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INTRODUCTION 
 

Gallbladder cancer is reported to be the most aggressive 
and common pathological type of biliary tract cancer 

word widely. And surgical resection is reported to be 

the only potentially curative approach [1, 2]. 

Unfortunately, majority of gallbladder cancer patients 

are diagnosed when they are at advanced stages, since 

patients present with metastasis and other symptoms at 

a late stage [3, 4]. Previous studies report that the 5-year 

survival rate for GBC is 13%, and the median survival 

time is below 1 year [5]. Therefore, novel drugs and 
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ABSTRACT 
 

Background: Melatonin is an indolic compound mainly secreted by the pineal gland and plays a vital role in the 
regulation of circadian rhythms and cancer therapy. However, the effects of melatonin in gallbladder cancer 
(GBC) and the related mechanism remain unknown. 
Methods: In this study, the antitumor activity of melatonin on gallbladder cancer was explored both in vitro 
and in vivo. After treatment with different concentrations of melatonin, the cell viability, migration, and 
invasion of gallbladder cancer cells (NOZ and GBC-SD cells) were evaluated by CCK-8 assay, wound healing, and 
Transwell assay. 
Results: The results showed that melatonin inhibited growth, migration, and invasion of gallbladder cancer 
cells. Subsequently, the assays suggested that melatonin significantly induced apoptosis in gallbladder cancer 
cells and altered the expression of the apoptotic proteins, including Bax, Bcl-2, cytochrome C, cleaved caspase-
3, and PARP. Besides, the intracellular reactive oxygen species (ROS) was found to be upregulated after 
melatonin treatment in gallbladder cancer cells. Melatonin was found to suppress the PI3K/Akt/mTOR signaling 
pathway in a time-dependent manner by inhibiting the phosphorylation of PI3K, Akt, and mTOR. Treatment 
with N-acetyl-L-cysteine (NAC) or 740 Y-P remarkably attenuated the antitumor effects of melatonin in NOZ and 
GBC-SD cells. Finally, melatonin suppressed the growth of GBC-SD cells in an athymic nude mice xenograft 
model in vivo. 
Conclusions: Our study revealed that melatonin could induce apoptosis by suppressing the PI3K/Akt/mTOR 
signaling pathway. Therefore, melatonin might serve as a potential therapeutic drug in the future treatment of 
gallbladder cancer. 
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therapeutic targets for inoperable patients with GBC are 

urgently needed. 

 

Melatonin has been identified as a crucial amine 

hormone that is secreted by the pineal gland and 

gastrointestinal tract. Melatonin has been reported to 

regulate the circadian rhythm and immune functions [6, 

7]. The synthesis and secretion of melatonin are 

controlled by the light/night clock, meaning that light 

suppresses melatonin synthesis while darkness 

stimulates its production. After hydroxylation and 

decarboxylation, tryptophan synthesizes serotonin (5-

hydroxytryptamine) and this process is regulated by 

tryptophan hydroxylase and decarboxylase [8]. 

Serotonin is then acetylated, methylated, and converted 

to melatonin in the pineal gland [9]. Recently, 

accumulating evidence has revealed that melatonin 

suppresses tumorigenesis, metastasis, and drug 

resistance in multiple cancers [10–12]. Melatonin 

restrains the nuclear translocation of NF-κB to prevent 

excessive proliferation in lung and liver cancers [13, 

14]. Melatonin partly induces apoptosis in pancreatic 

cancer by upregulating Bax expression [15]. By 

reducing the expression of iNOS and COX-2, melatonin 

restricts inflammatory damaging effects, thus inhibiting 

tumor progression in breast cancer [16]. Melatonin 

disrupts the tumor blood vessel formation in renal 

adenocarcinoma by decreasing VEGF [17]. The 

relationship between melatonin and gallbladder cancer 

has however not been clearly established. 

 

We evaluated the inhibitory effects of melatonin on 

gallbladder cancer cell proliferation. Melatonin induced 

cell apoptosis by suppressing the PI3K/Akt/mTOR 

signaling pathway. Therefore, melatonin might be an 

effective treatment for gallbladder cancer. 

