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INTRODUCTION 
 

Pancreatic cancer (PC) is a fatal malignancy with a 

median survival time of six months after diagnosis and 

a five-year overall survival (OS) of only 5% [1, 2]. It is 

dominated by pancreatic ductal adenocarcinoma, a most 

common type accounting for approximately 95% of all 

PCs [3, 4]. At present, surgery is known as the most 

effective way for the treatment of PC. In contrast, only 

less than 20% can receive surgical resection since most 

patients have already reached an advanced stage once 

diagnosed [5]. In addition, adjuvant chemotherapy may 

improve the condition or expand the life of PC patients 

who are not suitable for curative surgery. However, it 

causes severe side effects on patients, such as 

constipation, loss of appetite, vomiting, nausea, etc. [6, 

7]. Hence, it is urgently needed to design new drugs 

with good effects and low toxicity for the control or 

treatment of PC.  

 

In the last few decades, numerous studies have shown 

that various natural phytochemicals, such as plant-
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derived alkaloids and flavonoids, exhibited significant 

anti-cancer activities [8]. Also, many first-line anti-

cancer drugs are derived from natural products, such as 

paclitaxel and colchicine. Hence, the exploration of 

natural agents against numerous human cancers has 

attracted the attention of the scientific research [9]. 

Compounds extracted from plants belonging to diverse 

groups, for instance as alkaloids, flavonoids, as well as 

polyphenols, were explored for their anti-cancer 

influences, and potential data were obtained, thus 

providing a possible treatment approach for some 

human cancers [10]. Through the screening of these 

natural products, we have found that some natural 

products have strong anti-pancreatic cancer effects, such 

as Baohuoside 1 and betulinic acid, which may become 

effective agents for treating pancreatic cancer [11, 12]. 

Fisetin (3,3’,4’,7-tetrahydroxyflavone), which 

distributes abundantly in vegetables, as well as fruits for 

instance cucumber, persimmon, and apple, was 

explored to possess antioxidant, anti-microbial, anti-

cancer, as well as anti-inflammatory properties in recent 

studies [13]. For example, fisetin could dampen 

colorectal cancer cells growth in vitro along with in vivo 

[14] and display anti-cancer effects on laryngeal 

carcinoma [15]. However, there is no report about the 

anti-cancer influence of fisetin on PC. 

 

Herein, we investigated the in vitro anti-cancer 

influence of fisetin on the growth, invasion along with 

migration of PANC-1, as well as Patu-8988 cells. We 

evaluated the in vivo effect on PC by using the nude 

mice as an experimental model. Possible and 

preliminary mechanisms of such development were also 

investigated and discussed in vitro, as well as in vivo 

and additionally assessed the potential molecular 

mechanism. Our results suggested that fisetin inhibited 

proliferation, infiltration along with migration and 

triggered pancreatic cancer cells apoptosis through 

targeting the PI3K/AKT/mTOR cascade. Thus, fisetin 

might be a possible and valuable anti-cancer drug for 

pancreatic cancer. 

 

MATERIALS AND METHODS 
 

Drugs 

 

Astragaline (CAS No. : 480-10-4, purity of 99.85%), 

Afzelin (CAS No. : 482-39-3, purity of 99.62%), 

Quercetin 3-O-α-L-arabinoside (CAS No. : 22688-79-5, 

purity of 99.83%), Narcissoside (CAS No. : 604-80-8), 

Avicularin (CAS No. : 572-30-5), Fisetin (CAS No. : 

528-48-3, purity of 98.02%), Herbacetin (CAS No. : 

527-95-7, purity > 99.0%) were purchased from 

MedChemExpress (MCE, Shanghai, China). 3'-

Hydroxyflavanone (CAS No. : 1621-55-2), 

Kaempferol-3-O-rutinoside (CAS No. : 17650-84-9, 

purity ≥ 98%) were obtained from YuanYe 

Biotechnology (Shanghai, China).  

