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INTRODUCTION 
 

The main feature of osteoarthritis (OA) is the disease-

related increase in inflammatory mediators in the 

synovial membrane leading to pannus formation and 

resulting in cartilage degradation and bone destruction 

[1, 2]. The generation of proinflammatory cytokines 

and chondrolytic enzymes in the inflamed synovial 

tissue and cartilage degradation promotes inflammation 

in the synovium [3–5]. OA synovial fibroblasts 

(OASFs) enhance arthritic pathology by increasing 

levels of chondrolytic enzymes and inflammatory 

cytokines [6, 7]. 

 

Anti-inflammatory drugs, such as corticosteroids and 

NSAIDs, are typically the first choice of medication to 

lower ongoing inflammation and ameliorate the pain 

associated with arthritis [8, 9]. The low-grade, chronic 

inflammation experienced by patients with arthritis 

perpetuates the release of proinflammatory mediators 
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ABSTRACT 
 

The progression of osteoarthritis (OA) is mediated by adipokines, one of which is nesfatin-1, which is 
responsible for the production of inflammatory cytokines. However, how this molecule may affect the synthesis 
of the proinflammatory cytokine interleukin 1 beta (IL-1β) in OA is unclear. Our analyses of records from the 
Gene Expression Omnibus (GEO) dataset and clinical specimens of synovial tissue revealed higher levels of 
nesfatin-1 and IL-1β in OA samples compared with normal healthy tissue. We found that nesfatin-1 facilitates 
IL-1β synthesis in human OA synovial fibroblasts (OASFs) and suppresses the generation of micro-RNA (miR)-
204-5p, as the miR-204-5p levels in OA patients were lower than those in healthy controls. Nesfatin-1-induced 
stimulation of IL-1β in human OASFs occurred via the suppression of miR-204-5p synthesis by the PI3K, Akt, AP-
1 and NF-κB pathways. We suggest that nesfatin-1 is worth targeting in OA treatment. 
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that cause ongoing damage in the synovium, bone and 

cartilage [10, 11]. Among these inflammatory 

mediators, interleukin 1 beta (IL-1β) contributes to the 

pathogenesis of OA by facilitating proteolytic enzyme-

induced damage in the cartilage extracellular matrix [2]. 

Levels of IL-1β in OA synovial fluid and serum are 

higher than those in normal healthy individuals and 

have therefore been targeted by therapies such as the IL-

1β inhibitor canakinumab [12]. Reducing the activity of 

proinflammatory cytokines has been shown to slow the 

progression of arthritis [2], as these cytokines and also 

matrix- and cartilage-degrading enzymes account for 

pathohistological changes that occur in OA [13–15]. 

These inflammatory mediators are regulated by 

different signaling pathways in OA, such as the 

phosphoinositide 3-kinase (PI3K), protein kinase B 

(Akt), activator protein 1 (AP-1), and nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-

B) pathways [16]. In particular, the PI3K/Akt/mTOR 

signaling pathway is essential for maintaining joint 

health, and correlates with the degradation of cartilage 

in OA pathogenesis, as this pathway is involved in 

chondrocyte apoptosis, proliferation and cytokine 

production [16]. The phosphorylation of PI3K/Akt 

signaling can promote the translocation of AP-1 and 

NF-B into the nucleus and increases gene expression 

of proinflammatory mediators, such as prostaglandin E2 

and cyclooxygenase-2 [17–19]. Thus, examining the 

PI3K/Akt, AP-1 and NF-B pathways is expected to 

improve our understanding as to how to reduce 

inflammatory cytokine expression in OA. 

 

As the progression of OA is regulated by numerous 

microRNAs (miRs), modulating miRNA-mediated 

proinflammatory cytokine expression represents one 

therapeutic strategy for OA [20–23]. We have 

previously described how several miRNAs (including 

miR-let-7c-5p, miR-149-5p and miR-144-5p) inhibit the 

progression of OA disease [24, 25]. Similarly, other 

research has shown that the targeting of runt-related 

transcription factor 2 (Runx2) by miR-204-5p 

downregulates chondrocyte proliferation and 

ameliorates the OA development in rats [26]. Moreover, 

miR-204-5p downregulates levels of tumor necrosis 

factor-α (TNF-α), IL-6 and prostaglandin E2 and 

thereby decreases inflammatory responses in IL-1β-

treated human OASFs [27]. 