 

MATERIALS AND METHODS 
 

Reagents and antibodies 

 

Melatonin (HY-B0075) and 740 Y-P (HY-P0175) were 

bought from MedChemExpress (MCE, China). A 

1mol/L stock solution was attained by dissolving 

melatonin in dimethyl sulfoxide (DMSO), which was 

then kept at −20°C in the dark. The DMSO and N-

acetyl-L-cysteine (NAC) were provided by the 

Beyotime (Beyotime Institute of Biotechnology, 

Shanghai, China). The Cell Counting Kit-8 (CCK-8) 

was bought from US EVERBRIGHT INC. The primary 

antibodies used in this study included Bax (ab32503, 

Abcam, Cambridge, MA, USA), Bcl-2 (ab32124, 

Abcam, Cambridge, MA, USA), Cytochrome C 

(ab76237, Abcam, Cambridge, MA, USA), Cleaved 

Caspase-3 (9662, Cell Signaling Technology Inc, CST, 

MA, USA), PI3K (AB3263, Technology, Shanghai, 

China), phospho-PI3K (CY6427), phospho-Akt 

(AY0421), and Phospho-mTOR (CY5996). The HRP-

linked goat anti-mouse and anti-rabbit secondary 

antibodies were also bought from CST. 

 

Cell lines and culture 

 

Gallbladder cancer cell lines (NOZ and GBC-SD) were 

acquired from the Cell Bank of the Chinese Academy of 

Sciences (Shanghai, China). 

 

They were incubated in Dulbecco’s Modified Eagle 

Medium and RPMI-1640 medium (Solarbio Life 

Science, Beijing, China) with 10% fetal bovine serum 

(FBS; HyClone, Utah, USA), 100 mg/L streptomycin 

and 100 U/mL penicillin. Incubation at 37°C was done 

in a 5% CO2 atmosphere. Logarithmic growth phase 

cells were obtained and used in the experiment. 

 

Cell viability assay 

 

The anti-proliferative effects of melatonin were detected 

by CCK-8 assay in gallbladder cancer cells. Briefly, the 

NOZ and GBC-SD cells were seeded in 96-well plates 

(5 × 103/well) followed by treatment with 200 μL cell 

culture medium containing varying concentrations of 

melatonin (0, 0.5, 0.75, 1, 1.5, 2, 2.5, and 3 mM) for  

24 h. Then the GBC-SD and NOZ cells were subjected 

to 1 mM melatonin treatment for different time (0, 12, 

24, and 48 h). Then, the pre-treatment with 2 mM NAC 

for 1 h was conducted before treatment of the GBC-SD 

and NOZ cells with 1 mM melatonin. Co-treatment with 

melatonin (1 mM) and 740 Y-P (30 uM) for 48 h were 

also conducted. Finally, CCK-8 (10 μL) was added to 

each of the wells and the cells were cultured for 2 h. 

Optical density (OD) at 450 nm was measured by a 

Varioskan LUX Multimode Microplate Reader (Thermo 

Fisher Scientific, USA). 

 

Colony formation assay 

 

The NOZ and GBC-SD cells were cultured in 6-well 

plates (1 × 103 cells/well) with or without treatment of 1 

mM melatonin. After 2 weeks incubation, PBS was 

used to wash the 6-well plates after which they were 

methanol stained. Then, staining of colonies was done 

using crystal violet solution and counted. 

 

Wound healing assay 

 

The gallbladder cancer cells were harvested and 

cultured in 6-well plates. At an 85% cell density, a 

wound was scratched using a 200 μL plastic tip along 
the scratch line as described [18]. GBC-SD and NOZ 

cells were cultured in a medium with 2% FBS with 

melatonin (1 mM). PBS was used to wash the cells, 
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twice, to remove the cell debris. Finally, photos were 

taken at 0 and 48 h to calculate wound closure 

percentage. 

