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ABSTRACT

The complexity of breast cancer includes many interacting biological processes that make it difficult to find
appropriate therapeutic treatments. Therefore, identifying potential diagnostic and prognostic biomarkers is
urgently needed. Previous studies demonstrated that 26S proteasome delta subunit, non-ATPase (PSMD) family
members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins.
However, transcriptional expressions of PSMD family genes in breast cancer still remain largely unexplored.
Consequently, we used a holistic bioinformatics approach to explore PSMD genes involved in breast cancer
patients by integrating several high-throughput databases, including The Cancer Genome Atlas (TCGA), cBioPortal,
Oncomine, and Kaplan-Meier plotter. These data demonstrated that PSMD1, PSMD2, PSMD3, PSMD7, PSMD10,
PSMD12, and PSMD14 were expressed at significantly higher levels in breast cancer tissue compared to normal
tissues. Notably, the increased expressions of PSMD family genes were correlated with poor prognoses of
breast cancer patients, which suggests their roles in tumorigenesis. Meanwhile, network and pathway
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analyses also indicated that PSMD family genes were positively correlated with ubiquinone metabolism,
immune system, and cell-cycle regulatory pathways. Collectively, this study revealed that PSMD family
members are potential prognostic biomarkers for breast cancer progression and possible promising clinical

therapeutic targets.

INTRODUCTION

According to statistical data of cancer incidence and
mortality, breast cancer (BRCA) accounts for 30% of
newly diagnosed cases of cancer among American
women [1, 2]. The currently used stratification system is
still undergoing changes due to the heterogeneity of this
disease, which can be observed at both the molecular
and histological levels. Based on the presence or
absence of prevalent listed biomarkers, including: the
estrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor (HER)-2, and
some other markers. Stratifying BRCA not only helps in
selecting treatment options but also assists in
approximating treatment responses and predicting
prognostic statuses.

Many different treatment strategies besides surgery are
available for patients with BRCA. Treatment options
are personalized and often based on a multi-modality
approach, depending on several factors, including the
stage and biology of the tumor (hormone receptor and
nodal status); genomic markers (Oncotype DX™ or
MammaPrint™) [3, 4]; patient age, physical condition,
menopausal status, and the presence of inherited genetic
mutations (such as BRCAL or BRCAZ2); and a patient’s
acceptance and tolerance of treatment regimens. Some
treatments are standard, such as surgical therapy,
radiotherapy, systemic therapy (endocrine therapy,
chemotherapy, and targeted therapy), and immuno-
therapy, while others are undergoing clinical trials. As
one of the potential approaches, targeted therapies are
selective inhibitors which only affect altered cancer
cells [5, 6]. They precisely identify and attack specific
molecules to block cancer growth, progression, and
metastasis. Most targeted therapies are either
monoclonal antibodies (mAbs) or small-molecule drugs
(tyrosine kinase inhibitors, cyclin-dependent Kinase
inhibitors, poly (ADP-ribose) polymerase (PARP)
inhibitors) and mammalian target of rapamycin (mMTOR)
inhibitors [7—9]. Nevertheless, drugs resistance which
may develop soon after onset of this therapy is the
main challenge to current research. Meanwhile,
immunotherapeutic strategies, which are drugs designed
to strengthen the body's natural defenses to fight cancer,
have appreciably raised our expectations of successfully
treating various cancer types [10-15]. In general,
immunotherapies are further categorized into various
subtypes, such as mAbs, immune checkpoint blockade

(anti-cytotoxic  T-lymphocyte-associated (CTLA)-4,
anti-programmed death (PD)-1, anti-PD-ligand 1 (L1)),
cytokine therapy, T-cell transfer therapy (including
tumor-infiltrating lymphocytes (or TIL) therapy and
chimeric antigen receptor (CAR) T Cell Therapy), and
therapeutic vaccines. For instance, the immune
checkpoint inhibitors that target the PD-1 pathway
(pembrolizumab, atezolizumab, dostarlimab) are
approved by the US Food and Drug Administration
(FDA) for patients with metastatic TNBC [16-21].
According to recent literature, the abovementioned
treatments for early BRCA determined by sub-
classification have significantly improved the prognosis
of BRCA patients with a 5-year survival rate of more
than 85%. Therefore, it is crucial for us to understand
the occurrence and development of breast cancer and to
find biomarkers that indicates the sensitivity of current
therapies and long-term outcomes in the early stage of
the disease [22-28].

