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INTRODUCTION 
 

Immune checkpoint blockade (ICB) therapies 

dramatically extended the survival interval of advanced 

tumors, however, the durable response was only 

observed in a subset of patients [1, 2]. Efficacy of ICB 

treatment could be predicted by multiple biomarkers, 

such as expression of programmed death receptor 1 

ligand (PD-L1) [3, 4], tumor mutation burden (TMB) 

[5], neoantigen burden (NB) [6], mRNA expression 

signatures [7], and gut microbiome [8]. Their 

effectiveness would sometimes be lost in specific 

settings and each biomarker has a limiting application. 
 

Difficulties in determining cut-off values, biases of 

distinct test platforms, and dynamic changes have 
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ABSTRACT 
 

Recently several studies have demonstrated the implications of mutations in DNA damage response (DDR) 
pathways for immune checkpoint blockade (ICB) treatment. However, smaller sample sizes, lesser cancer types, 
and the lack of multivariate-adjusted analyses may produce unreliable results. From the Memorial Sloan-
Kettering Cancer Center (MSKCC) cohort, we curated 1363 ICB-treated patients to evaluate the association of 
DDR mutations with immunotherapy prognosis. Besides, 4286 ICB-treated-naive patients from the Cancer 
Genome Atlas (TCGA) cohort were used to explore the intrinsic prognosis of DDR mutations. Factors in the 
microenvironment regarding DDR mutations were also assessed. We found that patients with DDR mutations 
exhibited a significantly prolonged immunotherapy overall survival via multivariate Cox model in the MSKCC 
cohort (HR: 0.70, P < 0.001). Specific cancer analyses revealed that patients with DDR mutations could obtain 
the better ICB prognosis in bladder cancer and colorectal cancer (HR: 0.59 [P = 0.034] and 0.33 [P = 0.006]). 
Stratified analyses showed that age >60, male gender, high mutation burden, and PD-1/PD-L1 treatment were 
the positive conditions for ICB survival benefits of DDR mutations (all P < 0.01). Mutations of 4 DDR genes, 
including MRE11A, MSH2, ATM, and POLE could predict favorable ICB prognoses (all P < 0.01). A better immune 
microenvironment was observed in DDR mutated patients. Mutations in DDR pathways or single DDR genes 
were associated with preferable ICB efficacy in specific cancers or subpopulations. Findings from our study 
would provide clues for tailing clinical trials and immunotherapy strategies. 
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reduced the broad utilization of PD-L1 expression [7]. 

Elevated TMB and NB were reported to be correlated 

with ICB treatment efficacy [5, 9], however, no uniform 

cut-off values were determined to select patients with a 

high mutational burden in distinct tumors [7]. Mismatch 

repair deficiency (dMMR) is another FDA-approved 

vital indicator owing to its ability to increase TMB and 

NB [1, 10]. However, less than 5% of tumor patients are 

dMMR-related, this reality may be a restrained factor 

for the extensive application of dMMR [11]. 

 

Six DNA damage response (DDR) signals (i.e., 

mismatch repair [MMR], nucleotide excision repair 

[NER], homologous recombination [HR], Fanconi 

anemia [FA], checkpoints, and specific DDR genes) are 

mainly existed to perform the function of genome 

maintenance, and thus preserve the genomic integrity 

[12]. Causally, alterations in any pathway or gene of 

DDR would induce the subtype with elevated TMB and 

MB [13]. Mutations of the MMR pathway were 

clinically correlated with durable ICB response [1, 14]. 

Mehnert et al. reported that endometrial cancer patients 

with POLE mutations exhibited favorable 

pembrolizumab efficacy [14]. Hugo et al. found that 

BRCA2-mutant melanoma patients harbored better 

clinical benefits of anti-PD-1 therapy [6]. Recently 

another study demonstrated that co-mutations of DDR 

signals were remarkably associated with elevated 

mutational load, increased immune signatures 

enrichment, better objective response rate, and 

prolonged ICB survival [15]. However, the limited 

sample size and cancer type of the above studies may 

influence the produced results. Besides, the predictive 

abilities of mutations of most DDR genes are poorly 

studied in clinical immunotherapy. 