 

Cell migration and invasion assay 

 

The tumor cell migration analysis was detected by 

Transwell filters (Corning, NY, USA) while invasion 

analysis was done using the Matrigel invasion chamber 

(BD Biosciences, NJ, USA) as previously described 

[19]. Pretreatment of GBC-SD and NOZ cells was done 

using melatonin (1 mM) for 24 h. Cells were digested, 

resuspended, and seeded in the upper chamber with 

serum-free media (200 μL). Then, the lower chamber 

was supplemented with 500 μL of the medium (20% 

FBS) followed by 24 h of incubation. Finally, cells that 

transferred to the lower chamber were fixed and stained 

using 1% crystal violet. Images were obtained from five 

random fields to count the cells.  

 

Cell apoptosis assay 

 

Cell apoptosis rate was assessed using YF®488-Annexin 

V/PI double staining Apoptosis Kit (US EVERBRIGHT 

INC., San Ramon, USA). Briefly, 2 ml GBC-SD and 

NOZ cells suspension were cultured in six-well plates 

(1 × 105 cells/well) and incubated in the presence of 

melatonin (1 mM) for 48 h. The harvested cells were 

washed twice using PBS and stained using binding 

buffer (500 μL) containing 5 μL PI and 5 μL YF®488-

Annexin V for 15 min in the dark [20]. Sample 

assessments were finally done using a FACSCanto™ 

Flow Cytometer (BD Biosciences, San Jose, USA) and 

apoptotic cell percentage computed. 

 

Measurement of cellular reactive oxygen species 

(ROS) 

 

Intracellular ROS level was assessed with the Reactive 

Oxygen Species Assay Kit (Beyotime Institute of 

Biotechnology, China). Briefly, the tumor cells were 

cultured in 6-well plates followed by melatonin (1 mM) 

treatment for 48 h. Then, cells were incubated with the 

serum-free medium supplemented with DCFH-DA (10 

μM). After 30 min, cells were washed twice using PBS 

and imaged by fluorescent microscopy (BX63, 

Olympus Corporation, Japan) at 488 nm excitation 

wavelength. 

 

Western blot analysis 

 

Treated gallbladder cancer cells were obtained and then 

lysed with RIPA Buffer (Beyotime Institute of 
Biotechnology, China) supplemented with 1 mM 

Phenylmethanesulfonylfluoride (PMSF). After 

denaturation at 100°C for 10 min, concentrations of 

proteins were assessed with the BCA Protein Assay Kit 

(#7780, Cell Signaling Technology Inc, CST, MA, 

USA) as described [21]. The equal total protein (30 μg) 

amounts were loaded to SDS-PAGE gel (10%) and 

blotted onto a nitrocellulose (NC) membrane (Millipore, 

Merck KGaA, Darmstadt, Germany). After blocking 

with skim milk (5%), the NC membrane was 

immunoblotted at 4°C in the presence of primary 

antibodies overnight. Then, the membrane was washed, 

incubated for 2 h in the presence of a HRP-conjugated 

secondary antibody. Finally, the protein bands were 

visualized with the Image Lab system (Bio-Rad 

Laboratories, Inc.,). Expression levels of GAPDH or 

beta-actin were used as controls. 

 

Xenograft studies 

 

The male BALB/c-nu mice (6 weeks old) were procured 

from Hunan Slack Scene of Laboratory Animal Co., Ltd 

(Hunan, China) and raised in a specific pathogen-free 

(SPF) environment. This study was permitted by the 

Ethical Committee of Experimental Animals of 

Zhengzhou University. 5 × 106 GBC-SD cells in PBS 

(200 μL) were subcutaneously administered into the 

right-back of every mouse [22]. Then, mice were 

randomized into two groups (six mice in each group) 

after which treatment was initiated at a tumor volume of 

40 mm3. Saline and 5 mg/kg melatonin were injected 

intraperitoneally into GBC-SD-bearing mice daily. 

Mice weights as well as tumor volumes were assessed 

every 3 days. At a tumor volume of about 900 mm3, 

mice were sacrificed and tumor tissues weighed. 