 

Adipose tissue is an endocrine organ that produces 

hormones as adipokines including adiponectin, leptin, 

resistin and nesfatin-1 [28]. Nesfatin-1 plays a crucial 

role in food intake and weight control [29] and regulates 

different cellular functions such as growth, migration, 

differentiation and apoptosis in mammalian cells [30]. 

Nesfatin-1 levels in serum and synovial fluid correlate 

with the severity of knee OA [31]. Nesfatin-1 also 

suppresses the destruction of cartilage and ameliorates 

OA in rats [32]. However, the effects of nesfatin-1 on 

IL-1β expression in OASFs is unknown. In this study, 

our comparison of nesfatin-1 and IL-1β levels found 

that both were higher in OA patients than in healthy 

normal controls, and our investigations revealed that 

nesfatin-1 promotes IL-1β synthesis in OASFs by 

suppressing miR-204-5p expression in the PI3K, Akt, 

AP-1 and NF-κB pathways. Targeting nesfatin-1 levels 

in synovial fibroblasts may assist in the management of 

OA disease. 

 

RESULTS 
 

Higher levels of nesfatin-1 and IL-1β expression in 

OA patients 

 

Concentrations of nesfatin-1 in human serum and 

synovial fluid reflect the severity of OA [31]. Gene 

Expression Omnibus (GEO) database records revealed 

higher levels of nesfatin-1 and IL-1β in synovial 

tissues from OA patients compared with samples from 

healthy controls (Figure 1A and 1B). Our clinical 

samples also confirmed higher levels of nesfatin-1 and 

IL-1β in serum from OA patients compared with 

serum from healthy individuals (Figure 1C and 1D), 

indicating that nesfatin-1 and IL-1β are associated with 

progression of OA. 

 

Nesfatin-1 increases IL-1β synthesis in human 

OASFs through the PI3K, Akt, AP-1 and NF-κB 

signaling pathways 

 

OASFs are critical for maintaining homeostasis of the 

synovial microenvironment [29]. Treatment of OASFs 

with nesfatin-1 increased messenger RNA (mRNA) 

synthesis in a concentration-dependent manner (Figure 

2A). Western blot and ELISA assays revealed that 

nesfatin-1 increased cellular and secreted IL-1β protein 

expression (Figure 2B–2D). The PI3K and Akt 

signaling cascade mediates IL-1β expression during the 

progression of arthritis [25]. Treating OASFs with 

either a PI3K inhibitor (Ly294002) or an Akt inhibitor 

(Akti) markedly antagonized nesfatin-1-induced IL-1β 

synthesis (Figure 3A and 3C). Similar results were 

observed when the cells were transfected with p85 or 

Akt small interfering RNAs (siRNAs) (Figure 3B and 

3C). Nesfatin-1 treatment time-dependently promoted 

p85 and Akt phosphorylation in OASFs (Figure 3D–

3F), indicating that the PI3K/Akt pathway regulates 

nesfatin-1-enhanced synthesis of IL-1β in human 

OASFs. 

 

AP-1 and NF-κB transcriptional activities regulate IL-

1β-mediated inflammatory responses [33]. Transfection 

of OASFs with an AP-1 inhibitor (tanshinone IIA) or 
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Figure 1. Higher levels of nesfatin-1 and IL-1β in OA synovial tissue than in tissue from healthy controls. (A and B) Levels of 
nesfatin-1 and IL-1β in normal and OA synovial tissues retrieved from the GEO dataset. (C and D) ELISA analysis showing higher serum levels 
of nesfatin-1 and IL-1β among OA patients compared with healthy controls. *p < 0.05 compared with normal synovial tissue. 