 

Cells culture and drug treatment 

 

The PANC-1 along with the Patu-8988 human 

pancreatic cells were acquired from the Cell Bank of the 

Chinese Academy of Sciences (Shanghai, China). 

PANC-1 cells and Patu-8988 cells were inoculated in 

DMEM (Invitrogen, CA, United States) added with 

FBS (10%; Invitrogen), streptomycin (100 μg ml-1) 

along with penicillin (100 U ml-1). 1 × 106 PANC-1 

cells and 1 × 106 Patu-8988 cells were planted for 24 

hours at 37° C. Afterwards, complete medium was 

changed with a new cultural medium prior to 

inoculation of the cells with fisetin. 

 

Real-time cellular analysis (RTCA) 

 

2.5 × 104 PANC-1 cells were inoculated in the E16-

culture plate (ACEA Biosciences, United States), and 

then RTCA (Roche, Germany) was adopted to 

document the cellular growth index automatically. 

 

CCK-8 assay 

 

The CCK-8 Kit (Biosharp, BS350B) was employed to 

explored viability of HPNE, PANC-1, as well as Patu-

8988 cells inoculated with fisetin (160 μM, 140 μM, 

120 μM, 100 μM, 80 μM, 60 μM, 40 μM, 20 μM, and 0 

μM) and allowed to grow for 24 hours. After that, we 

introduced 10 μL of the reagent to the well harboring 

100 μL of 5 × 103 cell suspensions incubated for one 

hour, and OD read at 450 nm. Cell viability percentage 

was computed via comparison with the control cells 

(untreated).  

 

Flow cytometry analysis 

 

Annexin V-FITC Apoptosis Detection Kit I was 

supplied by BD Pharmingen™. PANC-1 cells along 

with the Patu-8988 cells were inoculated in complete 

medium with diverse levels of fisetin for 24 hours. For 

apoptosis analysis, cells were collected by spinning and 

re-suspended in binding buffer. Annexin V-FITC was 

inoculated in the dark with the resuspended cells for 15-

20 minutes at RT (room temperature). Afterwards, we 

added propidium iodide (PI) into resuspended cells for 

another 5-10 minutes in the dark. At last, cells apoptosis 

was assessed on flow cytometry (BD FACSVerse™, 

BD Biosciences, USA). 

 

Transwell invasion assay 

 

The transwell invasion assay was adopted to explore the 

infiltration potential of PANC-1, as well as Patu-8988 
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cells. Coating of the transwell inserts with 100 µl 

Matrigel was done for four hours at 37° C. PANC-1 

cells along with the Patu-8988 cells were harvested and 

then re-suspended in serum-free DMEM. 5 × 104 

cells/well were planted in the upper compartment, and 

the lower compartment was added with 500 μl DMEM 

enriched with 10% FBS. Thereafter, we incubated the 

samples at 37° C for 24 hours, followed by removal of 

the gel along with the cells in the upper compartment. 

Thereafter formalin fixation was done, and then PBS 

was used to clean 2 times. Next, staining of cells (in 

crystal violet) was performed for 15 minutes. Lastly, the 

numbers of infiltrated cells in five random selected 

fields were determined under a microscope (Leica 

Microsystems, Germany). 

 

Colony formation assay 

 

1000-2500 PANC-1 cells/well and 1000-2500 Patu-

8988 cells/well were planted in 6-well plates for 24 

hours, and then were inoculated with different 

concentration of fisetin for another 24 hours, fresh 

DMEM was used to replace the culture medium and 

continue to culture for 14 days. Fixation of colonies 

with formaldehyde was done for 30 minutes and then 

cleaned 2 times with PBS. Crystal violet was employed 

to stain the colonies. Finally, the number of colonies 

were counted. 