The ubiquitin-proteasome system is an indispensable
mechanism of highly regulated intracellular protein
degradation and turn over, thus dominates human
antigen processing, signal transduction and cell-cycle
regulation. The 26S proteasome is composed of one
proteolytically active cylinder-shaped particle (the 20S
proteasome), and one or two ATPase-containing
complexes (known as the 19S cap complexes). The 20S
core is constructed from inner a-rings and outer B-rings,
which are both divided into 7 structurally similar
subunits: proteasome 20S subunit o (PSMA1~7) and f
(PSMB1~7), respectively. The 19S cap complexes is
composed of a base and a lid subcomplex, further
categorized into ATPase subunits (PSMC1~6) and non-
ATPase subunits (PSMD1~14) [29-33]. In recent
studies, dysfunction of the ubiquitin-proteasome
system, which manifests as up- and/or downregulation
of the aforementioned genes, has been described in
various oncogenic situations. Hence, extensive research
need to be conducted to fully assess the oncogenic
potential of this family genes.

The PSMD family, which is comprised of 14 members in
total, was proven to be partially involved in the formation
of the regulatory complex. Both components occupy
an important place in modulating the proteasome that
performs several essential functions, such as catalyzing
the unfolding and translocation of substrates into the 20S
proteasome. Recent studies showed that PSMD1 and
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PSMD3 act as oncogenes in chronic myeloid leukemia
by stabilizing nuclear factor (NF)-xB [34]. In gastric
cancer, interactions between PSMD2 and asporin
induced cell proliferation [35]. PSMD4 influenced cell
malignancy of esophageal cancer via suppressing
endoplasmic reticular (ER) stress [36]. PSMD5
inactivation promoted 26S proteasome assembly during
colorectal tumor progression [37]. PSMD6, PSMD9,
PSMD11, and PSMD14 expressions were significantly
related to decreased survival chances in pancreatic
ductal  adenocarcinoma  [38].  High-throughput
technologies are widely used as systematic approaches
to explore differences in expressions of thousands of
genes in both biological and genomics systems [39-41].
Abnormal gene expressions are generally related to
oncogenes and tumor-suppressor genes which regulate
tumor maturation [42—47].

However, no studies have yet been conducted to develop
data of how messenger (m)RNA levels of each PSMD
family gene change in BRCA development. Therefore,
this study aimed to make relevant comparisons of gene
expressions in BRCA and normal tissues, by extracting
information from public datasets, including numerous
RNA-sequencing (RNA-Seq) and microarrays data of
BRCA patients.

Moreover, we also explored the interactive cooperation
or gene regulatory networks in which the targeted family
genes were involved to identify completely novel

PSMD1 PSMD2 PSMD3 PSMD4 PSMD5 PSMD6& PSMD7 PSMD8 PSMD9 PSMD10 PSMD11 PSMD12 PSMD13

biomarkers [48-53]. By adopting a meta-analytical
approach, downstream molecules associated with PSMD
genes were effectively screened. The study findings
revealed that these PSMD family members and their
regulated gene counterparts are worth considering as
novel therapeutic targets for BRCA patients.

RESULTS

PSMD family members are involved in important
processes in the developmental stages of BRCA

Prior studies discovered PSMD family members in
human and significant roles in cancer progression of
some of them. To provide further identification of PSMD
family gene signatures related to breast neoplasms, a
meta-analysis was carried out. As reported by an
Oncomine analysis of MRNA expressions among PSMD
family members, including PSMD1, PSMD2, PSMD3,
PSMD5, PSMD10, PSMD12, and PSMD14 are highly
upregulated in BRCA tissues. It was suggested that their
overexpression promotes tumor growth. Therefore, we
decided to perform further bioinformatics analyses on
BRCA (Figure 1). Since the Kaplan-Meier curves are
univariate analysis, the univariate and multivariate Cox
proportional hazards regression analysis, which works for
both quantitative predictor variables and for categorical
variables, was subsequently verified by TCGA-based
breast cancer samples. Results was presented in
Supplementary Table 1.

PSMD14

Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer Cancer
Vs vs vs ' Vs vs VS, VS, VS, Vs VS, Vs VS, Vs
Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal
Analysis Type by Cancer
Bladder Cancer 1 “ 1 3 2 1
Brain and CNS Cancer = 2 1 &
Breast Cancer H z 2 1 - n- Tl 1 ’TT 1
Cervical Cancer 1 1 N 2 1 1
Colorectal Cancer ’T 3
Esophageal Cancer ’T
Castric Cancer 1 ’T 1 1 1 =
Head and Neck Cancer | [} E 1 ’; =1 1 E B =
Kidney Cancer 1 1 1 1
Leukemia ]T ’T ’T n ’T - 2 -
Liver Cancer
Lung Cancer n 'T ,T 2
Lymphoma 1 ’T ’T - 2 ,TB 1 n 3
Melanoma 1 1 1
Myeloma ,T 1 n IT 1
Other Cancer || : 1 | 2 [l ’;
ovarian Cancer | [l
Pancreatic Cancer 1
Prostate Cancer I_
Sarcoma 1
Significant Unique Analyses 9 1 15 1 11 1 13 2 1 4 9 1 2 17 1 7 4 8 2 9 1 14 1 7 1 |27 2
Total Unique Analyses 425 443 417 352 445 449 401 438 430 359 441 443 396 444