 

Statistical analysis 

 

Analyses were done using the SPSS software (version 

23.0, Chicago, IL, USA). Comparison of means 

between groups was done by the Unpaired Student’s  

t-test. Three biological replicates were performed and 

significance was determined at p ≤ 0.05, unless 

otherwise specified. 

 

Availability of data and materials 

 

The data generated and analyzed during the current 

study are available from the corresponding author on a 

reasonable request. 

 

RESULTS 
 

Melatonin reduces GBC-SD and NOZ cells cell 

viability 

 

Gallbladder cancer cells were treated with varying 

melatonin concentrations (0, 0.5, 0.75, 1, 1.5, 2, 2.5, and 

3 mM) for 48 h. To identify the anti-proliferative effect 
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of melatonin on NOZ and GBC-SD cells, we detected 

the cell viability using the CCK-8 assay (Figure 1A, 

1B). Tumor cells were then treated with melatonin (1 

mM) at different times (0, 12, 24, and 48 h). The results 

showed that 1 mM melatonin dose-dependently 

markedly inhibited the cell viability of gallbladder 

cancer cells (Figure 1C, 1D). Moreover, the colony 

formation experiment revealed that treatment with 

melatonin (1 mM) suppressed cell clonogenicity in 

NOZ and GBC-SD cells (Figure 1E, 1F). Therefore, 1 

mM was selected as the appropriate concentration for 

subsequent experiments. 

 

Melatonin inhibits gallbladder cancer cells motility 

and invasion 

 

Since cellular motility and invasiveness are key steps in 

cancer metastasis, we examined the motility as well as 

 

 
 

Figure 1. Melatonin inhibits proliferation in GBC-SD and NOZ cells. (A) Cell viability of GBC-SD cells after treatment with different 

melatonin concentrations (0, 0.5, 0.75, 1, 1.5, 2, 2.5, and 3 mM) for 24 hours. (B) Cell viability of NOZ cells after treatment with different 
melatonin concentrations (0, 0.5, 0.75, 1, 1.5, 2, 2.5, and 3 mM) for 24 hours. (C) Cell viability of GBC-SD cells after treatment with 1 mM 
melatonin at different times (0, 12, 24, 48 h) by CCK-8 assay. (D) Cell viability of NOZ cells after treatment with 1 mM melatonin at different 
times (0, 12, 24, 48 h) by CCK-8 assay. (E) Colony formation assay of GBC-SD cells with or without 1 mM melatonin treatment for 14 days. 
(F) Colony formation assay of NOZ cells with or without 1 mM melatonin treatment for 14 days. Three biological replicates were performed. 
Data are presented as mean ± SD. Mel, melatonin; ***P < 0.001. 
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invasion of gallbladder cancer cells treated with 

melatonin (1 mM). Treatment with melatonin (1 mM) 

restrained the movement of NOZ and GBC-SD cells 

(Figure 2A). Mean percentage of wound closure was 

approximately 21.7% and 17.7%, respectively (Figure 

2B). In the Transwell assay, both tumor cell migration 

as well as invasion abilities were restricted. The results 

in Figure 2C and 2D suggest that fewer GBC-SD cells 

could traverse the membrane when treated with 

melatonin (1 mM). And melatonin (1 mM) significantly 

decreased the migration as well as invasive abilities of 

NOZ cells (Figure 2E, 2F). Taken together, the data 

showed that melatonin successfully suppressed 

gallbladder cancer cell motility as well as invasion. 