 

Wound healing assay 

 

PANC-1 cells, as well as Patu-8988 cells were inoculated 

in 6-well plates 37° C for 24 hours to make cells grow to 

cover the plate. Then, scratching of the culture area was 

done with a crystal pipette tip to make a linear gap among 

the cells. Next, PBS was utilized to wash away the 

detached cells and then introduced different concentration 

of fisetin. Finally, the cells were to grow for 24 hours to 

fill the gap, and then images were acquired with a 

microscope (Leica Microsystems, Germany). 

 

Immunocytochemical staining 

 

Immunofluorescence staining was carried out as 

documented previously. Firstly, PANC-1 cells along 

with Patu-8988 cells were inoculated with diverse levels 

of fisetin and left to grow on glass coverslips for 24 

hours. Thereafter, fixation of cells (in 4% 

formaldehyde) was done for 30 minutes. Afterwards, 

the cells were infiltrated with Triton X-100 (0.1%), and 

then blocked the PANC-1 cells with normal goat serum 

(4%) for one hour. Next, PANC-1 cells, as well as Patu-

8988 cells were overnight inoculated with primary 

antibody against Ki67 (ab15580; 1:200; Abcam) at  

4° C, and the inoculation with secondary antibodies was 

done at 37° C (1:400; Santa Cruz Biotechnology, USA) 

for 1.5 h. Finally, DAPI (Beyotime Biotechnology, 

Shanghai, China) was used to stain the cells, and then 

images were captured under a fluorescence microscope. 

 

Western blot analysis 

 

Collected whole cellular proteins and then determined the 

protein concentrations by BCA. Next, 45 μg proteins was 

resolved over 10% polyacrylamide gels and then transfer-

embedded onto a PVDF membrane (Solarbio, Beijing, 

China). Blocking of the membrane was done in 5% 

non-fat milk for two hours at RT and then overnight 

inoculated with the appropriate primary antibodies at  

4° C. For PI3K/AKT/mTOR pathway, anti-PI3K 

(ABclonal; 1:1000), anti-AKT (ABclonal; 1:1000), anti-

p-AKT (Abcam; 1:1000), anti-mTOR (Abcam; 1:1000) 

and anti-p-mTOR (Abcam; 1:1000) antibodies were used. 

For cellular apoptosis, anti-c-PARP (1:1000, 

Proteintech), anti-caspase-3 (Proteintech, Wuhan, China; 

1:1000) and anti-caspase-8 (Proteintech; 1:1000) 

antibodies were used. For EMT-related proteins, anti-N-

cadherin (Abcam; 1:1000), anti-E-cadherin (ProteinTech; 

1:1000), anti-α-SMA (Affinity Biosciences; 1:1000), 

anti-Vimentin (Affinity Biosciences; 1:1000), anti-

Collagen I (Abcam; 1:1000) and anti-Collagen III 

(Abcam; 1:1000) were used. GADPH (Bioworld; 1:1000) 

was employed as the internal reference. After rinsing 

thrice in TBST, incubated the membranes with anti-rabbit 

secondary antibody (Proteintech; 1:5000) for one hour at 

RT. Lastly, the protein bands were rinsed five times in 

TBST and visualization via chemiluminescence detection 

done on the autoradiographic film.  

 

Nude mouse tumorigenicity assay 

 

Twelve (six to eight weeks old) male nude mice 

(BALB/c) with 18-22 g weight were obtained from the 

Experimental Animal Centre of Wenzhou Medical 

University (Wenzhou, China). All the study mice were 

reared at temperature-, light-, as well as humidity-

controlled conditions, and fed on a standard mice chow 

and water. The right hind limb of nude mice (n = 12) was 

inoculated subcutaneously with 3 × 106 PANC-1 cells in 

100 μl PBS, then study group mice (n=6) were given 

intragastric inoculation of fisetin (35 mg/kg) every three 

day for 30 days and control mice (n = 6) received 

intragastric administration of solvent (DMSO). Tumors 

were monitored daily for 30 days. Tumor volumes were 

measured every five days based on the formula V = 

(width2×length) /2. After the 30 days, we sacrificed these 

mice with 100% carbon dioxide to detect tumor 

formation [16]. The Institutional Animal Care and Use 

Committee of Wenzhou Medical University, China 

granted approval of the study. The protocols were as per 

the guidelines of the Institutional Review Board of 

Wenzhou Key Laboratory of Surgery, China. 
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Statistical analysis 

 

The data are given as the means ± standard deviations. 