 

Herein, we curated a seven-cancer cohort to explore the 

association of DDR mutations with ICB efficacy in 

distinct subgroups. In addition, mutations of single 

DDR gene association with ICB clinical benefit were 

also evaluated. As a comparison, patients without ICB 

treatment from the Cancer Genome Atlas (TCGA) were 

used to assess the intrinsic prognostic ability of DDR 

mutations. Results from this study may give more 

implications for tailoring clinical ICB therapy. 

 

RESULTS 
 

Clinical characteristics and DDR mutations of 

included patients 

 

Among 1363 ICB-treated tumor patients, 115 (8.4%) 

with BG, 211 (15.5%) with BLCA, 109 (8.0%) with 

CRC, 129 (9.5%) with HNSC, 344 (25.2%) with 

NSCLC, 142 (10.4%) with RCC, and 313 (23.0%) 

with SKCM. Overall, 1083 (79.5%) were treated with 

anti-PD-1/PD-L1 therapy, 76 (5.6%) were anti-CTLA-4 

therapy, and 204 (14.9%) were combined therapy. The 

median ICB survival interval was 12 months. Other 

detailed clinical information was curated in 

Supplementary Table 1. 

 

Overall, 493 (36.2%) tumors harbored mutations in at 

least one DDR gene and 870 (63.8%) tumors were the 

DDR wild-type subgroup. The mutational patterns of 34 

DDR genes were illustrated in Figure 1. 

 

Association of DDR mutations with prognosis in 

ICB-treated and ICB-treated-naive patients 

 

In the MSKCC cohort contained ICB-treated patients, 

survival analysis showed that patients with DDR 

mutations exhibited a significantly better overall 

survival (OS) than patients without DDR mutations 

(median OS: 34 [95% CI, 27–47] vs. 16 [95% CI, 14–

19] months; Log-rank test, P < 0.001; Figure 2A). To 

obtain a more accurate association, we conducted a 

multivariate Cox regression model with confounding 

variables (i.e., age, gender, cancer subtype, drug target, 

and TMB) taken into consideration. The result was still 

statistically significant (HR: 0.70, 95% CI: 0.58–0.85, 

P < 0.001; Figure 2B). 

 

In the TCGA cohort, univariate survival analysis 

produced a consistent result as compared with the 

MSKCC cohort, that is DDR-mutated patients were 

significantly correlated with better prognosis (median 

OS: 67.4 [95% CI, 61.1–87.3] vs. 57.7 [95% CI, 53.3–

63.8] months; Log-rank test, P = 0.007; Figure 2C). We 

also observed the significant association in multivariate 

Cox model after adjusting clinical confounders (HR: 

0.85, 95% CI: 0.75–0.96, P = 0.008; Figure 2D). 

 

DDR mutations were linked with favorable outcomes in 

both cohorts, however, DDR-mutated patients had more 

survival benefits in the MSKCC cohort than in the 

TCGA cohort (HR: 0.70 vs. 0.85; Figure 2B, 2D). 

These results indicate more positive roles of DDR 

mutations for predicting prognosis in immunotherapy 

settings. 

 

DDR mutations association with prognosis in 7 

distinct cancers 

 

We evaluated the prognostic ability of DDR mutations 

in 7 distinct cancer subtypes with MSKCC and TCGA 

cohorts. In this section, multivariate Cox models with 

confounders adjusted were performed only when 

survival curves were statistically significant. 
 

Univariate analysis in the MSKCC cohort showed that 

DDR mutations were significantly associated with 
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favorable outcomes in 4 cancers, including BLCA, 

CRC, NSCLC, and SKCM (all log-rank test P < 0.05; 

Figure 3B, 3C, 3E, 3G). After controlling the 

confounding factors, only BLCA and CRC exhibited the 

survival benefits of DDR-mutated patients (HR: BLCA 

[0.59, 95% CI, 0.36–0.96, P = 0.034], CRC [0.33, 95% 

CI, 0.15–0.75, P = 0.008]; Figure 3B, 3C). DDR 

mutations in NSCLC and SKCM showed trends of 

better prognosis, however, they did not reach the 

statistical significance in multivariate analysis (HR: 

NSCLC [0.76, 95% CI, 0.55–1.05, P = 0.098], SKCM 

[0.68, 95% CI, 0.42–1.10, P = 0.117]; Figure 3E, 3G). 

