gene expression profiles. 

 

RESULTS 
 

Sample characteristics 

 

Using the definition of Newman et al. [1] and the 

residual previously defined for our population, we 

included forty elderly women in the study, of which 20 

had LMM (residual <−1.32) and 20 age and race-

matched controls without LMM. Lower weight, total 

and appendicular lean mass and lower BMI were 

observed in the LMM group (Table 1). No difference in 

abdominal circumference was found between the 

groups. A higher percentage of fat was observed in the 

group with LMM (median 41.63 (3.94) vs. 38.61 (4.18); 

p = 0.02 for LMM and controls respectively). Regarding 

associated chronic diseases and medications for chronic 

use, no differences were found between groups. 

Comparing the biochemistry between the groups, a 

significantly lower serum level of vitamin D (25OHD) 

(18.75 (7.06) vs. 24.15 (6.74) ng/ml; p = 0.018) and 

serum insulin (11.6 (5.7) vs. 17 (14.57) UI/mL; p = 

0.02) was observed in the LMM group. The participants 

included in this study are homogeneous in terms of 

lifestyle and habits. They reside in the same geographic 

region, and have the same socioeconomic, educational 

level and access to the same health system. As part of 

the SPAH cohort (São Paulo Ageing and Health Study) 

they were followed up in the city of São Paulo, and are 

routinely guided by medical doctors, medical students, 

and other health professionals from the University of 

São Paulo (USP), School of Medicine. Serum albumin 

levels were similar in both groups (4.65 ± 0.2 vs. 4.65 ± 

0.22 g/dL; p = 0.30 for LMM and control respectively) 

and were in the normal range (3.5–5.2 g/dL) suggesting 

a reasonable nutritional level. Regarding consumption 

of milk and derivative products, no difference was 

observed between the groups with LMM and control 

(median 527.1 vs. 553.2 mg/day; p = 0.75 for LMM and 

control respectively). All other characteristics are 

presented in Table 1. 

 

Discriminating transcript clusters and differential 

expression in LMM 

 

In this analysis, for simplicity purposes, transcript 

clusters are sometimes identified by their corresponding 

genes symbols. The logistic regression model adjustment 

identified 821 unique transcript clusters of which 565 

with positive coefficients (PPR) and 255 with negative 

coefficients (PNR) (Supplementary Table 1 and Figure 

1A). Differential expression analysis identified 56 and 

79 up- and down-regulated transcript clusters 

respectively (Supplementary Table 2). Among these 

transcript clusters, fifteen are also identified in the 

logistic regression model (Table 2). We then used 

unsupervised clustering of the normalized expression of 

the top 40 predictors to show their expression pattern 

between samples. This analysis stratifies the control and 

LMM groups in two different clusters (Figure 1B). The 
heat map of the expression profile shows a high 

homogeneity in each group when we consider this subset 

of 40 discriminating transcript clusters (Figure 1B). 



 

www.aging-us.com 20994 AGING 

Table 1. Clinical, anthropometric, biochemical and calcium score characteristics of the participants. 

Variables  
LMM 
n = 20 

Control 
n = 20 

p-value 

Clinical variables 

Age, years, mean (SD) 80.45 (4.44) 79.65 (3.76) 0.54 

Ancestry, n (%)  

1 Caucasian 10 (50) 10 (50) 

Black 10 (50) 10 (50) 

BMI, kg/m2, mean (SD) 28.17 (4.26) 32.68 (5.08) 0.004 

Physical activity, n (%)   

Low 5 (25) 0 (0) 

0.047 Moderate 10 (50) 16 (80) 

High 5 (25) 4 (20) 