Figure 1. Systemic analysis of 26S proteasome delta subunit, non-ATPase (PSMD) family genes in 20 common types of cancer
(Oncomine platform). Dysregulation of each PSMD individual gene in targeted cancer tissues as measured by the mRNA expression level
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was compared to their normal counterparts using Students’ t-test. The cutoff parameters were set as follows: p<0.05; multiple of change >2;
and gene rank in the top 10%. The quantity of datasets which met those thresholds was represented as a number inside the table cells, while
colors (red or blue) indicate the trend of gene expressions (up- or downregulation, respectively) and the intensity of colors indicates the

degree of abnormal expression.

Associations of PSMD family gene interpretations in
neoplastic cell lines with clinicopathological
parameters of BRCA patients

After properly examining differences in PSMD family
gene expressions between neoplastic and normal
tissues using GEPIA2 datasets, we found that all
MRNA levels of the former were upregulated
compared to the latter, with the g-value cutoff set to
<<0.001 (Figure 2). In addition, analysis performed on

A Expression of PSMDL in BRCA based on Sample types B Expression of PSMD2 in BRCA based on Sample types

C

300 500

a Cancer Cell Line Encyclopedia (CCLE) dataset
(https://www.broadinstitute.org/ccle) also indicated
that PSMD mRNA levels were overexpressed in
BRCA tissues (Figure 3).

Analysis of genes related to BRCA co-expressed with
PSMD family genes

By leveraging the Oncomine online platform to perform
a thorough analysis of the co-expression network of
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Figure 2. Transcriptional expression of 26S proteasome delta subunit, non-ATPase (PSMD) family members in breast cancer
(BRCA) patients. (A-N) Transcriptome alterations observed in PSMD1~14. Boxplot of PSMD mRNA expression levels measured in BRCA
specimens (red) compared to their normal counterparts (blue) obtained from the UALCAN database. Statistical analysis was performed using