 

Melatonin promotes ROS production and apoptosis 

induction in gallbladder cancer cells 

 

To investigate the anti-proliferation mechanisms of 

melatonin on gallbladder cancer cells, Annexin V and 

 

 
 

Figure 2. Melatonin suppresses the migration and invasion of gallbladder cancer cells. (A) The wound-healing assay in GBC-SD 
and NOZ cells treated with or without 1 mM melatonin for 48 h. (B) The percentage of wound closure in GBC-SD and NOZ cells. (C) The 
migration and invasion assay in GBC-SD cells treated with or without 1 mM melatonin. (D) Transwell assays assessed GBC-SD cell number 
per filed. (E) The migration and invasion assay in NOZ cells treated with or without 1 mM melatonin. (F) Transwell assays assessed NOZ 
cell number per filed. Three biological replicates were performed. Data are presented as mean ± SD. Mel, melatonin; ***P < 0.001; **P < 
0.01; *P < 0.05. 
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PI double staining apoptosis kit was used for detection 

of apoptosis in melatonin (1 mM) treated tumor cells 

for 48 h (Figure 3A). Melatonin significantly increased 

the early and late apoptotic ratio in NOZ and GBC-SD 

cells (Figure 3B). Western blot analysis revealed that 1 

mM melatonin treatment markedly elevated the 

expression levels of apoptosis-associated proteins, 

including Bax, cleaved PARP, Cytochrome C, and 

cleaved caspase-3 in GBC-SD as well as NOZ cells 

(Figure 3C–3F). Besides, melatonin decreased the 

expression of anti-apoptosis related protein Bcl-2 in 

both GBC-SD cells and NOZ cells. ROS generation in 

cells was detected using the ROS assay kit. The ROS 

levels were increased following 1 mM melatonin 

treatment for 48 h (Figure 4A). After pre-treatment 

with 2 mM of the ROS scavenger, N-acetyl-L-cysteine 

(NAC) for 1 hour, the production of ROS was 

significantly inhibited in gallbladder cancer cells 

(Figure 4B). Furthermore, pre-treatment with NAC 

reversed the inhibitory effects of melatonin on GBC-

SD (Figure 4C) as well as NOZ cells (Figure 4D). 

These results demonstrated that melatonin induced 

apoptosis by increasing ROS production in gallbladder 

cancer cells. 

 

 
 

Figure 3. Melatonin induces apoptosis in gallbladder cancer cells. (A) Apoptosis of GBC-SD and NOZ cells treated with 1 mM 

melatonin was analyzed by flow cytometry. (B) The percentage of apoptotic cells of GBC-SD and NOZ cells was quantified. (C) Expression of 
Bax, Bcl-2, cytochrome C, cleaved PRRP, and cleaved caspase-3 was investigated by Western blot after GBC-SD cells were treated with  
1 mM melatonin. (D) The relative expression of the apoptotic markers was quantified in GBC-SD cells. (E) Expression of Bax, Bcl-2, 
cytochrome C, cleaved PRRP and cleaved caspase-3 was investigated by Western blot after NOZ cells were treated with 1 mM melatonin. 
(F) The relative expression of the apoptotic markers was quantified in NOZ cells. Three biological replicates were performed. Data are 
presented as mean ± SD. Mel, melatonin; ***P < 0.001; **P < 0.01; *P < 0.05; ns, no significance. 
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Melatonin induces cell death via suppression of the 

PI3K/Akt/mTOR signaling pathway 

 

The PI3K/Akt/mTOR signaling pathway has been 

reported to participates in cancer cells proliferation and 

metastasis. Following 1 mM melatonin treatment at 

varying times (0, 12, 24, and 48 h), expressions of 

phosphorylated Akt, PI3K, and mTOR in GBC-SD cells 

were detected by western blot assay (Figure 5A). 

Phosphorylation levels of key proteins were time-

dependently markedly inhibited (Figure 5B). In the 

NOZ cells treated with 1 mM melatonin, the 

phosphorylation levels of Akt, PI3K, and mTOR were 

also curbed (Figure 5C, 5D). Furthermore, co-treatment 

with melatonin and a cell-permeable PI3K activator 740 

Y-P noticeably undermined the suppressive effects of 

melatonin on tumor cell proliferation (Figure 5E, 5F). 

These findings imply that melatonin initiated NOZ and 

GBC-SD cell apoptosis by suppressing 

PI3K/Akt/mTOR signaling pathway activation. 

