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SUPPLEMENTARY METHODS 
 

Description of data cleaning and binning procedures 

 

Dataset cleaning strategy 

Both SardiNIA and InCHIANTI datasets contained 

substantial portions of missing values. Traits and 

samples were dropped iteratively to preserve maximum 

data size while maintaining a complete set of values. In 

wave 1 of SardiNIA, the cleaning method reduced the 

number of participants from 6165 to 4817 and the 

number of traits from 183 to 148. 

 

Binning strategy 

Binning strategies were determined empirically to 

maximize both model performance and data retention. 

We abbreviated a binning strategy as a tuple (bin size, 

youngest age, oldest age). In the SardiNIA dataset, 

optimal binning for wave 1 was set at (5, 12, 77), which 

allowed for 120 training samples and 13 testing samples 

from each bin per split and 13 total age bins (1560 

training and 169 test samples in total). For wave 2, bins 

with (5, 16, 81) were determined and yielded 83 

training and nine testing samples per age bin with 13 

total bins (1079 training and 117 test samples in total). 

For wave 3, bins with (5, 20, 75) were determined and 

yielded 81 training and eight testing samples per age bin 

with 12 total bins (984 training and 96 test samples in 

total). For wave 4, bins with (5, 21, 81) were 

determined and yielded 49 training and five testing 

samples for each of 12 age bins (588 training and 60 

testing samples in total). A schematic of this binning is 

shown in Supplementary Figure 2. 

 

We used different binning strategies for the common-

trait framework in SardiNIA to maximize sample 

representation. The same age ranges and bin sizes 

(5 years) were used to make fair comparisons to the 

full-trait model. Sample sizes were increased to 

saturate the smallest bin size: wave 1 (160 training, 

18 testing), wave 2 (107 training, 12 testing), wave 3 

(213 training, 24 testing), wave 4 (64 training, seven 

testing). 

 

As a study of frailty in older individuals, InCHIANTI 

contained much lower representation of younger age 

groups. Despite this, the same binning strategy was 

employed to maintain fair comparisons to SardiNIA. 

Interestingly, the smaller sample sizes did not 

substantially decrease model performance. In the 

baseline study (wave 0), bins of (6, 23, 89) provided 

sufficient data for training (19) and testing (2) for each 

of 11 age bins (209 training and 22 testing samples in 

total). For wave 1, we used (6, 26, 86) which yielded 19 

training and two testing samples for each of 10 age bins 

(190 training and 20 testing in total). For wave 2, we 

used (6, 27, 87) which yielded 19 training and two 

testing samples for each of 10 age bins (190 training 

and 20 testing in total). For wave 3, we used (6, 31, 91) 

which yielded 20 training and two testing samples for 

each of 10 age bins (200 training and 20 testing in 

total). 

 

Machine learning model selection 

 

Description of main machine learning models 

investigated in the study 

In addition to the random forest classifier, we explored 

other classical machine learning models outlined below. 

 

Elastic net 

We utilized the Scikit-Learn implementation of 

elastic net regression (ElasticNet) [58], which was 

equivalent to the glmnet implementation in R with 

“alpha” and “l1_ratio” in Scikit-Learn corresponding 

to “lambda” and “alpha” in glmnet. Elastic net uses a 

penalty defined by a linear combination of the L1 

and L2 penalties of the LASSO and Ridge 

regressions. In our model, we used the default 

uniform penalty weights specified by “l1_ratio = 0.5” 

and “alpha = 1.0”. 

 

K-nearest neighbors 

We implemented the k-nearest neighbors regressor 

from the Scikit-Learn library [58]. The algorithm 

predicts the target variable from local interpolation 

of the k nearest neighboring data points in high-

dimensional trait space. Our model used 

“n_neighbors = 20”, “weights = 'distance'”, “p = 1”, 

which were determined heuristically.  

 

Support vector machine (SVR) 

We implemented the epsilon-support vector regressor 

(SVR) from the Scikit-Learn library [58]. Our model used 

the default parameters of “C = 1.0” and “epsilon = 0.1”. 