Results were analyzed using GraphPad Prism 6.02 

Software. A two-tailed Student’s t-test was employed to 

determine statistical significance, with P<.05 signifying 

statistical significance. All experiments were repeated at 

least 3 times. 

 

Ethics approval and consent to participate 

 

The animal study protocols, including the method 

involving animals euthanasia were approved by the 

Institutional Animal Care and Use Committee of 

Wenzhou Medical University, China. The methods were 

also performed according to the guidelines approved by 

the Institutional Review Board of Wenzhou Key 

Laboratory of Surgery, China. 

 

RESULTS 
 

Fisetin dampens the proliferation of pancreatic 

cancer by downregulating Ki67 expression 

 

To detect the effects of Astragaline, Afzelin, Quercetin 3-

O-α-L-arabinoside, Narcissoside, Avicularin, Fisetin, 

Herbacetin, 3'-Hydroxyflavanone and Kaempferol-3-O-

rutinoside (50 μM) on the growth of human pancreatic 

cancer cell (PANC-1), unlabeled real-time cell analysis 

(RTCA) were carried out. As showed in Figure 1A, 1B, 

the growth of PANC-1 cells remarkably decreased after 

the administration of fisetin, Avicularin, and Herbacetin; 

among them, fisetin had the most potent inhibitory effect. 

Thus, we chose fisetin for subsequent studies. Next, to 

detect the long-term effects of fisetin on PANC-1 cells, 

as well as Patu-8988 cells proliferation, plate colony 

formation assay was conducted. The number of colonies 

of PANC-1 cells along with Patu-8988 cells treated with 

fisetin (50 μM, 100 μM) was considerably lower in 

contrast with that of the controls (Figures 1C, 1D, 2A, 

2B), which shows that fisetin could dampen the growth 

and clonogenicity of the PANC-1 cells along with  

Patu-8988 cells. Then, we detected the expression of 

Ki67, a marker of cell proliferation. Immunofluorescence 

staining exhibited that proliferation of the PANC-1 cells 

along with Patu-8988 cells remarkably decreased after 

treatment with 50 μM or 100 μM fisetin (Figures 1E, 1F, 

2C, 2D). All of these results indicate that fisetin can 

dampen the proliferation of pancreatic cancer cells via 

downregulating Ki67 expression dose-dependently. 

 

Fisetin triggers apoptosis of human pancreatic 

cancer cells  

 

To detect the influence of fisetin on the apoptosis of 

human pancreatic cancer cells, AnnexinV-FITC/PI 

method was performed. As shown in Figures 3A, 3B, 

4A, 4B after treatment with 50 μM or 100 μM fisetin for 

24 hours, the fraction of pancreatic cancer cells 

apoptotic cells escalated from 3.33% to 53.20% in 

contrast with the control group. Meanwhile, the extent 

of pancreatic cancer cells apoptosis was enhanced as the 

concentration of fisetin increased. To assess the 

potential mechanism of fisetin-triggered apoptosis in 

pancreatic cancer cells, we determined apoptosis-linked 

proteins’ expressions via western blotting. As illustrated 

in Figures 3C–3F, the terms of activated caspase 3 and 

activated caspase 8 were drastically increased by the 

treatment of fisetin. We also found the expression of 

cleaved PARP was upregulated indicating that fisetin 

promoted apoptosis of PANC-1 cells through the 

mitochondrial-dependent cascade dose-dependently. 