 

Melatonin inhibits tumor growth in vivo 

 

Given the potential antitumor effects of melatonin in 

gallbladder cancer cells, the inhibitory effect in vivo 

was further investigated using an athymic nude mouse 

 

 
 

Figure 4. The level of ROS increases after melatonin treatment. (A) The intracellular ROS production was measured with DCFH-DA 
after GBC-SD and NOZ cells were treated with or without 1 mM melatonin for 48 h. (B) Pre-treatment with 2 mM NAC for 1 hour 
significantly inhibited the production of ROS in GBC-SD and NOZ cells treated with 1 mM melatonin. (C, D) Pre-treatment with 2 mM NAC 
for 1 hour reversed the inhibition effects of melatonin in GBC-SD and NOZ cells. Three biological replicates were performed. Data are 
presented as mean ± SD. Mel, melatonin; ****P < 0.0001; ns, no significance. 
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model. Interestingly, there was no marked change in 

body weights over the experimental period (Figure 6A), 

meaning that melatonin had limited side effects in vivo. 

The mice treated with melatonin (5 mg/kg) showed a 

significant reduction in tumor volume (Figure 6B) when 

compared with control groups (Figure 6C, 6D). And the 

tumor weight eventually decreased after the treatment 

with 5 mg/kg melatonin (Figure 6E). Taken together, 

findings imply that melatonin suppressed tumor growth 

in vivo and might provide possible therapeutic options 

for gallbladder cancer. 

DISCUSSION 
 

Gallbladder cancer has been ranked as the fifth most 

common gastrointestinal malignancy throughout the 

world, and it has a very poor prognosis [23, 24]. Most 

gallbladder cancer patients are diagnosed in advanced 

stages when the tumor is unresectable owing to the 

rapid growth and metastasis [25]. Despite the recent 

advances in medical treatment, several multicenter 

studies report that the median survival time of GBC is 

approximately 25 months [26–28]. Novel and effective 

 

 
 

Figure 5. Melatonin suppresses the activation of the PI3K/Akt/mTOR signaling pathway. (A) The protein expressions of PI3K,  

p-PI3K, p-Akt, and p-mTOR were detected by Western blotting after GBC-SD cells were treated with 1 mM melatonin for 0, 12, 24, and 48 
hours. (B) Relative protein expressions were quantified in GBC-SD cells. (C) The protein expressions of PI3K, p-PI3K, p-Akt, and p-mTOR 
were detected by Western blotting after NOZ cells were treated with 1 mM melatonin for 0, 12, 24, and 48 hours. (D) Relative protein 
expressions were quantified in NOZ cells. (E, F) The inhibitory effects of 1 mM melatonin in GBC-SD and NOZ cells were undermined after 
co-treatment with a PI3K activator 740 Y-P (30 uM) for 48 h. Three biological replicates were performed. Data are presented as mean ± SD. 
Mel, melatonin; ****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05. 
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drugs are urgently required for the treatment of 

gallbladder cancer. Melatonin is a well-known 

hormone that is generated by the pineal gland [29]. 

Recently, the antitumor effects of melatonin have 

gained significant attention and numerous studies 

reveal that melatonin exerts growth inhibition on 

tumor cells [9, 30, 31]. The potential mechanisms 

include stimulation of apoptosis, regulation of cancer 

immunity, cell cycle arrest, and modulation of pro-

survival signaling [32]. However, limited studies have 

reported the mechanisms of melatonin action in 

gallbladder cancer. We confirmed the inhibitory 

effects of melatonin on GBC-SD and NOZ cells. 

Further research focusing on the PI3K/Akt/mTOR 

signaling pathway was also conducted to illustrate the 

probable mechanism of melatonin. 

 

Apoptosis (Type Ι Programmed Cell Death) is thought 

to be an important component of various cellular 

processes that is regulated by extrinsic or intrinsic 

apoptotic pathways [33, 34]. The Bcl-2 gene family is 

reported to play a crucial apoptotic role and the 

Bax/Bcl-2 ratio is an essential indicator [35, 36]. ROS is 

mainly produced by the mitochondria and scavenged by 

multiple antioxidants, such as glutathione [37]. 