 

Multiple linear regression (LinReg) 

We implemented the default multiple linear regression model 

(LinearRegression) from the Scikit-Learn library [58]. 

 

Lasso 
Lasso regression was implemented from the Scikit-

Learn library [58]. We used the elastic net model 

(ElasticNet) with “l1_ratio = 1.0” to recover the lasso 

regression. 

 

Saturation of model performance from traits and 

samples 

Model performance measured with R2 saturated after an 

intermediate number of traits and after an intermediate 
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number of individuals (i.e., the saturation in 

performance occurred before the maximum number of 

traits or individuals was reached in virtually all cases). 

For example, increasing the number of traits resulted in 

marginal R2 gains after ~30 traits and after ~80 

individuals per bin in the RFC full-trait model for the 

SardiNIA baseline study (Supplementary Figure 3). 

Corroborating these results, we observed no significant 

difference in model performance (R2) when the model 

was trained on the entire data as compared to uniform 

sampling from age bins (data not shown). 

 

Trait transformation with linear discriminant analysis 

(LDA) prior to training/testing increased predictive 

performance in most machine learning models 

(Supplementary Figure 3). 

 

Physiological age and physiological aging rate (PAR) 

computed with different model frameworks 

 

Random forest classifier (RFC) model for follow-up 

waves 

Model performances for the three follow-up studies 

(W2, W3, W4) were highly similar to that of the 

baseline (W1) SardiNIA study (see Supplementary 

Figure 4). Physiological ages were well-correlated with 

chronological age, and the PAR values were 

approximately uniformly distributed and weakly 

correlated with chronological age. It should be noted 

that model performance (R2) decreased for the later 

follow-up studies, which was likely due to a reduced 

number of participants and reduced overlap with the 

original trait measurements in the W1. 

 

InCHIANTI-trained random forest classifer model 

(RFC) 

We replicated our findings in the InCHIANTI 

longitudinal study. The same RFC machine learning 

framework yielded comparably well-correlated 

physiological age measurements as those from the 

SardiNIA study (see Supplementary Figure 5). 

Likewise, the distribution of PAR measurements was 

roughly uniform with age across all waves of the 

InCHIANTI study. 

 

Similar distribution of PARs observed in SardiNIA 

and InCHIANTI studies 

Despite training the RFC models on studies with 

different sets of quantitative traits, the PARs of 

individuals in the SardiNIA study and the PARs of 

individuals in the InCHIANTI were distributed 

similarly (see Supplementary Figure 7A). Furthermore, 

most of the difference in PAR distribution between the 

two studies are explained by the oldest and youngest 

age bins. By removing PAR predictions for these edge 

bins, the PAR distributions are nearly identical for 

SardiNIA and InCHIANTI (Supplementary Figure 7B). 

 

Common-trait model (RFC) trained on SardiNIA data 

Reducing the traits to a subset of common clinical 

and cardiovascular measurements from the SardiNIA 

study (see Supplementary Table 1 for the description 

of common traits) resulted in comparable model 

performance as in the full-trait model. Physiological 

ages were well-correlated with chronological age, 

and PARs were weakly correlated with chronological 

age across all SardiNIA studies. Similarly, the later 

follow-up waves observed lower model performance, 

possibly due to decreased numbers of participants 

and overlapping traits. The PARs obtained from the 

full-trait model and the common-trait model were 

highly correlated (R2 = 0.798; see Supplementary 

Figure 9). 

 

Elastic net regression model trained on SardiNIA data 

A high-performing regression method was the elastic 

net regressor (R2 = 0.84 for SardiNIA W1). Previous 

studies have used elastic net regression for age 

estimation from blood biochemical measurements [41] 

and for DNAm age calculation [1, 20]. Using the elastic 

net model in lieu of the random forest model yielded 

comparable results across each baseline and follow-up 

study of SardiNIA (data not shown). 