 

Fisetin reduces the ability of infiltration and 

migration  

 

Next, we detected the ability of cell invasion through 

wound healing assay. As illustrated in Figure 5A, 5B, 

2F, 2G. Fisetin remarkably reduced the migration 

capacity of Pancreatic cancer cells compared with the 

untreated group. Furthermore, transwell assay was 

adopted to determine the influence of fisetin on 

invasive ability in the PANC-1 cells along with Patu-

8988 cells. The result of transwell assay showed that 

Pancreatic cancer cells treated without fisetin 

exhibited strong invasive ability, which was obviously 

reduced in the presence of fisetin (Figures 5C, 5D, 2H, 

2I). Furthermore, we revealed that fisetin treatment 

dampened the expressions of MMP-2 along with 

MMP-9, which were involved in cellular metastasis 

(Figure 5E–5G). These data illustrate that fisetin can 

reduce the ability of infiltration along with migration 

in pancreatic cancer cells dose-dependently. 

 

Fisetin dampens the expression of EMT-linked 

proteins in PANC-1 and Patu-8988 cells 

 

Several investigations have pointed out that EMT is 

crucial in promoting infiltration and migration in tumor 

cells [17, 18]. Therefore, we explored the influence of 

fisetin on EMT of different pancreatic cancer cell lines. 

In PANC-1, as well as Patu-8988 cells, fisetin did not 

remarkably dampen the content of cytoskeleton-linked 

protein Vimentin (Figure 6A, 6D). However, we found 

that fisetin could remarkably elevate the content of 

epithelial marker E-cadherin and dampened the content 

of interstitial markers N-cadherin along with a-SMA 

(Figure 6A–6D), which resulted in the decrease of 

extracellular matrix (ECM) secreted by stromal tumor 

cells, for instance type I and III collagen (Figure 6A, 

6F, 6G). In addition, we have also observed that the 

expressions of metalloprotease system linked proteins, 
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Figure 1. Fisetin inhibits the proliferation of PANC-1 cells. (A) PANC-1 cells were inoculated with Astragaline, Afzelin, Quercetin 3-O-α-

L-arabinoside, Narcissoside, Avicularin, Fisetin, Herbacetin, 3'-Hydroxyflavanone and Kaempferol-3-O-rutinoside (50 μM), and the cell index 
was recorded by RTCA. (B) Histogram exhibiting the repression rate of different compounds. (C) Colony formation assessment of PANC-1 cells 
inoculated with 0,50 and 100 μM fisetin. (D) Histogram illustrating the number of colonies in each group. (E) Ki67 Immunofluorescence 
staining of PANC-1 cells inoculated with 0,50 and 100 μM fisetin for 24h. (F) Histogram illustrating the Ki67 positive rate of PANC-1 cells in 
each group. All assays were replicated thrice, and data are given as means±SD.*p<.05, **p<.01,***p<.001, in contrast with the controls. 
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Figure 2. Fisetin dampens the proliferation, migration along with infiltration of Patu-8988 cells. (A) Colony formation assessment 

of Patu-8988 cells inoculated with 0,50 and 100 μM fisetin. (B) CCK-8 assay of the HPNE, PANC-1 and Patu-8988 cells inoculated with 160 μM, 
140 μM, 120 μM, 100 μM, 80 μM, 60 μM, 40 μM, and 20 μM of Fisetin or an equivalent DMEM medium volume for 48 h. (C) Ki67 
Immunofluorescence staining of Patu-8988 cells inoculated with 0,50 and 100 μM fisetin for 24h. Bar = 50μm. (D) Histogram representing the 
number of colonies in each group. (E) Histogram illustrating Ki67 positive rate of Patu-8988 cells in every group. (F) Wound healing assays of 
Patu-8988 cells inoculated with 0, 50 and 100μM fisetin for 24 h. Bar = 500μm. (G) Histogram illustrating cell mobility of Patu-8988 cells in 
every group. (H) Transwell assays of Patu-8988 cells inoculated with 0, 50 and 100μM fisetin for 24 h. (I) Histogram illustrating the invasion 
cell number in every group. All experiments were replicated thrice, and data are given as means±SD.*p<.05, **p<.01, ***p<.001, 
****p<.0001, in contrast with the controls. 
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consisting of MMP-2 along with MMP-9, which have 

remarkable modulatory effects on tumor cell invasion 

and migration, are also inhibited by fisetin (Figure 5E), 

which proved again fisetin dampened infiltration, as 

well as migration in pancreatic cancer cells.  