Hypertension, n (%) 16 (80) 15 (75) 1.0 

Diabetes Mellitus, n (%) 6 (30) 3 (15) 0.45 

Dyslipidemia, n (%) 9 (45) 12 (60) 0.53 

Heart attack, n (%) 1 (5) 2 (10) 1.0 

Stroke, n (%) 2 (10) 1 (5) 1.0 

Osteoporosis, n (%) 8 (0.4) 11 (0.55) 0.53 

Hypothyroidism, n (%) 4 (20) 4 (20) 1.0 

Alcohol intake, n (%) 2 (10) 3 (15) 1.0 

Smoking, n (%) 1 (5) 1 (5) 1.0 

Medication 

AAS, n (%) 7 (35) 7 (35) 1.0 

ACE inhibitors, n (%) 5 (25) 8 (40) 0.50 

Beta blocker, n (%) 6 (30) 8 (40) 0.74 

Thiazide diuretic, n (%) 10 (50) 6 (30) 0.33 

Calcium antagonists, n (%) 2 (10) 6 (30) 0.23 

Statins, n (%) 7 (35) 11 (55) 0.34 

Antidepressants, n (%) 4 (20) 0 (0) 0.10 

Bisphosphonates, n (%) 8 (40) 8 (40) 1.00 

Corticoid, n (%) 1 (5) 0 (0%) 1.00 

Vitamin D supplement, n (%) 9 (45) 12 (60) 0.53 

Lean and Fat Mass 

Total lean mass, g, mean (SD) 
34294.25 
(4738.27) 

42698.73 (5344.11) <0.0001 

Appendicular lean mass, Kg, mean (SD) 13.13 (2.25) 18.26 (2.53) <0.0001 

Fat mass, g (SD) 26192.1 (5900.05) 27641.25 (9434.72) 0.31 

Fat, % (SD) 41.63 (3.94) 38.61 (4.18) 0.02 

Newman Residual, median (SD) −2.77 (1.47) 1.55 (1.88) <0.0001 

Laboratory variables 

25OHD, ng/mL, mean (SD) 18.75 (7.06) 24.15 (6.74) 0.018 

Total calcium, mg/dL, mean (SD) 9.86 (0.54) 9.61 (0.36) 0.09 
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iPTH, pg/dL, median (IQR) 61 (29.75) 50.5 (17) 0.48 

Alkaline phosphatase, U/L, median (IQR) 78 (31.25) 70 (37.25) 0.43 

Total phosphorus, mg/dL, mean (SD) 3.48 (0.32)  3.51 (0.37) 0.78 

Creatinine clearance, mL/min/1.73m2, median (IQR) 54.45 (16.65) 58 (37.82) 0.50 

Total cholesterol, mg/dL, mean (SD) 210.95 (39.86) 206.40 (41.34) 0.72 

LDL cholesterol, mg/dL, mean (SD) 123.35 (39.62) 127.30 (41.74) 0.76 

HDL cholesterol, mg/dL, mean (SD) 59.75 (14.88) 52.60 (16.53) 0.17 

Triglycerides, mg/dL, mean (SD) 139.20 (42.13) 150.75 (64.66) 0.51 

Lipoprotein A, mg/dL, median (IQR) 67 (97) 50 (67.5) 0.93 

Blood glucose, mg/dL, median (IQR) 101 (29.25) 93 (15.5) 0.62 

Serum insulin, UI/mL, median (IQR) 11.6 (5.7) 17 (14.57) 0.02 

C Reative Protein, mg/L, median (IQR) 1.9 (3.55) 2.4 (3.05) 0.52 

Albumin, g/dL, mean (SD) 4.65 (0.2) 4.65 (0.22) 0.30 

Ferritin, ng/mL, median (IQR)  131.65 (161.44) 192.6 (136.7) 0.2 

Serum uric acid, mg/dL, mean (SD) 4.89 (1.15) 5.61 (1.71) 0.13 

Agatston method   

0.5 

0, n (%) 8 (0.4) 4 (0.2) 

1–100, n (%) 4 (0.2) 6 (0.3) 

>100, n (%) 6 (0.3) 9 (0.45) 