 

 
 

Figure 2. Nesfatin-1 enhances IL-1β production in human OASFs. OASFs were incubated with nesfatin-1 (0.1–1 ng/mL) and IL-1β 

mRNA and protein expression was examined by qPCR (A) and Western blot (B). Quantitative data for Western blot (C) and ELISA (D) assays. 
*p < 0.05 compared with the control group. 
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NF-κB inhibitors (PDTC and TPCK) effectively 

antagonized nesfatin-1-induced IL-1β expression 

(Figure 4A and 4C), as did siRNAs against c-Jun and 

p65 (Figure 4B and 4C), whereas nesfatin-1 facilitated 

the phosphorylation of c-Jun and p65 (Figure 4C–4F). 

Stimulation of OASFs with nesfatin-1 enhanced AP-1 

and NF-κB luciferase activity, which was reversed by 

the PI3K and Akt inhibitors (Figure 4G and 4H). These 

results indicate that nesfatin-1 promotes AP-1 and NF-

κB-dependent IL-1β production through the PI3K/Akt 

pathway. 

 

Inhibiting miR-204-5p expression regulates nesfatin-

1-enhanced stimulation of IL-1β production in 

human OASFs 

 

The mediation of IL-1β synthesis by miRNAs is crucial 

in the progression of OA [25]. Our search of online 

databases for miRNA target prediction data suggested 

that the three prime untranslated region (3′-UTR) of IL-

1β mRNA includes 19 promising candidate miRNAs 

(Figure 5A and 5B). Treatment of OASFs with nesfatin-

1 significantly lowered miR-204-5p expression (Figure 

5B) and, at the concentrations of 0.1, 0.3, 0.5 or 1 

ng/mL, markedly inhibited miR-204-5p synthesis in a 

concentration-dependent manner (Figure 5C). The GEO 

dataset also revealed significantly lower levels of miR-

204-5p in OA synovial tissue compared with tissue 

from healthy controls (Figure 5D). Transfection of 

OASFs with miR-204-5p mimic markedly inhibited 

nesfatin-1-promoted facilitation of IL-1β production 

(Figure 5E and 5F). Next, we observed that the PI3K, 

Akt, AP-1 and NF-κB inhibitors all antagonized 

nesfatin-1-induced inhibition of miR-204-5p synthesis 

(Figure 5G). These results indicate that nesfatin-1 

increases IL-1β production by suppressing miR-204-5p 

synthesis in the PI3K, Akt, AP-1 and NF-κB signaling 

pathways. 
 

DISCUSSION 
 

OA is well recognized for its characteristics of joint 

degradation and synovial membrane inflammation [34]. 

OASFs in the joint microenvironment are critical to the 

progression of OA, increasing proinflammatory 

cytokine production, which leads to cartilage 

degradation and bone erosion [34]. Numerous 

commercially available arthritis therapeutics target 

inflammatory cytokines, including IL-1β [35]. 

Adipokines are produced and secreted by adipose tissue 

and are involved in many physiological activities, 

including glucose and lipid metabolism, and also 

immune and inflammatory responses [36]. In OA, 

adipokines (including leptin, adiponectin and resistin) 

 

 
 

Figure 3. The PI3K/Akt pathways mediate nesfatin-1-induced stimulation of IL-1β synthesis. (A–C) OASFs were treated with a 

PI3K inhibitor (Ly2942002) or Akt inhibitor (Akti), or transfected with p85 or Akt siRNAs, then stimulated with nesfatin-1. IL-1β expression 
was examined by qPCR and ELISA. (D) Cells were incubated with nesfatin-1 for the indicated time intervals; p85 and Akt phosphorylation 
was examined by Western blot. (E–F) Quantitative data for p-p85 and p-Akt expression. *p < 0.05 compared with the control group; #p < 
0.05 compared with the nesfatin-1-treated group. 
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are considered to be useful therapeutic targets, as they 

can regulate proinflammatory cytokine expression and 

thus influence OA development [37–40]. A recent study 

reported that adiponectin is capable of inducing gene 

expression of monocyte chemoattractant protein-1 

(MCP-1), IL-6 and matrix metalloproteinase 1 (MMP-

1) in human OA chondrocytes [38], while leptin 

increases levels of IL-1, IL-8 and MMPs in 

chondrocytes as well as IL-6 and MMP-13 expression 

in synoviocytes, so contributes to cartilage catabolism 

in OA [41]. Resistin can activate the p38-MAPK, NF-

κB and cyclic AMP (cAMP)-protein kinase A (PKA) 

signaling pathways and thus stimulate proinflammatory 

cytokine and chemokine expression in OA disease [42]. 