 

Gender-separated analysis of PARs 

 

To determine if physiological differences between the 

sexes biased the predictive models, we analyzed the 

PAR measurements from the RFC model developed on 

data including both genders to determine any 

differences in the mean or spread of the PARs. We 

observed no significant difference in the physiological 

aging rate (PAR) and physiological age acceleration 

(PAA) between male and female study participants 

(Supplementary Figure 6). 

 

Top traits in SardiNIA and InCHIANTI 

 

Top traits for the RFC model in InCHIANTI study 

The top traits in the InCHIANTI study were obtained 

using baseline data with the same two scoring 

strategies. Several cardiovascular traits were highly 

ranked including pulse wave velocity (VEL), systolic 

blood pressured (23_V28), proximal amplitude 

(APROX), repolarization phase (RIPOL), and 

atrioventricular conduction time (TAV) among others; 

which reflected the high ranking of cardiovascular traits 

in the SardiNIA data. Another top trait across multiple 
ranking methods was creatinine clearance (CLCR, 

UCRE24), which is an important indicator of renal 

health (Cockcroft & Gault, 1976) and has been 
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associated with aging (Anderson & Brenner, 1986). 

Creatinine levels were also highly ranked in SardiNIA. 

Additional overlaps between top 20% InCHIANTI and 

the highest-ranking SardiNIA traits include waist 

circumference (VITA), blood nitrogen levels (BUN), 

blood fibrinogen levels (FIBRIN), cholesterol levels 

(COLTOT, COLLDL, OX_LDL), sodium intake 

(VN26), hypertension (IPERT1), uric acid (URICO), 

transferrin (STRMG), IL-6 (IL_6). Other top traits 

corresponded to frailty markers such as general frailty 

(FRAIL, ALLFRA, NALLFR), exhaustion (FEXHAU), 

weight loss (FWGTLS), grip strength (FSTRNC), visual 

acuity (24_V35), and gait speed (WLK1A, WSPD1B, 

WLK1MN, 17_V2, FWLKCT)—many of which have 

been linked to aging (Fulop et al., 2010; Kan et al., 

2010; Bohannon et al., 2008). Other high-ranking traits 

from the three scoring methods included diagnosis of 

dementia (VASDEM, DEMENT), insulin-like growth 

factor I (TIGF), fatty acid levels (TFA_MO, C24_1B), 

coordination (PEGONE, 25_V14, 22_V34), and a 

variety of coordination task and questionnaire results 

(18_V4, 18_V8, 25_V24, 25_V13, 4_V75, 5_V26, 

1_N8, 17_V2, 8_V1, 12_V1, Q0208, etc). Refer to 

Supplementary Figure 16. 

 

Top traits for the common-trait RFC model in 

SardiNIA 

The top traits among the common clinical and 

cardiovascular SardiNIA traits were determined using 

the three scoring methods outlined in the Methods 

section. For these methods, most of the top traits from 

the full-trait set were present. The overlapping traits 

included pulse wave velocity (pwv), CCA intima media 

thickness (vasIMT), other cardiovascular traits 

(vasEDV, vasvti, vasPSV, vasIP, vasDiaDiam, etc), and 

waist circumference (exmWaist). Additional overlaps 

included various blood serum levels of sodium 

(labsSodiedemia), uric acid (labsAcidourico), and 

alanine aminotransferase (labsALT). A notable 

difference in the top traits for the common-trait model 

was the lack of NEOPIR personality traits (o1, e5, a4, 

form), which were not present in the common-trait set. 

There was high rank-correlation between the common-

trait and full-trait sets (Spearman correlation, ρ = 0.92). 

Refer to Supplementary Figure 15. 