ND  2 (0.1) 1 (0.05) 

Dietary intake 

Milk and derivatives*, mg/day, median (IQR) 527.1 (433.35) 553.2 (518.25) 0.75 

The Shapiro-Wilk test was used to evaluate the normality. The values of p are for comparisons of means (Student's t-test), 
median (Mann-Whitney test) or proportions (Chi-square test or Fisher's test). Values of p < 0.05 were considered significant. 
Abbreviations: 25OHD: 25-hydroxyvitamin D; BMI: body mass index; iPTH: intact parathyroid hormone, IQR: interquartile 
range; SD: standard deviation; ND: non-determined. *Milk and derivatives are presented as an estimated daily calcium 
ingested quantity. 

 
Support vector machine-based LMM classification 

model 

 

RFE algorithm discriminates a list of the 45 most 

informative variables from the discriminating 

transcripts clusters identified in the logistic regression 

adjustment. This subset of transcript clusters was used 

to train a SVM model with a polynomial kernel of 

degree 1. Model performance was evaluated in the test 

cohort and shows an accuracy of 0.70. This list of 45 

classifiers is enriched in differentially expressed 

transcript clusters based on their fold changes 

(Supplementary Table 3). 

 

Functional gene set enrichment highlights an 

alteration of muscle development and metabolism 

pathways in LMM 

 

Genes associated with the subset of transcript clusters 

with positive and negative regression coefficients were 

then used to perform to different gene set analyses with 

ClueGO in Cytoscape software. Using the lists of 

annotated genes, ClueGO identifies and clusters 

biological pathways and gene ontology terms that 

participate in the same biological function, thereby 

removing redundancy. The top significant and non-

redundant biological pathways and gene ontology terms 

associated with PPR genes were shown in Figure 2A. 

Muscle development pathways and metabolism 

ontology terms were overrepresented in this analysis. 

ClueGO shows few gene interactions between the 

different enriched gene set groups, suggesting an 

absence of hub genes involved in the simultaneous 

regulation of different pathways (Figure 2A). Genes 

with negative regression coefficients were associated 

with metabolism deregulation (Supplementary Figure 

1). Even though these analyses provide us interesting 
information about the mechanisms underlying the 

LMM, they did not reveal the human phenotypes that 

were associated with the observed alterations. 
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Human phenotype ontology (HPO) analysis reveals 

the involvement of immune and inflammatory 

alterations 

 

To gain additional insights into the phenotypes 

previously associated with the LMM discriminating 

genes (identified in the logistic regression analysis), a 

HPO analysis was performed with the full list of 

predictors using GenePattern [12]. Figure 2B shows 

several relevant phenotypes up-regulated in LMM. 

Phenotypes associated with immune system 

deregulation, inflammation and pathologies involving 

muscle disfunction were overrepresented in the HPO 

network. Interestingly, these phenotypes are highly 

 

 
 

Figure 1. Gene expression pattern from the logistical regression analysis. (A) The volcano plot was constructed using the full list of 
67528 transcript clusters analyzed. The top 821 transcripts were highlighted in blue (556 PPR) and green (255 PNR). A p-value of <0.01 and 
|beta| >1 was considered statistically significant. (B) The heat map shows the unsupervised clustering of the normalized expression 
pattern. The dendrogram indicates two clusters that stratified LMM and control group in distinct clusters. The right panel of the heat map 
shows the bar graph of beta coefficient values. Abbreviations: Beta: Estimated logistic regression coefficient; PPR: Predictor with Positive 
Relationship also called Up in panel A and B; PNR: Predictor with Negative Relationship also called Down in panel A and B. 
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Table 2. List of 15 differentially expressed transcript clusters identified in logistic regression model. 