We further used the TCGA data to calculate the 

intrinsic prognostic ability of DDR mutations in BLCA 

and CRC. Multivariate Cox model was not significant 

when controlling relevant confounders in BLCA (HR: 

0.82, 95% CI: 0.59–1.15, P = 0.251; Figure 3I), and 

DDR-mutated CRC patients were also not related to the 

prognosis (Log-rank test P = 0.752; Figure 3J). The 

above results suggest the potential prediction 

implications of DDR mutations for immunotherapy 

efficacy in patients with BLCA and CRC. 

 

SKCM patients with DDR mutations did not exhibit the 

survival benefits in the MSKCC cohort. However, in the 

non-ICB-treated TCGA cohort, DDR-mutated SKCM 

patients harbored a significantly better survival outcome 

than wild-type patients (HR: 0.53, 95% CI: 0.38–0.75, 

P < 0.001; Figure 3N). 

 

DDR mutations were not correlated with patients’ 

survival in BG, HNSC, NSCLC, and RCC in both 

MSKCC and TCGA cohorts (all Log-rank test P > 0.05; 

Figure 3A, 3D, 3F, 3H, 3K, 3L, 3M). 

 

 
 

Figure 1. The mutational pattern of 34 DDR genes among 1363 patients treated with ICB agents. The left panel represents gene 

mutation rates, the upper panel indicates the non-synonymous mutation counts of each patient, the middle panel shows mutational 
landscape of all DDR genes with distinct mutation types color coded distinctly, and the bottom panel displays clinical characteristics such as 
age, gender, drug target, TMB, and cancer subtype. 
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DDR mutations versus prognosis in distinct clinical 

conditions 

 

To illuminate whether the immunotherapy and 

prognostic implications of DDR mutations were 

influenced by specific clinical factors, we performed 

stratified analysis and multivariate Cox regression 

model of DDR mutations in distinct subpopulations 

with MSKCC and TCGA data. 

 

For patients with age ≤ 60, no significant correlation 

was observed between DDR mutations and prognosis in 

MSKCC (P = 0.198), however, DDR mutations could 

predict favorable survival in TCGA (P = 0.002). DDR-

mutated patients with age > 60 harbored a better 

prognosis in MSKCC (P < 0.001), this result was not 

significant in TCGA (P = 0.268) (Figure 4; 

Supplementary Table 2). 

 

Both male and female patients exhibited the survival 

benefits of DDR mutations in the ICB-treated cohort 

(P = 0.003 and 0.044). In the further analysis in TCGA, 

DDR-mutated male patients were not predictive of 

prognosis (P = 0.069), but female patients with DDR 

mutations obtained a more significant result (P = 0.003) 

(Figure 4; Supplementary Table 2). 

 

 
 

Figure 2. Association of DDR mutations with survival outcome in MSKCC and TCGA cohorts. (A–B) DDR mutations versus 

survival outcome with univariate analysis and multivariate regression model in the MSKCC cohort; (C–D) DDR mutations versus survival 
outcome with univariate analysis and multivariate regression model in the TCGA cohort. 
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DDR mutations could not predict prognosis in the low-

TMB subgroup of both cohorts (both P > 0.05). 

However, patients with high TMB and DDR mutations 

harbored improved survival times in both cohorts (P < 

0.001 and P = 0.007), and the result was more 

significant in the MSKCC cohort than in the TCGA 

cohort (HR: 0.56 vs. 0.83) (Figure 4; Supplementary 

Table 2).  

 

Patients from MSKCC who received distinct 

immunotherapies also exhibited inconsistent association 

between DDR mutations and survival outcomes. DDR 

mutations were positively correlated with 

immunotherapy prognosis in patients treated with PD-1/ 

PD-L1 agents (P = 0.002), rather than patients treated 

with CTLA-4 agents or combined therapy (both P > 

0.05) (Figure 4; Supplementary Table 2). 