Nesfatin-1 has demonstrated anti-inflammatory 

activities [32], although the effect of nesfatin-1 on IL-

1β production in OA is uncertain. Our study 

demonstrates that human OA synovial tissue contains 

higher levels of nesfatin-1 and IL-1β compared with 

tissue from healthy individuals. Cellular investigations 

revealed that nesfatin-1 promotes IL-1β synthesis. We 

also confirmed that nesfatin-1 increases IL-1β 

concentrations in human OASFs by suppressing IL-1β 

synthesis in the PI3K/Akt, AP-1 and NF-κB pathways. 

 

PI3K/Akt activation is crucial in the adjustment of 

numerous cellular roles [43]. Notably, the PI3K/Akt 

signaling cascade mediates IL-1β expression during the 

progression of arthritis disease [25, 44, 45]. Our data 

show that nesfatin-1 promotes the phosphorylation of 

 

 
 

Figure 4. The AP-1 and NF-κB pathways mediate nesfatin-1-induced stimulation of IL-1β. (A–C) OASFs were treated with an AP-

1 inhibitor (tanshinone IIA) or NF-κB inhibitor (PDTC and TPCK), or transfected with c-Jun or p65 siRNAs, then stimulated with nesfatin-1. IL-
1β expression was examined by qPCR and ELISA. (D) Cells were incubated with nesfatin-1 for the indicated time intervals; c-Jun and p65 
phosphorylation was examined by Western blot. (E–F) Quantitative data for p-c-jun and p-p65 were shown. (G and H) Cells were treated 
with indicated inhibitors then stimulated with nesfatin-1, and AP-1 and NF-κB luciferase activity was examined. *p < 0.05 compared with 
the control group; #p < 0.05 compared with the nesfatin-1-treated group. 
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PI3K and Akt, while their respective inhibitors inhibit 

nesfatin-1-induced IL-1β production in human OASFs. 

This was confirmed by similar results with p85 and Akt 

siRNAs. Our evidence reveals that activation of 

PI3K/Akt signaling controls nesfatin-1-enhanced 

promotion of IL-1β synthesis during OA development. 

 

Numerous transcription factor binding elements have 

been reported in the promoter site of IL-1β [46, 47]. In 

particular, AP-1 and NF-κB mediate IL-1β transcription 

and inflammatory responses [25, 46]. We found that 

inhibitors of AP-1 (tanshinone IIA) and NF-κB (PDTC 

and TPCK) suppressed nesfatin-1-induced production 

of IL-1β in human OASFs. Confirmation of these 

effects by genetic inhibition using c-Jun and p65 

siRNAs indicated that AP-1 and NF-κB transcriptional 

activation is mediated by nesfatin-1-induced synthesis 

of IL-1β. We also observed that nesfatin-1 enhances c-

Jun and p65 phosphorylation, as well as AP-1 and NF-

κB luciferase activities. Pharmacological inhibitors of 

PI3K and Akt antagonized nesfatin-1-mediated 

activities, suggesting that nesfatin-1 promotes AP-1 and 

NF-κB-dependent IL-1β production and inflammatory 

responses through PI3K/Akt signaling. 