Transcript Cluster Ensembl Genes Gene Symbol Biotype Beta FC 

TC0X001828.hg.1 ENSG00000157600 TMEM164 Protein coding 1.29 1.82 

TC0X000538.hg.1 ENSG00000157600 TMEM164 Protein coding 1.69 1.64 

TC0X000540.hg.1 ENSG00000265584 MIR3978 miRNA 1.81 1.63 

TC03001967.hg.1 ENSG00000200052 Y RNA misc RNA 1.79 1.57 

TC04001133.hg.1 ENSG00000252975 Y RNA misc RNA 2.9 1.56 

TC09000563.hg.1 ENSG00000200261 Y RNA misc RNA 1.41 1.54 

TC11000956.hg.1 ENSG00000282373 BIRC3 Protein coding −2.21 0.64 

TC08001180.hg.1 ENSG00000254165 AC090739.1 lncRNA −2.17 0.62 

TC01005703.hg.1 ENSG00000260948 AL390195.2 lncRNA −2.91 0.61 

TC0X002160.hg.1 ENSG00000166432 ZMAT1 Protein coding −2.33 0.6 

TC0X002160.hg.1 ENSG00000150347 ZMAT1 
Processed 
Transcript 

−2.33 0.6 

TC10002092.hg.1 ENSG00000023445 ARID5B Protein coding −1.75 0.59 

TC15000394.hg.1 
ENSG00000244879; 
ENSG00000284284 

GABPB1-AS1; 
MIR4712 

LncRNA; 
miRNA 

−1.52 0.56 

TC14002234.hg.1 ENSG00000211923 IGHD3-10 IG D gene −0.9 0.3 

Transcript clusters were ranked according to the fold change. Abbreviations: FC: Fold-change; Beta: Estimated logistic 
regression coefficient. 

 

connected, suggesting a tight relationship between them 

and highlighting a probable association of their 

common mediators with the physiological mechanisms 

that underlie LMM development. In addition, based on 

network connectivity analysis, the following genes were 

predicted as hub genes of the HPO network: (i) 

CLCNKB and KDSR (abnormality of endocrine 

system, glucose intolerance, abnormality of immune 

system physiology, abnormal inflammatory response, 

decreased body weight); (ii) KIAA0586 and OCRL 

(abnormality of endocrine system, abnormality of 

immune system physiology, abnormal inflammatory 

response, decreased body weight, abnormal phalanx 

morphology); (iii) FANCM (abnormality of endocrine 

system, abnormality of immune system physiology, 

decreased body weight, abnormal phalanx morphology); 

(iv) TGDS (abnormality of immune system physiology, 

abnormal inflammatory response, decreased body 

weight, abnormal phalanx morphology); (v) NDN 

(abnormality of endocrine system, glucose intolerance, 

abnormality of immune system physiology, decreased 

body weight). These genes are highly connected with 

most of the phenotypes and might play prominent role 

in the regulation of LMM. 

 

Prediction of the regulatory networks 

 
The regulatory network system upstream to the 

expression of the discriminating genes (with positive 

regression coefficients) was reconstructed using 

Expression2Kinase tool. This prediction tool allows us 

to identify in Figure 3A the top 20 predicted 

transcription factors (TFs) that can regulate the 

expression of the genes detected in this study (Figure 

3A). The circos diagram in Figure 3B represents the 

relationship between the top 2 TFs that target the largest 

number of genes identified in our study (49 and 42 

genes for FOXL1 and TCF4 respectively). We then 

analyzed the subnetworks of regulation and observed a 

common regulatory network pattern associated with 

TCF4 and HNF1A that was identified as a PPR 

(estimated coefficient β = 22.87; p-value = 0.007). The 

regulatory network in Figure 3C presents these TFs (red 

nodes); (ii) the intermediate proteins likely to be 

involved in the formation of a regulatory complex with 

these TFs (green nodes) and (iii) the kinases that are 

expected to be the activators of the regulatory 

complexes (dark blue nodes). This predicted regulatory 

network connects HNF1A and TCF4 and suggests a 

possibility of a co-regulatory system involving both TFs 

(Figure 3C). 