Generally, the redox state in the cell is balanced by 

ROS production and scavenging [38]. When excessive 

ROS is accumulated, intrinsic pathway of apoptosis is 

activated while cytochrome C is secreted by the 

mitochondria to active the downstream of the caspase 

cascade reaction [39, 40]. It was long believed that 

melatonin might serve as a potent ROS scavenger. 

Melatonin was used to protect the pancreatic damage 

 

 
 

Figure 6. Melatonin inhibited GBC-SD cells proliferation in vivo. (A) Body weights of all mice were recorded every three days (n = 
6). (B) The tumor volume was measured every three days (n = 6). (C, D) The pictures of mice and harvested tumors (n = 6). (E) Tumor weight 
measurements (n = 6). Data are presented as mean ± SD. Mel, melatonin; ***P < 0.001. 
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via the decrease of oxidative damage and inflammatory 

response in the acute pancreatitis [41, 42]. Under certain 

conditions, however, melatonin is documented to 

increase ROS production, especially in cultured tumor 

cells. 

 

For example, treatment with 1 mM melatonin induced 

intracellular ROS production and apoptotic cell death in 

tumor leucocytes [43]. And Uguz et al. (2017) showed 

that melatonin enhances the cytotoxicity of the 

chemotherapeutic drugs in pancreatic AR42J cells by 

increasing ROS levels [44]. Also, it was reported that 

incubation with 1 mM melatonin resulted in decreased 

cell viability and enhanced ROS production in Hep G2 

cells, which was basically consistent with our results 

[45]. In the present study, melatonin elevated 

intracellular ROS level, increased apoptotic cell death, 

and thus suppressed cell viability in gallbladder cancer 

cells. Cytochrome C, Bax, and cleaved caspase-3 

protein levels were time-dependently upregulated after 

treatment with 1 mM melatonin, while the expression 

levels of Bcl-2 decreased. Moreover, pre-treatment with 

NAC for 1h significantly reversed the inhibitory effects 

of melatonin on NOZ as well as GBC-SD cells. Taken 

together, our study suggested that melatonin could 

induce ROS-mediated apoptosis of gallbladder cancer 

cells. And melatonin might act as a modulator of the 

cellular redox status, not only a intracellular 

antioxidant. 

Previous studies have shown that various factors and 

multiple pathways participate in tumorigenesis, 

including the PI3K/Akt/mTOR signaling pathway [46]. 

Numerous targeted PI3K suppressors have been 

evaluated in clinical trials, such as idelalisib for blood 

cancers [47]. Activation of PI3K mutations has been 

observed in renal cell cancer, bladder cancer, breast 

cancer, and so on [48, 49]. Akt and mTOR are the 

downstream targets of PI3K and abnormal activation 

often results in the over-proliferation of tumor cells. 

This study demonstrated that melatonin suppressed 

PI3K, Akt, as well as mTOR phosphorylation. 

Moreover, melatonin and 740 Y-P cotreatment 

weakened the antitumor effects of melatonin. Melatonin 

suppressed PI3K/Akt/mTOR signaling pathway 

activation and thus induced NOZ and GBC-SD cells 

apoptosis. 

 

Briefly, the present study demonstrates that melatonin 

suppresses proliferation, migration, as well as invasion 

of gallbladder cancer cells. Mechanistically, in vitro, 

melatonin promoted ROS-mediated apoptosis of 

gallbladder cancer cells. Further studies suggest that 

melatonin suppresses the phosphorylation of the 

PI3K/Akt/mTOR signaling pathway (Figure 7). 

Moreover, melatonin also inhibits tumor growth in vivo 

without obvious toxicity. Overall, melatonin may be an 

effective and novel candidate for the treatment of 

gallbladder cancer. 

 

 
 

Figure 7. The hypothetical schema of melatonin in gallbladder cancer cells. 
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