 

Reproducibility of PAR measurements across 

follow-up studies 

 

RFC model in SardiNIA study 

We determined the reproducibility of individual 

PARs across time by using the RFC model to 

measure PARs across all four waves of the SardiNIA 

study. The correlation between the PARs across each 

consecutive wave (Δt = 3–4 years) was relatively 

stable (e.g., R2 ~ 0.4 between the first two waves, see 

Supplementary Figure 18) but decayed over longer 

time periods (e.g., R2 ~ 0.3 for Δt = 6–7 years, R2 ~ 

0.2 for Δt = 9–10 years). PARs derived from the 

common-trait model observed the same trends with 

marginally higher temporal stability (see following 

subsection). Notably, the InCHIANTI PARs showed 

higher consistency over time than those from 

SardiNIA (R2 = 0.55 between baseline and follow-up 

#1, R2 = 0.52 between baseline and follow-up #2, R2 

= 0.46 between baseline and follow-up #3, see 

following subsection). These results indicated that the 

physiological aging rate was stable for an individual 

in the short-term—from several years up to a 

decade—but appreciably destabilized over longer 

periods of time. This destabilization may be 

reflecting the environmental influences and 

heterogeneities. PAR trajectories showcased the 

generally observed trend in which slow agers retained 

low PARs while fast agers retained high PARs across 

time (see Supplementary Figure 18A, 18B). In fact, 

the average standard deviation between PARs for a 

given individual across the four waves was around 

0.1 for both the full-trait model and the common-trait 

model. 

 

Common-trait RFC model in SardiNIA study 

PAR measurements obtained using the common-trait 

model for the same individual were correlated across 

each of the baseline and follow-up studies of SardiNIA 

(see Supplementary Figure 18C, 18D) such that there 

was notable stability of PAR estimates over the period 

of a few years. The mean standard deviation of 

individual PAR measurements across the four waves of 

the study was 0.085. The correlation between PARs 

decreased monotonically with increased time (Δt) 
between the measurements, which suggested that 

environmental influences can noticeably change the 

PAR after the span of a few years. Alternatively, this 

destabilization in the PAR values over longer time 

periods may represent an artefact of changes in data 

collection procedures and trait measurements in the 

longitudinal studies. 

 

RFC model in InCHIANTI study 

PAR measurements obtained from the RFC model for 

the same individual were highly correlated across each 

of the baseline and follow-up studies of InCHIANTI 

(see Supplementary Figure 18E, 18F) such that there 

was notable stability of PAR estimates over the period 

of a few years. The mean standard deviation of 

individual PAR measurements across the four waves of 

the study was 0.048. The correlation between PARs 

appeared to decrease with increased time (Δt) between 

the measurements, which corroborated similar 

observations made in the SardiNIA models. 
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Alternative age acceleration metric 

 

Physiological age acceleration (PAA) 

The physiological age acceleration (PAA) corresponds 

to the difference between the physiological age and 

chronological age of an individual and was calculated as 

PAA= Physiological Age Chronological Age−  

The PAA is similar to the PAR in that it measures the 

progression of an individual’s aging trajectory relative 

to other individuals with the same chronological age. 

This measurement was most comparable to DNAm age 

acceleration. 

 

Epigenetic age acceleration (EAA) 

The epigenetic age acceleration was similarly calculated 

as the difference between the predicted epigenetic age 

and the chronological age: 

EAA= Epigenetic Age Chronological Age−  

Our measurement of epigenetic age acceleration was 

identical to previous methods of calculating intrinsic 

epigenetic age acceleration [62]. 

 

Controlling for sex and age in the comparison of 

PAR and EAR 

 

In the main text, we presented the correlation between 

PAR and EAR without adjusting for any co-variation by 

sex or chronological age (see Figure 3). Since both 

aging rates are likely to be at least partially dependent 

on chronological age (and sex to an extent), we also 

compared the residual PAR and EAR values after 

regressing out sex and chronological age using an 

ordinary least-squares linear model. The correlation 

between PAR and EAR was reduced but still positive 

(R2 = 0.182; see Supplementary Figure 12). 

 

Linear rescaling and trimming to correct for the 

imbalanced distribution of PARs across age 

 

Motivation for linearly rescaled predicted ages 

The random forest classifier showcased a slight 

deviation from a uniform distribution of PAR 

measurements despite the high predictive performance 

(R2 = 0.86 between physiological age and chronological 

age). Due to the deviation, the oldest individuals 

recorded mean PAR < 1 and the youngest individuals 

had mean PAR > 1. The deviation may be 

representative of selection bias from the assumedly 

longer survival of slower aging (PAR < 1) individuals. 