Student’s t-test, and p<0.05 was considered statistically significant.
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PSMD1, we found that PSMD1 was positively
correlated with AGFG1, GPR107, PTH2R, TFPI,
GUCY1A3, SLCO2AI, EIF5B, PAQR3, and ROD1. As
for genes which are supposedly co-expressed with
PSMD2, we concluded that its expression was
positively correlated with EIF2S2, NUPL2, GLRX3,
LSM5, CBX3, PAKIIP1, CCT6A, MRPS17, CHCHD2,
PSMA2, SEC61G, NUDT1, POLD2, FSTL1, EIF3B,
CYCS, and AIMP2. As for genes co-expressed with
PSMD3, there were positive correlations with CASC3,
MED24, MSL1, THRA, RAPGEFL1, RARA, WIPF2,
SLC16A6, ACACA, PDESB, CST4, ABHD2, FRY, and
POLG. Similarly, genes co-expressed with PSMD4
included UBE2Q1, MRPL9, POGZ, SETDB1, P14KB,
VPS72, SCNM1, P14KB, PRUNE, ADAR, APHI1A,
TDRKH, CLK2, PRPF3, UBAPZL, and DAP3.
Moreover, positive correlations with PSMD5 were
determined for MEX3D, CATSPERB, SULTIEL,
CEACAMY, CES1, MARCHS6, GPD2, ATIC, GTF2H2,
P4HAL, C20RF54, GGCT, GUCY1A2, PPAP2B,
MAP3K5, SMPDL3A, and SWAP70. Similar to
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previous cases, PSMD6 was found to be positively
correlated with GOLGA4, PDCD6IP, ARL8B, GHITM,
NGLY1, OXSM, CYP51P2, CYP51A1, CLU, APOOL,
MRS2, SLC25A46, RNF14, VDACIP3, CLINT1, and
SEC24A. We found that genes co-expressed with
PSMD7 included NAE1, USP10, AP1G1, SETDS,
NUP93, CBFB, BRD7, NFATC3, CNOTI, HNRNPD,
CHMP1A, CFDP1, TAFIC, ZCCHC14, HSBP1, GOT2,
CTCF, GPR56, and TMEMZ208. Genes co-expressed
with PSMD8 included PSMC4, MRPS12, EIF3K,
EIF3K, RPS16, COX6B1, DGUOK, TPRKB, RNF7,
COX7A2, METTLS5, ATP5J, ATP50, TOR3A, SDHB,
MBD2, and ATP5G3. As for genes co-expressed with
PSMD9, there were positive correlations with ARPC3,
GNS, POP5, WSB2, RFC5, NTAN1, EPBA41L3,
EPB41L3, GCA, HMGN3, ASNAI, ICAM3, RABS8A,
UPF1, PPPICA, OTUBI, JARIDZ, and PGD. Genes
co-expressed with PSMD10 included UBEZN,
Cl20rf29, TBC1D15, CCNT2, MAP4K3, MTX2,
KDMB6A, RNF13, C4orf43, UBE2K, PDS5A, CLIP1,
CHD9, KIAA1033, PPPIR1ZA, and PPP1R12A.
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Figure 3. Expressions of 26S proteasome delta subunit, non-ATPase (PSMD) genes measured in common types of breast
cancer (BRCA) cell lines. A CCLE database-built heatmap plot presents patterns of changes in expression levels of PSMD family genes
among different BRCA cell lines. Shades of colors vary from red (overexpressed sample) to white (no change in gene expressions) and blue
(under-expressed sample). The darker the colors are, the higher the gene expressions that were recorded.
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Moreover, PSMD11 was positively correlated with
SUMOZ, PSMD12, KPNA2, HN1, HSPH1, INTSS,
LSM6, ANAPC10, ABCE1l, ABCEl, SMARCAS5,
GRHL2, TUG1, EPB41L4B, RPRD1A, and HSPDL1.
PSMD12 was found to be positively correlated with
HELZ, LOC220594, FASTKD3, PHB, CCDCA47,
TEX2, TEX14, RAD51C, BCAS3, SLC4A8, BPTF,
AMZ2, NOL11, BPTF, SMARCD2, PSMC5, FTSJ3,
and TACOI. Genes co-expressed with PSMD13
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ri- o f' it o = BEE
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included PSMC3, MRPL17, SPCS2, C7orf44,
EWSR1, POLD3, ZNF84, ZNF140, ZNF268, NFYB,
ZNF195, ANKLE2, GOLGA3, CHFR, NEK3, ELF1,
ZC3H13, PHF11, and RCBTB1. Finally, genes co-
expressed with PSMD14 were ATP2C1, ATP2C1,
HSPE1, PDE6D, CISD1, COQ2, ZMYNDL11,
NUDT21, PKM2, HPS5, SLBP, EIF3J, ETF1, SMN1,
GNAI3, MAPRE1, CLCC1, PSMA5, C2orf47, and
NDUFS1 (Figure 4).
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Figure 4. Heatmap co-expression profiles of 26S proteasome delta subunit, non -ATPase (PSMD) family members in breast
cancer (BRCA). Genes co-expressed with each of the PSMD family members in term of BRCA patients are presented in a heatmap format
(data extracted from the Oncomine database).
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Relationships between disease prognostication and
PSMD gene expression levels measured in tumor
specimens

poor recurrence-free survival (RFS), except for PSMD9
and PSMD11. Higher expression levels of PSMD9
and PSMD11 were significantly associated with
better survival rates of patients (Figure 5). We also
validated these data from the NCBI GEO database
(GSE21653) [54], and also obtained consistent data

The Kaplan-Meier (KM) plotter database also indicated
that most PSMD family members were associated with
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Figure 5. Significant correlations between mRNA levels of 26S proteasome delta subunit, non-ATPase (PSMD) family
members and recurrence-free survival curve (RFS) of patients diagnosed with breast cancer (BRCA). The two survival curves
respectively illustrate survival outcomes (including survival percentages and survival times) of BRCA patients with high (red) or low (black)
expression levels of PSMD family members. Increased mRNA levels of target genes resulted in poor prognoses, while increasing levels of
PSMD9 and PSMD11 were associated with favorable outcomes (p<0.05 was considered statistically significant).
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(Supplementary Figure 1). In addition, high expression
levels of PSMD1, PSMD2, PSMD3, PSMD7, PSMD10,
PSMD12, and PSMD14 were linked with poor distant

metastasis-free survival (DMFS),

whereas others were

not (Figure 6). The RFS and DMFS data implied that

these genes have oncogenic roles i

n BRCA progression.