 

Fisetin dampens the PI3K/AKT/mTOR axis in 

pancreatic cancer cells 

 

As reported, PI3K/AKT/mTOR participates in fisetin-

triggered repression in the growth of laryngeal 

carcinoma cells [15]. Hence, we speculated that fisetin 

harbors protective influences may by targeting 

PI3K/AKT/mTOR axis in pancreatic cancer cells. As 

illustrated in Figures 7A–7C, 4C we observed the 

expressions of AKT, JAK2 and p-JAK2 proteins in 

groups inoculated with fisetin had no obvious changes, 

while p-AKT was downregulated with the control 

group. Furthermore, we found the total mTOR did not 

change, nonetheless the p-mTOR and PI3K decreased 

remarkably (Figures 7D–7F, 4C–4F), indicating that the 

PI3K/AKT/mTOR cascade participates in inhibitory of 

PANC-1 cells induced by fisetin. Therefore, we 

speculate that fisetin may repress the growth, invasion 

along with the migration of pancreatic cancer cells via 

dampening the PI3K/AKT/mTOR cascade. 

Fisetin dampens pancreatic tumor growth of cell 

xenografts in nude mice 

 

Furthermore, to evaluate the effects of fisetin on tumor 

growth in vivo, we conducted a xenografts experiment 

in nude mice. Figure 8A, 8C illustrates that a 

remarkable difference in tumor volume was seen as per 

the tumor image after 30 days. The mean tumor volume 

along with the weight were remarkably different 

between the study groups (Figure 8B, 8D). Western 

blotting illustrated that the expressions of PI3K, p-AKT, 

as well as p-mTOR proteins were downregulated 

obviously in fisetin treatment group (Figure 8E, 8F, 

8H). These data exhibit that fisetin dampens the 

pancreatic tumor growth in vivo. 

 

DISCUSSION 
 

Pancreatic cancer is one of the most lethal malignancies 

globally. Gemcitabine, one of the first-line 

chemotherapy agents, has successfully enhanced the 

survival of individuals with diverse cancers, whereas 

the efficacy of gemcitabine in pancreatic cancer is 

limited [17]. Therefore, effective agents for treating 

pancreatic cancer are still needed. Recent investigations 

revealed that numerous natural products exhibit strong 

 

 
 

Figure 3. Fisetin induces the apoptosis of PANC-1 cells. (A) Flow cytometry evaluation of PANC-1 cells inoculated with 0, 50 and 
100μM fisetin for 24 h. (B) Histogram exhibiting apoptosis rate in each group. (C) Western blot assessment of apoptosis-linked proteins. (D) 
Histogram illustrating cleaved caspase 3 protein contents. (E) Histogram illustrating cleaved caspase 8 protein contents. (F) Histogram 
illustrating cleaved PARP protein contents. All assays were replicated thrice and data are given as means±SD. *p<.05, ***p<.001, 
****P<.0001, in contrast with the controls. 



 

www.aging-us.com 24760 AGING 

anti-pancreatic cancer effects [18]. For example, 

baohuoside 1, showed apparent cytotoxicity to two 

pancreatic cancer cell lines [11]. Fisetin, mainly derived 

from vegetables and fruits such as cucumber, 

persimmon, and apple, has been reported to harbor 

antioxidant, anti-inflammatory, anti-microbial, 

chemopreventive, chemotherapeutic, and significantly 

well as anti-cancer activities in recent studies [19–22]. 