 

Gene modules detected by weighted gene co-

expression network analysis are correlated with 

patient's characteristics 

 

Fourteen co-expression modules were identified in the 
weighted co-expression analysis performed exclusively 

with the patient group. Correlation of clinical and 

laboratorial data with gene modules shows tight 
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relationship with relevant parameters (Figure 4A). Pink 

module is moderately correlated with both serum levels 

of vitamin D (r = 0.63, p-value = 0.004) and Agatston 

score (r = 0.51, p-value = 0.02). This module regroups 

genes involved in immune system regulation including: 

(I) innate immunity, phagocytosis, and neutrophil 

degranulation, (ii) B cell receptor and IL1 signaling 

pathways (Figure 4B). In contrast, green-yellow and 

light-green modules are negatively correlated with 

plasma level of vitamin D and body fat percentage 

 

 
 

Figure 2. Functional analysis of genes and human phenotypes associated with LMM. (A) Pathways that are associated with the 

gene discriminated in the logistic regression (with positive coefficient) are indicated by colored nodes. GSA terms are interconnected with 
their associated genes. Related GSA terms are indicated by the same color. (B) The human phenotype ontologies are presented in green 
and shared genes are represented as red (positive coefficient) and blue (negative coefficient) dots. Abbreviation: GSA: Gene Set Analysis. 
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(r = −0.58, p-value = 0.009 and −0.51, p-value = 0.05 

respectively). Both green-yellow and light-green 

modules are associated with ubiquitination mechanisms  

(Figure 4C). In addition, genes of green-yellow are 

involved in erythrocyte specific metabolism pathways 

and oxidoreduction processes (Supplementary Figure 1). 

 

 
 

Figure 3. Reconstruction of the predicted transcriptional regulatory network. TF regulatory network was reconstructed using 
Expression2Kinase tool. (A) Top 20 predicted TFs were presented and ranked based on their combined scores. The intensity of the red 
coloration is proportional to the combined scores. The ratio of the target genes (x axis) indicates the proportion of genes targeted by a 
determined TF. (B) The circos diagram shows the interaction between the top two predicted TFs (TCF4 in red and FOXL1 in blue), ranked by 
the ratio of target genes) and their targeted genes (gray). Both TFs target 16 common genes. (C) Co-regulatory network of TCF4 and HNF1A. 
The transcriptional regulatory network is presented with the transcription factors (TFs) in red, the intermediate protein that are predicted 
to interact with these TFs in green and the kinases in dark blue. 
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DISCUSSION 
 

Age-related LMM is a multiple factorial geriatric 

condition that is associated with known age-related 

conditions [5]. Despite its prevalence in older 

population and its impact on patients’ quality of life, 

cellular and biological processes associated with LMM 

are not fully investigated. This highlights the need for 

studies addressing in more detail the systemic molecular 

alterations in this condition to identify possible 

therapeutic targets. By performing transcriptomic 

analysis in elderly women with LMM, we were able to 

identify genes that discriminate LMM from matched 

controls and showed that alterations of muscle 

development, protein metabolism pathways, immune 

system and inflammation are involved in the 

pathogenesis of LMM. In addition, weighted gene co-

expression network analysis revealed a correlation of 

gene module involved in immunity pathways. 

 

Using human transcriptome microarray and a 

bioinformatic approach based on logistic regression 

analysis, we identified 821 transcript clusters (565 with 

positive coefficients (β coefficient >1 and p-value 

<0.01) and 255 with negative coefficients (β coefficient 

<−1 and p-value <0.01)) that discriminate LMM 

patients from age and race-matched controls. We took 

advantage of the performance of a machine learning 

method (Support Vector Machine) to further filter this 

list of predictors. Support Vector Machine identified 45 

classifiers of LMM with an accuracy 0.7. This approach 

has already been used in other scenario to classifier 

complex diseases [13, 14] based on gene expression 

profile due to its effectiveness and best performance 

with high dimensional data such as transcriptomic data. 