 

Mutations of single DDR gene versus prognosis 

 

To understand the implications of each DDR gene for 

immunotherapy efficacy and prognosis, we evaluated 

the association of mutations in single DDR genes with 

patients’ survival in 2 cohorts. 

 

 
 

Figure 3. DDR mutations association with prognosis in 7 distinct cancers. (A–G) Association of DDR mutations with prognosis in 
7 cancers in the MSKCC cohort; (H–N) Association of DDR mutations with prognosis in 7 cancers in the TCGA cohort. Cancer types that 
exhibited the survival benefits of NLRP3 mutations in the MSKCC and TCGA cohorts were respectively colored with green and blue. 
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Univariate survival analysis in the MSKCC cohort 

showed that 8 DDR genes (i.e., MSH2, MRE11A, NBN, 

BRCA2, RAD51C, ATM, POLE, and PARP1) mutations 

were associated with the preferable survival outcome 

(all Log-rank P < 0.05; Supplementary Table 3). 

Multivariate Cox regression model was conducted with 

the mutations of identified 8 DDR genes and clinical 

confounding factors (i.e., age, gender, cancer type, drug 

target, and TMB) taken into consideration. Results 

showed that 2 genes, including ATM and MRE11A, still 

exhibited the positive association with prognosis (both 

multivariate-adjusted P < 0.05; Figure 5, Supplementary 

Figure 1). And these 2 genes mutations association with 

prognosis in TCGA were not statistically significant 

(both P > 0.05; Supplementary Table 3). 

 

Besides, in the TCGA cohort, Kaplan-Meier survival 

analysis revealed that 3 DDR genes (i.e., MSH6, 

BRCA1, and ATR) mutations were related to the 

survival outcome (all Log-rank P < 0.05; 

Supplementary Figure 2). And this association remained 

still significant even adjusted for confounding variables 

(all multivariate-adjusted P < 0.05; Supplementary 

Figure 3). Mutations in BRCA1 or ART were correlated 

with better survival outcomes, however, MSH6 

mutations were predictive of worse prognosis. 

 

Factors in the microenvironment concerning DDR 

mutations 

 

We explored the correlation between microenvironment 

factors and DDR mutations to explain why DDR-

mutated patients harbored better immunotherapy 

prognosis. 

 

Tumor infiltration CD8 T cells were significantly 

enriched in the patients with DDR mutations (P < 

0.001; Figure 6A). Macrophages M1 and M2 play 

immune-promotion and immune-suppressive roles, 

respectively. We observed that DDR-mutated patients 

 

 
 

Figure 4. Association of DDR mutations with survival outcome in distinct clinical settings based on the data from MSKCC 
and TCGA cohorts. HR value, 95% CI, and P value were derived from multivariate Cox regression model with clinical factors adjusted. 
*P < 0.05; **P < 0.01; ***P < 0.001. 
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had elevated infiltration of M1 macrophages and 

decreased infiltration of M2 macrophages (both P < 

0.001; Figure 6A). Besides, patients with DDR 

mutations also harbored the elevated infiltration of 

resting and activated memory CD4 T cells, T follicular 

helper cells, monocytes, and activated dendritic cells 

(all P < 0.001; Figure 6A). 

 

Among 33 immune checkpoints, 27 (81.8%) were 

significantly up-regulated in DDR-mutated patients, 

such as CD274, PDCD1, and CTLA4 (all P < 0.001; 

Figure 6B). These results further verify the potential 

implications of DDR mutations for predicting ICB 

efficacy. 

 

Of the 15 curated immune-related signatures, 12 

(80.0%) were highly enriched in mutated DDR patients 

(all P < 0.001; Figure 6C). Especially, enrichment of 

IFN-γ signature and T cell-flamed signature, which 

were previously reported to be predictive of better ICB 

prognosis, were observed in DDR-mutated patients 

(both P < 0.001; Figure 6C). 