However, studies on fisetin’s effect in pancreatic cancer 

are unclear, and the possible molecular mechanism of 

anti-tumor actions has not been elucidated. Herein, we 

established that fisetin dampens cell growth, migration 

along infiltration of PANC-1, as well as Patu-8988 

pancreatic cells. Besides, a model of xenograft nude 

mice was adopted to validate the anti-tumor influences 

of fisetin in vivo. 

 

 
 

Figure 4. Fisetin induces the apoptosis and dampens the PI3K/AKT/mTOR cascade in Patu-8988 cells. (A) Flow cytometry 

evaluation of Patu-8988 cells after inoculation with 0, 50 and 100μM fisetin for 24 h. (B) Histogram exhibiting apoptosis rate in each group. 
(C) Western blot assessment of key proteins in Patu-8988 cells inoculated with 0, 50 and 100μM fisetin for 24 h. (D) Histogram illustrating 
PI3K protein contents. (E) Histogram illustrating p-AKT/AKT ratio. (F) Histogram illustrating p-mTOR/mTOR ration. All assays were replicated 
thrice, and data are given as means±SD.*p<.05, **p<.01, ***p<.001, ****p<.0001, in contrast with controls. 
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The aberrant growth, migration and invasion capacity of 

cancer cells needs characteristic changes on numerous 

key signaling cascades. Janus kinase 2 (JAK2) signaling 

is a cytokine-stimulated signal transduction cascade 

which participates in numerous important biological 

processes, for instance cell growth, differentiation, 

apoptosis and immune regulation [23]. However, fisetin 

in this research work exhibited no influences on  

JAK2 and p-JAK2, but remarkably dampened the 

phosphorylation of AKT dose dependently in PANC-1 

cells (Figure 7). This illustrates that the dampening of 

pancreatic cancer cells by fisetin targets AKT signaling, 

rather than JAK2. 

 

Serine/threonine kinase AKT (also termed as protein 

kinase B or PKB), as a proto-oncogene, has become a 

significant focus of medical attention because of its 

remarkable role in modulating diverse cellular 

functions, consisting of metabolism, transcription, 

growth, survival, proliferation, along with protein 

 

 
 

Figure 5. Fisetin dampens the migration along with the infiltration of PANC-1 cells. (A) Wound healing assays of PANC-1 cells 
inoculated with 0, 50 and 100μM fisetin for 24 h. (B) Histogram exhibiting PANC-1 cell mobility in each group. (C) Transwell assays of PANC-1 
cells inoculated with 0, 50 and 100μM fisetin for 24 h. (D) Histogram illustrating the infiltration cell number in each group. (E) Western blot 
assessment of metastasis-linked proteins. (F) Histogram illustrating MMP-2 protein contents. (G) Histogram illustrating MMP-9 protein 
contents. All experiments were replicated thrice and data are given as means±SD. **p<.01, ***p<.001, ****p<.0001, in contrast with the 
controls. 
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synthesis. Factors can activate axis amplification of 

AKT signals, consisting of receptor tyrosine kinases, 

integrins, cytokine receptors, B and T cell receptors 

along with the G protein-coupled receptors [24, 25]. 

Herein, we established that fisetin is a specific AKT 

repressor (Figure 7). Besides, the alterations in PI3K 

protein contents (upstream protein of AKT), as well as 

mTOR (direct downstream substrate of AKT) 

 

 
 

Figure 6. Fisetin inhibits the expression of EMT-related proteins in PANC-1, as well as Patu-8988 cells. (A) Western blot 

assessment of EMT-linked proteins in Patu-8988, as well as PANC-1 cells inoculated with 0, 50 and 100μM fisetin for 24 h. (B) Histogram 
illustrating E-cadherin protein contents. (C) Histogram illustrating N-cadherin protein contents. (D) Histogram illustrating Vimentin protein 
contents. (E) Histogram illustrating alpha-SMA protein contents. (F) Histogram illustrating Collagen I protein contents. (G) Histogram 
illustrating Collagen III protein contents. All assays were replicated thrice, and data are given as means±SD.*p<.05, **p<0.01, ***p<.001, 
****p<.0001, in contrast with the controls. 
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verified the specificity of fisetin on AKT. To 

summarize, fisetin is a prospective AKT repressor in 

pancreatic cancer. 