However, another possible source of this deviation was 

the lack of data for individuals beyond the age range 
specified in SardiNIA. The elastic net model, a 

regression method, produced a notably milder deviation. 

To reduce the deviation, we attempted to linearly 

rescale the predicted ages into the same dimensions as 

chronological age and enforce a slope of ~1.0 between 

the rescaled physiological age and the chronological age 

(see Supplementary Figure 14A). The rescaling 

preserved the relative information obtained from the 

predictive model and reduced age-associated 

imbalances in the PAR. The rescaling resulted in 

normal distributions of PARs centered around a mean 

age value corresponding to the chronological age of that 

group (see Supplementary Figure 14B). The equation 

for linear rescaling was 

[ ]
[ ] ,

Predicted Age
Physiological Age =





−
 

where α was the slope of the linear least-squares 

regression with an L2 norm on coordinate pairs 

determined by (chronological age, predicted age), and β 

was the corresponding intercept. The L2 norm was used 

since we expected the physiological ages to be normally 

distributed around the chronological age for all 

individuals of that given chronological age. 

 

Analytic details for the linear rescaling of 

physiological age 

A linear rescaling was applied to the predicted ages to 

obtain the physiological age measurements. The 

rescaling enforced the mean of the physiological ages as 

the chronological age corresponding to each age group 

and therefore symmetrized the distribution of the eRAs 

across all ages. This was achieved with: 

[ ]
[ ]

Predicted Age
Physiological Age =





−
 

Where 𝛼  was the slope of the linear least-squares 

regression with an L2 norm on coordinate pairs 

determined by (chronological age, predicted age), and β 

was the corresponding intercept. The L2 norm was used 

since we expect the physiological ages to be normally 

distributed around the chronological age for all 

individuals of that given chronological age. 

 

In this section, we provide an informal sketch for why 

the rescaling equation results in the intended centering 

of the physiological ages around the chronological age. 

We denote the chronological age as 𝑥 and the predicted 

(unscaled) age as 𝑦1 . Using a linear least squares 

regression with an L2 norm, we obtain the linear model 

parameters 𝛼 and 𝛽 such that the line that minimizes the 

L2 residual is defined as: 

1

lsy = x +  

We apply the rescaling transformation to obtain the 

physiological (rescaled) age denoted y2. Similarly, we 

can evaluate the linear least squares regression on the 

rescaled data to obtain linear model parameters that 

minimize the L2 norm such that: 
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Substituting the definition of 
2,
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iy  into the objective 

function yields: 
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Since y2,i is the rescaled predicted age, then it must be 
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This is minimized for values of 𝛼2 = 1, 𝛽2 = 0 where 

it reduces the physiological age objective function to  

2

21 1,

1 1,2

1
ls

i ls

i

i i

y y
y y

 

−
= −   

which is the minimal objective value for the predicted 

(unscaled) ages. As a result, the least squares linear 

regression for the rescaled physiological ages can be 

approximated as a rescaling of the linear regression for 

the unscaled predicted ages. 

 

Description of trimmed PAR values 

We implemented another approach to reduce the age-

associated imbalance in PAR measurements, which was 

to include the youngest and oldest edge bins (first five 

years and last five years for SardiNIA W1) in model 

training but exclude them from downstream analyses. 

We refer to the reduced set of measurements as the 

“trimmed” physiological age and “trimmed” 

physiological aging rate. Trimming increased the slope 

of the linear regression between chronological age and 

physiological age. 

 

Additional details on GWAS significant loci 

 

APLF (p = 8.59E-8) encodes a histone chaperone 

protein that is involved in non-homologous end-joining 

(NHEJ) repair of DNA double strand breaks [96, 97], 

which is linked to aging and age-related disease [98]. 