 

 
 

Figure 5. Inhibiting miR-204-5p expression regulates nesfatin-1-induced stimulation of IL-1β production in human OASFs. (A 
and B) miRNA target prediction software was used to identify miRNAs that potentially bind to the IL-1β 3’-UTR plasmid. (C) OASFs were 
incubated with nesfatin-1 and miR-204-5p levels were examined by qPCR. (D) Levels of miR-204-5p in normal and OA synovial tissues 
retrieved from the GEO dataset. (E and F) Cells were transfected with miR-204-5p mimic, then stimulated with nesfatin-1. IL-1β expression 
was examined by qPCR and ELISA. (G) Cells were treated with PI3K, Akt, AP-1 and NF-κB inhibitors, then stimulated with nesfatin-1 prior to 
qPCR analysis of miR-204-5p levels. *p < 0.05 compared with the control group; #p < 0.05 compared with the nesfatin-1-treated group. 
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miRNAs post-transcriptionally control gene synthesis 

[48]. During the development of arthritis disease, 

aberrant miRNA generation regulates inflammatory 

cytokine production and cartilage catalysis [48–50]. In 

particular, the mediation of IL-1β synthesis by miRNAs 

facilitates the progression of OA [25]. Our analysis of 

open-source databases identified 19 miRNAs that 

interfere with IL-1β transcription. Nesfatin-1 markedly 

inhibited levels of miR-204-5p expression. The analysis 

of records from the GEO database also found lower 

miR-204-5p levels in OA patients than in healthy 

controls. We enhanced miR-204-5p synthesis in human 

OASFs by transfecting them with a specific miR-204-

5p mimic, which markedly inhibited IL-1β expression 

and cellular inflammatory responses. miR-204-5p 

expression was negatively associated with levels of IL-

1β and proinflammatory cytokines in OA. Moreover, 

we found that inhibitors of PI3K (Ly2940002), Akt 

(Akti), AP-1 (tanshinone IIA) and NF-κB (PDTC and 

TPCK) can increase levels of miR-204-5p expression in 

human OASFs treated with nesfatin-1. Thus, the results 

indicated that miR-204-5p synthesis can be regulated by 

the PI3K/Akt pathway by facilitating the transcription 

of AP-1 and NF-κB into the nucleus of nesfatin-1-

treated human OASFs. Thus, our evidence has 

identified that miR-204-5p exhibits novel anti-

inflammatory properties, although the mechanisms of 

OA disease are complex and we only examined the in 

vitro effects of nesfatin-1 in human OASFs. Future 

work is needed to ascertain the in vivo effects of 

nesfatin-1 in OA. We suggest that further research 

should screen for a drug that can inhibit nesfatin-1 

expression in inflammatory diseases such as OA. 

 

In conclusion, our study has identified that nesfatin-1 

facilitates IL-1β production in human OASFs by 

suppressing miR-204-5p synthesis in the PI3K/Akt, AP-

1 and NF-κB pathways (Figure 6). We believe that 

targeting nesfatin-1 may assist with the management of 

OA disease. 

 

 
 

Figure 6. Schema illustrating the effects of nesfatin-1 upon IL-1β synthesis during OA progression. Nesfatin-1 promotes IL-1β 
synthesis in human OASFs by suppressing miR-204-5p synthesis in the PI3K, Akt, AP-1 and NF-κB signaling pathways. 
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MATERIALS AND METHODS 
 

Materials 

 

Nesfatin-1 (GTX00739, polyclonal), IL-1β (GTX74034, 

polyclonal), β-actin (GTX109639, polyclonal), p85 

(GTX111068, polyclonal), Akt (GTX121937, 

polyclonal), c-Jun (GTX112974, polyclonal) and p65 

(GTX102090, polyclonal) antibodies were purchased 

from GeneTex (Hsinchu, Taiwan). We bought ON-

TARGETplus siRNAs from Dharmacon (Lafayette, 

CO, USA). qPCR primers and probes, as well as PCR 

Master Mix, were bought from Applied Biosystems 

(Foster City, CA, USA). The phosphorylated forms of 

p85 (17366, polyclonal), Akt (4060, polyclonal), c-Jun 

(9165, polyclonal) and p65 (3033, polyclonal) 

antibodies were bought from Cell Signaling (Danvers, 

MA, USA). AP-1 and NF-kB luciferase plasmids were 

purchased from Stratagene (La Jolla, CA, USA). 