 

As a prospective cancer treatment target, suppression of 

PI3K/AKT/mTOR cascade could trigger apoptosis [26]. 

Inhibitors that target the PI3K/AKT/mTOR cascade can 

improve overall cancer treatment [27]. Recent 

investigations have documented that PI3K/AKT/mTOR 

cascade mediates apoptosis of non-small lung cancer 

[28], esophageal cancer [29], as well as myeloid 

leukemia cancer [30]. Nonetheless, the precise 

molecular mechanism of fisetin in pancreatic cancer is 

unknown. Our data illustrated that apoptosis-linked 

proteins consisting of cleaved PARP, cleaved caspase 3 

and cleaved caspase 8 were upregulated by fisetin dose 

dependently. Therefore, our data illustrates that fisetin 

precisely dampens the PI3K/AKT/mTOR cascade 

through triggering apoptosis in pancreatic cancer. The 

repression influence of fisetin involves targeting the 

PI3K/AKT/mTOR axis to activate the Caspases 

apoptotic cascade. More studies are necessary to 

determine the bioactive structure of fisetin and the 

responsive domain of AKT. 

 

CONCLUSIONS 
 

Herein, we established that fisetin could obviously 

inhibit the growth, migration, along with the infiltration 

of pancreatic cancer dose dependently, expanding the 

anti-cancer class of fisetin. Besides, we determined the 

possible mechanism of repression by fisetin in 

pancreatic cancer and discovered that fisetin triggers 

apoptosis by specifically via targeting PI3K/AKT/ 

mTOR cascade rather than JAK2 signaling. These data 

suggest that fisetin is a possible, as well as valuable 

anti-cancer drug for pancreatic cancer and reveal the 

distinct molecular target of fisetin. 

 

 
 

Figure 7. Fisetin represses the PI3K/AKT/mTOR cascade in PANC-1 cells. (A, D) Western blot evaluation of key proteins in PANC-1 
cells inoculated with 0, 50 and 100μM fisetin for 24 h. (B) Histogram illustrating p-JAK2/JAK2 ratio. (C) Histogram illustrating p-AKT/AKT ratio. 
(E) Histogram illustrating PI3K protein content. (F) Histogram exhibiting p-mTOR/mTOR ratio. All experiments were replicated thrice and data 
are given as means±SD. ns P>.05, **P<.01, ***P<.001, ****P<.0001, in contrast with the controls. 
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Figure 8. Fisetin dampens the growth of pancreatic cancer in vivo. (A, C) Nude mice were subcutaneously inoculated with PANC-1 

cells. Following the end of the 30 days, mice along with the tumors were imaged. (B) Determination of tumor volume at specified time 
points; (D) Tumors were harvested after 30 days and their weight computed; (E) Western blot assessment of protein contents. (F) 
Histogram illustrating PI3K protein contents. (G) Histogram illustrating p-AKT protein contents. (H) Histogram illustrating p-mTOR protein 
contents. All experiments were replicated thrice and data are given as means±SD. **P<.01, ***P<.001, ****P<.0001, in contrast with the 
controls. 



 

www.aging-us.com 24765 AGING 

Abbreviations 
 

AKT: protein kinase B; CCK-8: Cell Counting Kit-8; 

ECM: extracellular matrix; EMT: Epithelial-

mesenchymal transition; FBS: fetal bovine serum; 

JAK2: Janus kinase 2; MMP-2: matrix 

matalloproteinases 2; MMP-9: matrix 

matalloproteinases 9; mTOR: mammalian target of 

rapamycin; PBS: phosphate buffer saline; PC: 

pancreatic cancer; PI3K: phosphatidylinositol 3 kinase.  
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