 

We observed that the identified genes by logistic 

regression are predominantly associated with muscle 

development and metabolic pathways (Figure 2A). In 

addition, human phenotypes associated with immune 

alteration and inflammation are also overrepresented 

(Figure 2B). These results reflect well-described 

perturbations associated with aging [15, 16] and have 

already associated with sarcopenia process and progress 

 

 
 

Figure 4. Weighted gene co-expression network analysis reveals modules correlated with patient´s characteristics. (A) 

Correlation matrix of detected gene modules with the characteristics of patients. Red color indicates positive correlation and blue color 
indicates negative correlation. Pink module is positively correlated with plasma levels of vitamin D and Agatston score. (B) Pink module is 
enriched with immune system pathways. (C) Green-yellow module is enriched with pathways associated with ubiquitination processes. 
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in several recent studies [6, 17]. Among the top ranked 

genes, there are two transcription factors (TF) FOXB1 

and HNF1A that can be involved in the regulation of 

key mechanisms underlying the process of LMM. Of 

note, using a regulatory network reconstruction 

approach, we identified a co-regulation network of 

HNF1A (Figure 3C) that is a TF with a wide range of 

functions [18] and TCF4 (a predicted TF). Together 

these TFs target 16 common genes identified in our 

study. In pancreas ß-islet cells, HNF1A contributes to 

insulin secretion in response to glucose and is 

associated with maturity-onset diabetes of the young-

like diabetes [19]. In our study we observed a low 

serum level of insulin in LMM group (11.6 vs. 17; p = 

0.02). TCF4 has been described as a key regulator of 

myogenesis [20]. However, their role in peripheral 

blood cells is uncertain. Thus, further detailed studies 

are necessary to investigate its contribution to LMM 

processes and progress. 

 

Although cellular and molecular mechanisms associated 

with LMM are not understood, inflammatory 

alterations, immune senescence and protein metabolism 

have been suggested to be involved in this process [17, 

21]. Ageing is generally associated with altered 

inflammation with increased levels of several pro-

inflammatory markers such as CRP, TNF-α, IL-6 and 

IL-1 [22, 23]. Moreover, cross sectional studies have 

suggested the increase of IL-6 and TNF-a in sarcopenia 

[24]. In our study, the analysis of human phenotypes 

associated with LMM reveals great contribution of 

immune system and inflammation perturbations (Figure 

2B). In addition, network analysis identified key hub 

genes (CLCNKB, KDSR, KIAA0586, OCRL, FANCM, 

TGDS, NDN) that make an inter-connection between 

most of the identified human phenotypes, suggesting 

their prominent role in the progression of LMM and a 

cross talk between immune-inflammation and muscle 

mass decline. 

 

Moreover, we identified by weighted gene co-expression 

network analysis gene modules correlated with patients’ 

relevant clinical and laboratory characteristics. This 

approach is complementary to the classical differential 

expression analysis and have the advantage to associate 

gene expression profiles with patients data, improving 

the interpretability of the finding [25, 26]. The weighted 

gene co-expression analysis identified 14 correlated 

modules (Figure 4A). A gene module involving immune 

system alterations was positively correlated with serum 

levels of vitamin D (r = 0.63, p-value = 0.004) and 

Agatston score (r = 0.51, p-value = 0.02). 