TRIzol, a reverse transcription kit and Lipofectamine 

2000 were purchased from Invitrogen (Carlsbad, CA, 

USA). Recombinant human nesfatin-1 and the IL-1β 

ELISA kit (900-K95) were purchased from PeproTech 

(Rehovot, Israel). Other chemicals not already 

mentioned were bought from Sigma-Aldrich (St. Louis, 

MO, USA). Pharmacological inhibitors for PI3K (1 µM 

LY294002 catalog number: 440202), Akt (1 µM Akti, 

catalog number: A6730), c-Jun (10 µM, Tanshinone IIA 

catalog number: T4952), p65 (3 µM TPCK catalog 

number: T4376; 1 µM PDTC, catalog number: P8765) 

were supplied by Sigma-Aldrich (St. Louis, MO, USA). 

 

Cell culture 

 

OASFs were obtained from OA patients synovial 

tissues using collagenase (10 %) treatment and cultured 

in Dulbecco's Modified Eagle Medium (DMEM; 

Invitrogen) contain 10% (v/v) fetal bovine serum (FBS), 

50 U/L penicillin, 50 µg/mL streptomycin and 

glutamine, and were maintained at 37°C in a humidified 

atmosphere of 5% CO2, as described in previous studies 

[44]. 

 

Bioinformatics analysis 

 

Gene level profiles in OA and normal synovial tissue 

were obtained from the GEO database and analyzed for 

levels of nesfatin-1 and IL-1β expression. 

 

Collection of clinical samples 

 

Study approval by the Institutional Review Board (IRB) 

of China Medical University Hospital and all 

participants provided written informed consent before 

study enrolment (Approval Number: MUH108-REC3-

039). Clinical samples were taken from 8 patients 

undergoing total knee arthroplasty for OA and from 8 

patients undergoing arthroscopy after trauma/joint 

derangement (who served as healthy controls). 

 

Transfection siRNA and miRNA mimic 

 

OASFs were transfected with siRNAs (control, PI3K, 

Akt, c-Jun and p65) or miR-204-5p mimic (20 µM) for 

24 h using Lipofectamine 2000 (Invitrogen, Waltham, 

MA USA), as described in our previous study [51]. 

 

Western blotting analysis 

 

SDS-PAGE resolved the total proteins, which were then 

transferred to the PVDF membranes, as per our 

previous publications [52–55]. The PVDF membranes 

were blocked with 4% non-fat milk in PBST for 1 h 

before incubating them with primary antibodies for 1 h, 

followed lastly by 1 h of incubation with HRP-

conjugated secondary antibodies. Finally, we examined 

the immunoblot band using an imaging system 

(ImageQuant™ LAS 4000). 

 

q-PCR analysis 

 

Total RNA was extracted from OASFs with TRIzol 

agent and then transformed into complementary DNA 

using a reverse transcription kit. We conducted the 

qPCR analysis using PCR Master Mix. We used the 

SYBR® RT-PCR kit and Mir-X™ miRNA First-Strand 

Synthesis for reverse transcription of miRNAs. Analysis 

followed previous protocols [56–58]. 

 

ELISA assay 

 

OASFs were treated with pharmacological inhibitors or 

transfected with siRNAs before being treated with 

nesfatin-1 for 24 h. IL-1β levels in the medium were 

then examined using the IL-1β ELISA kit, according to 

the manufacturer’s procedures. 

 

Luciferase assay 

 

OASFs were transfected with AP-1 or NF-κB luciferase 

plasmids (Stratagene; St. Louis, MO, USA) using 

Lipofectamine 2000, then stimulated with 

pharmaceutical inhibitors and nesfatin-1. Luciferase 

activity was examined according to our previous reports 

[5, 59, 60]. 

 

Statistical analysis 

 

Values are shown as the mean ± standard deviation 
(S.D.). Significant differences between each group were 

assessed by the Student’s t-test. All p values <0.05 were 

considered to be significant. 
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