ARHGAP15 is associated with diverticulitis [99] and 

colorectal cancer [100], and was selectively up-

regulated with age (r = 0.294) in colon tissue according 

to GTEx RNA-seq gene expression profiles. ANKRD26 

(p = 2.96E-7) has been associated with human diabetes 
mellitus, cardiovascular disease, and neurodegenerative 

disease in previous genome-wide studies [88] and has 

been shown to promote diabetes and obesity in mouse 

models [101, 102]. ANKRD26 is flanked by the 

LINC00202 locus (see Figure 4A), but analysis with 

GTEx [87] did not identify any of the significant 

LINC00202 SNPs as eQTLs for ANKRD26. ZNF518B 

(p = 3.26E-7) has been associated with gout [103], 

colorectal tumor invasion [104, 105], age-related 

epigenetic changes [106], and is involved in histone 

modification [107]. Notably, ZNF518B is down-

expressed with age in all non-brain GTEx tissues 

examined including heart (r = −0.231), liver (r = 

−0.475), lung (r = −0.294), thyroid (r = −0.405), and 

colon (r = −0.250) (see Supplementary Materials). 

CSMD1 (p = 3.96E-7) was previously associated with 

familial Parkinson’s disease [108] and cognitive 

function [109]. Accordingly, CSMD1 was down-

expressed with age (r = −0.314) in GTEx cerebellum 

samples and did not appear to be age-associated in the 

non-brain tissues examined. Using GTEx data, we 

generated plots of the normalized gene expression value 

across age for several key genes of interest (see 

Supplementary Figure 19). Normalized gene expression 

value was computed as the sum-normalized value for all 

gene expression values in a given sample/patient 

(similarly to TPM calculations). 

 

Common-trait physiological aging rates predict 

mortality 

 

To determine whether common-trait PARs predicted 

mortality and lifespan, we performed a random one-to-

one age-matched comparison on the 329 deceased 

participants and the remaining living participants in the 

SardiNIA study. The difference in the mean PAR 

measurements of the two groups was calculated as ΔPAR 

= PARdeceased − PARliving, and a corresponding p-value was 

obtained from a one-sided (ΔPAR > 0) one-sample t-test. 

The age-matched grouping was performed 10000 times 

and ΔPAR and p-values. The fraction of significantly 

different (p < 0.05) mean PAR values between the 

deceased and living groups was 65.7% and the mean 

ΔPAR was 0.013 (see Supplementary Figure 11). More 

than 99% of the 10000 random age-matched comparisons 

reported ΔPAR > 0 as compared to randomized controls 

where 50.8% of the comparisons between two randomly 

age-matched groups had ΔPAR > 0 (Supplementary 

Figure 11). Estimated lifespans were similarly negatively 

correlated with PARs in the common-trait model (r = 

−0.469, Supplementary Figure 11). 

 

Computational pipeline and code repository 

 

The computational pipelines can be accessed at the 

Github code repository: 
https://github.com/sunericd/SardiNIAgeRates. The 

repository contains two Python scripts (“runModel.py” 

and “AgeRatesTurnkey.py”) that are necessary for 

https://github.com/sunericd/SardiNIAgeRates
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running the machine learning framework. The model 

parameters are specified in the “run_spec.txt” file. In the 

working directory, the machine learning framework can 

be run with the command line python runModel.py. 

After successfully running the model, results will be 

saved as image files and a tab-separated text file with 

columns corresponding to [ID] [Age] [Predicted Age] 

[Physiological Aging Rate] and the rows corresponding 

to each individual in the SardiNIA/InCHIANTI datasets. 

 

The Github repository also contains two Jupyter 

notebooks (“results_and_analyses.ipynb” and 

“top_traits.ipynb”) that outline code blocks for 

generating most of the figures included in the main text 

and supplementary materials and other examples for 

analyzing the results of the machine learning 

framework. Additional Jupyter notebooks in the 

“Miscellaneous” directory on the repository contain 

code used to test and develop the predictive frameworks 

outlined in this investigation. 

 

The computational model was written in Python 3.5 and 

requires NumPy, SciPy, Matplotlib, Pandas, and Scikit-

learn to be installed. Optionally, XGBoost can be installed. 
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