Epidemiological studies have shown that a poor vitamin 
D status is associated with an increased risk of several 

diseases, including autoimmune diseases [27]. Of note, a 

lower serum level vitamin D (25-OH) was observed in 

the group of LMM women (18.75 vs. 24.15 ng/ml, p = 

0.018), supporting the deterioration of the interplay 

between skeletal muscle and the immune system in this 

population [28]. An animal model suggests that vitamin 

D deficiency induces muscle waste and muscle protein 

degradation in ubiquitin proteasome pathway-dependent 

manner [29]. Interestingly, two gene modules negatively 

correlated with vitamin D serum levels and body fat 

percentage (r = −0.58, p-value = 0.009 and –0.51, p-

value = 0.05 respectively) are also associated with 

ubiquitination mechanisms, confirming the critical 

participation of protein metabolism pathways in the 

progression of sarcopenia [30, 31]. 

 

This study has a main limitation worth noting. Our 

analysis included a relatively small sample, limiting the 

extrapolation of the obtained results to the general 

population of older women. However these participants 

were recruited from a highly admixed population [32] 

suggesting the presence of a diversified genetic 

background. 

 

Our study provides new insights into the biological 

mechanisms and key mediators that can be involved in 

the development and/or progression of LMM in elderly 

women and highlights the contribution of vitamin D 

deficiency to age-related conditions. We identified lists 

of discriminating transcripts and weighted co-expression 

gene modules that can be involved in the pathogenesis of 

LMM by combining logistic regression analysis, a 

machine learning approach and network analysis. 

Finally, our results revealed that the well characterized 

association between inflammation, immunity and 

metabolic alterations and age-related muscle waste is 

also consistently observed at transcriptomic level. 

Noteworthy, our predicted models do not intend to 

highlight a relation of causality between the identified 

molecular interactions/mechanisms and the development 

of LMM. Instead, they provide a global view and new 

hypothesis-generating dataset, that could be explored in 

future investigations. To gain more insights into the 

mechanisms and regulatory interactions upstream to 

LMM development and progression, multiomics 

integrative approaches must also be considered in future 

studies. 

 

METHODS 
 

Subjects and microarray dataset 

 

The subjects of this study were selected from the 

population-based survey (São Paulo Ageing and Health 

[SPAH] study) followed by the bone metabolism 

outpatient clinic of the Faculty of Medicine of the 

University of Sao Paulo (FMUSP). Transcriptome 

analysis of a total of 90 elderly women from this 



 

www.aging-us.com 21002 AGING 

population were performed and described in our 

previous studies [33, 34] using microarray technology. 

From this microarray dataset publicly deposited in the 

GEO NCBI database under the accession number 

GSE152073, we selected 40 elderly women, of which 

20 were with LMM (defined by a Newman's residual 

<−1.32) and 20 age and race-matched controls (residual 

>−1.32). Clinical and laboratory characteristics of this 

cohort were extracted from our database. Race was 

defined based on the self-reported race of second-

generation ancestors, an approach previously used for 

the Brazilian population [35]. Physical activity was 

classified as (a) low, when not even housework is 

performed; (b) moderate, for regular housework, non-

regular walking, gardening; and (c) high, for regular 

housework and daily regular physical activity at least 

twice a week for 30 min [36]. This research was 

approved by the local Ethics in Research Committee of 

the Medicine Faculty of São Paulo University/Brazil. 

 

Transcriptomic analysis 

 

Microarray pre-processing and analysis 

Microarray dataset was extracted from the repository 

São Paulo Aging and Health Study (SPAH), our 

previously published database [33, 34]. Raw microarray 

datasets were deposited in GEO NCBI repository at the 

accession number GSE152073. Normalization was 

performed by the Robust Multichip Average (RMA) 

method [37] using Transcriptome Analysis Console 

(TAC) software. Probes are summarized into a single 

probe set corresponding to a single transcript cluster. 

Then probe sets were annotated using biomaRt package 

[38] in R environment. Considering the binary variable 

Low of Muscle Mass (LMM), we adjusted a logistic 

regression model with age as a covariate in R to 

discriminate genes that affect this dependent variable 

[34]. Genes with regression coefficients β ≥ 1 or β ≤ −1 

and p ≤ 0.01 were considered significant. In this 

approach a positive coefficient reflects an association 

with LMM. These discriminating variables were called 

predictor with positive relationship (PPR) in this study). 