 

DISCUSSION 
 

Previously several studies have reported the roles of 

DDR mutations in immunotherapy [12, 15]. However, 

smaller sample sizes, lesser cancer types, and lack of 

multivariate-adjusted analysis may introduce some 

biases into the generated results. In this study, by using 

an aggregated ICB cohort with 7 cancers, we performed 

multi-dimension analyses between DDR mutations and 

ICB treatment prognosis. As a comparison, non-ICB-

treated patients from the TCGA cohort were also used 

to determine the potential ICB prediction and intrinsic 

prognosis abilities of DDR mutations. Several novel 

discoveries of our study would provide clues for tailing 

immunotherapeutic strategies. 

 

Patients with DDR mutations exhibited more survival 

benefits in the MSKCC cohort as compared with the 

TCGA cohort. DDR pathways play vital roles in 

maintaining genome integrity; and mutations in DDR 

signals could produce the acceleration of genomic 

alterations (i.e., TMB). Previous many studies have 

demonstrated that a high TMB was linked with the 

preferable immunotherapy efficacy [16–20]. This 

may be a reason for explaining the more survival 

benefits of DDR mutated patients in the MSKCC. In 

addition, the increased infiltration of immune-

response cells, the decreased infiltration of immune-

suppressive cells, and elevated enrichment of 

numerous immune-related signatures were markedly 

enriched in patients with DDR mutations. These 

immune relevant factors to some extent contribute to 

the better prognosis of DDR mutated patients; 

however, they could play larger roles in the settings 

with immunotherapy. In a word, the more survival 

benefits of DDR mutations in the MSKCC cohort 

may be associated with the elevated TMB and 

favorable immune microenvironment. 

 

DNA is continually exposed to the endogenous and 

exogenous damages, and the coordinated activity of 

multiple DDR pathways is needed to maintain genomic 

integrity under normal cellular conditions [21, 22]. 

 

 
 

Figure 5. Univariate and multivariate Cox regression analyses of mutations in 2 DDR genes in the MSKCC cohort.  Survival 

curves representation of mutations in (A) ATM and (B) MRE11A. 
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Mutations in DDR signals could result in the failure to 

repair DNA damage and induce a variety of genomic 

alterations [10]. In some cases, changes produced by 

these genomic aberrations may serve as the antigens to 

the immune system and thus drive tumor initiation and 

immunogenicity [23, 24]. Acceleration of the genomic 

changes may be recognized as the neoantigens by the 

immune system, and push it to release more immune 

activity factors. The open microenvironment couples 

with immunotherapy could markedly enhance the 

treatment effects. In this study, DDR mutated patients 

harbored the preferable ICB survival outcomes, which 

may be implicated in the elevated TMB and neoantigen 

burden. 

 

 
 

Figure 6. DDR mutations association with factors in the immune microenvironment.  (A) Diverse infiltration abundance of 

22 immune cells based on DDR mutational status; (B) Distinct expression of 33 immune checkpoints in patients with and without 
DDR mutations; (C) Distinct enrichment of 15 immune signatures in patients with and without DDR mutations. *P < 0.05; **P < 0.01; 
***P < 0.001. 
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In specific cancer analysis, DDR mutations were 

correlated with favorable ICB survival in BLCA and 

CRC patients, while this correlation was not found in 

the other 5 cancers (i.e., BG, HNSC, NSCLC, RCC, and 

SKCM). Wang et al. used the integrated genomic and 

immunotherapy data and reported that the ICB 

treatment prognosis of patients with DDR mutations 

was superior to that of those without DDR mutations in 

NSCLC and SKCM [15]. The inconsistent results may 

attribute to the smaller sample size Wang et al. used as 

compared with our study (sample size: NSCLC (34 vs. 

344), SKCM (174 vs. 313)). Although the significant 

association of DDR mutations with favorable ICB 

survival was not observed in SKCM patients received 

immunotherapy, in non-ICB-treated SKCM patients, 

DDR mutations were markedly correlated with better 

survival outcome, indicating that DDR mutations may 

play a more important role in predicting SKCM intrinsic 

prognosis rather than ICB prognosis. The firstly 

comprehensive analysis between DDR mutations and 

prognosis across multiple cancers demonstrated that 

BLCA or CRC patients with DDR mutations may 

obtain a prolonged survival interval in immunotherapy 

settings. 

 

Previous studies have pointed out the age and sex 

differences in immune response and immunotherapy 

efficacy [25, 26]. In our study, younger (age ≤ 60) and 

female patients with DDR mutations did not exhibit the 

ICB treatment benefits. Inversely, older (age > 60) and 

male patients with DDR mutations harbored a 

remarkably better ICB prognosis. Consistent with our 

results, a recent study reported that younger and female 

patients always obtain a poorer response in clinical 

studies, this phenomenon may be correlated to the more 

poorly presented drive mutations these patients 

accumulated [27]. DDR-mutated patients with a high 

TMB also exhibit a favorable ICB prognosis. The high 

TMB, which is a stimulating factor for the activation of 

lymphocyte T cells, may provide a suitable environment 

for immunotherapy. Noticeably, in patients received 

anti-PD-1/PD-L1 agents, DDR mutations were linked 

with preferable survival outcome. However, this result 

was not observed in patients who received anti-CTLA-4 

agents or combined therapy. By analyzing the 

association of DDR mutations with ICB efficacy in 

distinct clinical settings, we found that age > 60, male 

gender, high TMB, and anti-PD-1/PD-L1 treatment are 

the positive factors for the immunotherapy prognosis of 

DDR mutations. 

 

Instead of choosing TMB or NB as predictors for 

immunotherapy efficacy, mutations in single genes, 
such as POLE [28], POLD1 [28], PBRM1 [29], MUC16 

[30, 31], and TTN [32] could also obtain the equivalent 

effects. In this study, mutations in 2 DDR genes 

(i.e., ATM and MRE11A) were associated with better 

ICB survival. Among, the positive link between ATM 

mutations and ICB benefits in BLCA was recently 

demonstrated [33], and this link was further verified 

based on 7 cancers in our study. Besides, MRE11A 

mutations correlation with improved survival was also 

firstly discovered in this study. These 2 genes we 

reported may harbor vital implications for evaluating 

immune checkpoint-based therapy efficacy. 

 

We finally explored the links between factors in the 

microenvironment and DDR mutations. Immune cells 

represented by CD8 T cells infiltration, immune 

checkpoints (e.g., CD274, PDCD1, and CTLA4) 

expression, and immune-related signatures (e.g., IFN-γ 

and T cell-inflamed signatures) were highly enriched in 

the patients with DDR mutations. The better immune 

microenvironment may be the explanation for the 

preferable ICB prognosis of DDR mutations. 

 

By using the aggregated ICB cohort and performing 

multi-dimension analyses, we found that DDR 

mutations were associated with better ICB survival 

outcomes in pan-seven-cancers. Besides, in specific 

cancers (e.g., BLCA and CRC) and in distinct clinical 

settings (e.g., age > 60, male gender, high TMB, and 

anti-PD-1/PD-L1 treatment), patients with DDR 

mutations also exhibited the ICB survival benefits. 

Mutations in MSH2, MRE11A, ATM, and POLE were 

all correlated with the favorable ICB prognosis. 

Findings derived from our study would provide 

evidence and basics for guiding clinical 

immunotherapy. 

 

MATERIALS AND METHODS 
 

Genomic data and clinical information of included 

patients 

 

Somatic mutation data and clinical information of 1363 

patients treated with ICB therapy were collected from 

the Memorial Sloan-Kettering Cancer Center (MSKCC) 

[16]. Among, brain glioma (BG), bladder cancer 

(BLCA), colorectal cancer (CRC), head and neck cancer 

(HNSC), non-small cell lung cancer (NSCLC), renal 

cell carcinoma (RCC), and melanoma (SKCM) were 

included for related analyses. Detailed clinical 

characteristics of these patients were curated in 

Supplementary Table 1. 

 

Mutation and clinical data of 4286 patients contained 

above 7 cancers in TCGA were downloaded from 

Genome Data Commons (https://portal.gdc.cancer.gov). 

A total of 4021 patients with both gene expression and 

mutation data were used for immune microenvironment 

analysis. 

https://portal.gdc.cancer.gov/
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DDR genes and determination of DDR mutations 

 

From a previous study reported by MSKCC [12], we 

collected 34 DDR-related genes of 6 pathways 

(Supplementary Table 4). Patients with nonsynonymous 

mutations (i.e., missense mutation, nonsense mutation, 

frameshift indel, inframe indel, splice site, and 

translation start site) of DDR genes were considered to 

be DDR-mutated. 