Negative value reflects an association with LMM 

absence (predictor with negative relationship [PNR]). 

Additionally, a differential expression analysis was also 

performed using limma package to identify 

differentially expressed (DE) genes (transcript clusters) 

in the comparison of LMM vs. control group. We also 

applied the Empirical Bayes framework to estimate the 

more precise expression of each transcript cluster. All 

analyses were performed with R (version 3.7). 

 

Functional gene set analysis 

 

To facilitate the interpretation of the biological 

relevance of discriminating genes selected from the 

logistic regression adjustment, a functional gene set 

analysis (GSA) was performed using ClueGO [39]. 

ClueGO, a plug-in of Cytoscape [40], predicts the 

functional gene ontology terms and biological pathways 

associated with our genes list. Then, it organizes the 

detected pathways in functionally grouped networks to 

highlight the relevant biological relationship between 

them. We applied a fusion criterion to reduce the 

redundancy of the terms that have similar associated 

gene sets. To further filter the most important terms and 

pathways, two-sided hyper-geometric distribution tests 

was used and terms at a significant level Bonferroni 

adjusted p-value of ≤0.05 were selected. To gain more 

insights into the human phenotype previously associated 

with the gene sets, a single-sample GSEA (ssGSEA) 

was also performed with GenePattern [12, 41] using the 

Human Phenotype Ontology (HPO) database [42]. 

Differentially activated HPO were then identified by 

comparing ssGSA score between LMM and control 

using RankProd package [43]. 

 

Regulatory gene network prediction 

 

To refine the exploratory analysis, the prediction of the 

regulatory networks of transcription factors (TFs) and 

kinases underlying gene expression of the PPR gene list 

was performed using Expression2Kinases (X2K) tool 

[44]. Only the top 20 list of human TFs and kinases 

ranked based on p-value were selected. Transcriptional 

regulatory network was visualized using Cytoscape 

software [40]. 

 

Predictive model of LMM using support vector 

machine (SVM) 

 

We submitted the discriminating transcript clusters 

identified by logistic regression to Recursive Feature 

Elimination (RFE) algorithm using e1071 and caret 

package. RFE was applied to the same subset of 

microarray dataset included in the logistic regression 

analysis (20 LMM and 20 controls) to select the most 

informative features (transcript clusters) for the SVM 

model training. The Training cohort was consisted of 

70% of the SPAH dataset randomly selected and the 

remaining sample (test cohort) was used to validate the 

model. SVM model was trained with a polynomial 

kernel of degree 1. Model performance was evaluated 

based on its accuracy. 

 

Weighted gene co-expression network analysis 

(WGCNA) 

 

Gene co-expression analysis was performed using 
WGCNA method [45] as previously described elsewhere 

[26]. We included in this analysis the 20 LMM patients 

previously analyzed in the logistic regression analysis. To 
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construct the weighted gene co-expression networks, 

WGCNA determines the connection strengths between 

nodes (protein coding genes) by computing the pairwise 

correlations between their expression profiles and using a 

soft thresholding of the Pearson correlation. Modules of 

the weighted gene co-expression network constituted of 

groups of highly correlated genes were identified and 

correlated with relevant laboratorial and clinical data of 

the patients. Module highly correlated with patient's data 

were selected for further gene set enrichment analysis 

using ClueGO [39] plugin in Cytoscape [40]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Gene set analysis of genes with negative logistic regression. GSA terms are interconnected with their 

associated genes. Related GSA terms are indicated by the same color. Abbreviation: GSA: Gene Set Analysis. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 3. 

 

Supplementary Table 1. Transcript clusters discriminated by logistic regression. 

Supplementary Table 2. Differentially expressed transcript clusters. 

Supplementary Table 3. Classifiers identified by support vector machine. 

 

 

 

 

 

 