 

DDR mutations versus tumor-immune 

microenvironment 

 

Based on the gene expression data from the TCGA 

cohort, we calculated and evaluated the enrichment 

of 3 factors in the microenvironment (i.e., tumor 

infiltration immune cells, immune checkpoint, and 

immune-related signatures) according to DDR 

mutation status. 

 

Tumor infiltration immune cells proportion was 

calculated with the CIBERSORT algorithm, which is a 

useful tool to estimate the abundances of 22 immune 

cell types with gene expression data [34]. 

 

Ye et al. integrated a list of 34 immune checkpoint 

genes [35], in this study, the gene of VSIR was not 

found in the mRNA expression profile. Therefore, the 

expression of 33 immune checkpoints was analyzed. 

 

Immune signatures that represented distinct 

immunological and cellular features were aggregated 

as follows: 1) Interferon-γ (IFN-γ) signature, which 

exhibits vital roles in activation and promotion of 

anti-tumor immune response, and it was reported to 

be associated with immunotherapy clinical benefits 

[36]; 2) T cell-inflamed signature, which is consisted 

of 18 immune genes correlated with dendritic and 

CD8 T cells activity [36]; 3) cytolytic activity, which 

reflects the activity of cytotoxic T cells and its 

released cytolytic factors to kill tumor cells [37]; 4) 

tertiary lymphoid structures (TLS), which are ectopic 

lymphoid organs related to cancer prognosis, 

immunity response, and ICB therapy efficacy [38]; 5) 

immune and stromal cells signature, which indicates 

the proportion of immune and stromal cells in mixed 

tumor tissue [39]; 6) immune cell subsets, which 

means the abundance of T cells, B cells, and natural 

killer (NK) cells [40]; 7) B/P, T/NK, and M/D 

metagenes were reported to be correlated with the 

enrichment of B cells/plasma cells, T cells/NK cells, 

and monocytes/dendritic cells, respectively [41]; 8) 

immune signaling molecules [40]; 9) cytokines and 
chemokines [40]; and 10) WNT TGFβ signature, 

which plays the suppression roles in immune 

response [42]. 

Gene set variation and enrichment analysis 

 

Enrichment scores of the abovementioned immune 

signatures were assessed with single sample gene set 

enrichment analysis (ssGSEA) method from GSVA 

package (V1.36.1) [43] according to the expression 

values of each gene in signatures. Differential analysis 

of TCGA sequencing data was performed with DESeq2 

package (V1.28.1) [44]. Gene set enrichment analysis 

(GSEA) embedded in fgsea package (V1.14.0) 

(https://github.com/ctlab/fgsea) was utilized to calculate 

pathways enriched in distinct subgroups. Pathways from 

the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) were used as the background dataset. 

 

Statistical analyses 

 

R software (V4.0.1) and its packages were used to 

performed relevant analyses. The mutational pattern 

exhibited in the waterfall plot was drawn via GenVisR 

package (V1.20.0) [45]. Kaplan-Meier approach and 

Log-rank test were used to generate survival curves and 

to compare the difference significance of two curves, 

separately. Through forestmodel package (V0.5.0), 

multivariate Cox regression models were performed to 

adjust confounding factors and to produce forest plots. 

For the association of continuous variables with DDR 

mutation status, Wilcoxon rank-sum test was utilized. P 

values less than 0.05 were considered to be statistically 

significant unless a particular specification. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Multivariate Cox regression model was conducted with clinical confounding factors and identified 
8 DDR genes mutations taken into consideration in the MSKCC cohort. 
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Supplementary Figure 2. Kaplan-Meier survival curves of mutations in 3 DDR genes in the TCGA cohort. Survival curves 

representation of mutations in (A) MSH6, (B) BRCA1, and (C) ATR. 
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Supplementary Figure 3. Multivariate Cox regression model was conducted with clinical confounding factors and identified 
3 DDR genes mutations taken into consideration in the TCGA cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Clinical characteristics of included 1363 patients treated with immunotherapy. 

 

Supplementary Table 2. Association of DDR mutations with prognosis in distinct conditions in 2 cohorts. 

Variables 
MSKCC cohort TCGA cohort 

HR* 95% CI P value* HR* 95% CI P value* 

Age       

≤60 0.82 0.61–1.11 0.198 0.71 0.57–0.87 0.002 

>60 0.63 0.50–0.81 <0.001 0.9 0.78–1.04 0.268 

Gender       

Male 0.7 0.55–0.89 0.003 0.87 0.75–1.00 0.069 

Female 0.73 0.54–0.99 0.044 0.74 0.61–0.90 0.003 

TMB       

Low 1.17 0.88–1.56 0.276 0.87 0.69–1.09 0.238 

High 0.56 0.45–0.70 <0.001 0.83 0.72–0.95 0.007 

Drug target       

PD-1/PD-L1 0.72 0.59–0.89 0.002    

CTLA-4 0.54 0.22–1.35 0.198    

Combined 0.69 0.39–1.23 0.213    

*HR and P Values were obtained via multivariate Cox model adjusted confounding factors. 
 

 

Supplementary Table 3. Mutations of single DDR gene association with survival interval in 2 cohorts. 

 
MSKCC cohort TCGA cohort 

Kaplan-Meier P value Kaplan-Meier P value 

MLH1 0.986 0.59 

MSH2 0.027 0.091 

MSH6 0.085 0.035 

PMS1 0.872 0.213 

PMS2 0.845 0.923 

ERCC2 0.213 0.312 

ERCC3 0.126 0.285 

ERCC4 0.108 0.129 

ERCC5 0.127 0.099 

BRCA1 0.545 <0.001 

MRE11A 0.013 0.413 

NBN 0.028 0.716 

RAD50 0.055 0.941 

RAD51 0.224 0.644 

RAD51B 0.078 0.645 
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RAD51D 0.412 0.535 

RAD52 0.955 0.346 

RAD54L 0.145 0.481 

BRCA2 0.024 0.634 

BRIP1 0.058 0.616 

FANCA 0.064 0.382 

FANCC 0.206 0.557 

PALB2 0.368 0.945 

RAD51C 0.035 0.654 

BLM 0.493 0.846 

ATM 0.006 0.358 

ATR 0.188 < 0.001 

CHEK1 0.456 0.756 

CHEK2 0.635 0.978 

MDC1 0.213 0.018 

POLE 0.023 0.335 

MUTYH 0.297 0.145 

PARP1 0.017 0.923 

RECQL4 0.334 0.112 

 

 

Supplementary Table 4. DDR-related genes and pathways. 

Genes + A2:B36 Pathways 

MLH1 Mismatch repair (MMR) 

MSH2 Mismatch repair (MMR) 

MSH6 Mismatch repair (MMR) 

PMS1 Mismatch repair (MMR) 

PMS2 Mismatch repair (MMR) 

ERCC2 Nucleotide excision repair (NER) 

ERCC3 Nucleotide excision repair (NER) 

ERCC4 Nucleotide excision repair (NER) 

ERCC5 Nucleotide excision repair (NER) 

BRCA1 Homologous recombination (HR) 

MRE11A Homologous recombination (HR) 

NBN Homologous recombination (HR) 

RAD50 Homologous recombination (HR) 

RAD51 Homologous recombination (HR) 

RAD51B Homologous recombination (HR) 

RAD51D Homologous recombination (HR) 

RAD52 Homologous recombination (HR) 

RAD54L Homologous recombination (HR) 

BRCA2 Fanconi anemia (FA) 

BRIP1 Fanconi anemia (FA) 

FANCA Fanconi anemia (FA) 
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FANCC Fanconi anemia (FA) 

PALB2 Fanconi anemia (FA) 

RAD51C Fanconi anemia (FA) 

BLM Fanconi anemia (FA) 

ATM Checkpoint 

ATR Checkpoint 

CHEK1 Checkpoint 

CHEK2 Checkpoint 

MDC1 Checkpoint 

POLE Others 

MUTYH Others 

PARP1 Others 

RECQL4 Others 

 

 

 

 