Therefore, we chose PSMD1, PSMD2, PSMD3, PSMD?7,
PSMD10, PSMD12, and PSMD14 as objectives for

PSMD1

PSMD2

further bioinformatics analyses. Due to the fact that
samples from BRCA patients displayed distinctly
different expressions of PSMD family genes, we
continued to explore how these target genes participate in
particular metabolic pathways prior to investigating their
clinical relevance. Therefore, the intensities of antibodies
represented in clinical BRCA specimens were extracted
from the Human Protein Atlas (HPA) for further
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Figure 6. Significant correlations between mRNA levels of 26S proteasome delta subunit, non-ATPase (PSMD) family
members, and distant metastasis-free survival (DMFS) curve of patients diagnosed with breast cancer (BRCA). The two survival
curves respectively illustrate survival outcomes (including survival percentages and survival times) of BRCA patients with high (red) and low
(black) expression levels of PSMD family members. Increased mRNA levels of target genes resulted in poor prognoses, except for PSMD4,
PSMD5, PSMD6, PSMD8, PSMD9, PSMD11, and PSMD13 (p<0.05 was considered statistically significant).
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analysis. Immunohistochemical (IHC) images revealed
dense distributions of PSMD2 and PSMD4, while the

other PSMDs,

including PSMD1, PSMD2, PSMD3,

PSMD7, PSMD12, and PSMD14, were moderately

distributed in breast tumor samples (Figure 7).

PSMD2

PSMD3

PSMD10

PSMD12 /3,

PSMD14

In addition, when we performed the required analysis
using the Tumor Immune Estimation Resource (TIMER)
database (available at: http://timer.cistrome.org/), PSMD
member genes also showed relevance to immune
infiltration profiles of BRCA, and the expression of
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Figure 7. Immunohistochemical staining of 26S proteasome delta subunit, non-ATPase (PSMD) family members in normal
tissues and breast cancer (BRCA) tissues represented in IHC staining images and bar chart. The images illustrate intensities of
antibodies in both BRCA and adjacent normal tissues while the bar charts of IHC staining show intensities of PSMD family members in BRCA.
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each individual was related to tumor purity and markers
of six tumor-infiltrating immune cell types which
belonged to two separate groups: a lymphoid lineage
(B cells, cluster of differentiation 4-positive (CD4*) T
cells, and cluster of differentiation 8-positivie (CD8+) T
cells) and myeloid lineage (neutrophils, macrophages,
and dendritic cells) (Figure 8).

Pathway and network analysis of PSMD family genes

Since some potential information for refining the full
picture of regulated pathways available to PSMD family
genes is still missing, GeneGo Metacore software was
launched to extensively explore downstream networks
linked to the aforementioned co-expression patterns of
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Figure 8. Correlations between expressions of 26S proteasome
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delta subunit, non-ATPase (PSMD) family members and

immune infiltration profiles of breast cancer via the TIMER database. The figure shows correlations between each abnormally

expressed gene of the PSMD family and levels of several tumor-infiltrating

immune cell markers, such as B cells, cluster of differentiation 8-

positive (CD8*) T cells, CD4* T cells, macrophages, neutrophils, and dendritic cells.
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PSMD family genes. We obtained PSMD1 coexpression
profiles of BRCA from available datasets from both
METABRIC and TCGA. As a result, annotations of
biological processes obtained from GeneGo Metacore
showed that genes co-expressed with PSMD1
participated in several networks and cell cycle-related
pathways such as “Cell cycle Role of APC in cell cycle
regulation”, “Cell cycle The metaphase checkpoint”,
“Cell cycle Spindle assembly and chromosome
separation”, “DNA damage_Intra S-phase checkpoint”,
and “Cell cycle Start of DNA replication in early S
phase” (Figure 9 and Supplementary Table 2). PSMD2
was associated with “Cell cycle Cell cycle (generic
schema) Cell cycle_Start of DNA replication in early S
phase”, “Cell cycle_Chromosome condensation in
prometaphase”, “DNA  damage Intra S-phase
checkpoint”, “Cell cycle Role of SCF complex in cell
cycle regulation”, and “Reproduction Progesterone-
mediated oocyte maturation” (Figure 10 and
Supplementary Table 3). PSMD3 was involved in “Cell
cycle Role of Nek in cell cycle regulation”,
“TranscriptionNegative  regulation  of  HIF1A
function”, “DNA damage Intra S-phase checkpoint”,
“DNA  damage ATM/ATR regulation of G2/M
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checkpoint: cytoplasmic signaling”, “Cytoskeleton
remodeling_Keratin filaments”, and “Regulation of
degradation of deltaF508-CFTR in CF” (Figure 11 and
Supplementary Table 4). PSMD7 was involved in “Cell
cycle ESR1 regulation of G1/S transition”, “The role of
aberrations in CDKN2 locus and CDK4 in familial
melanoma”, “Putative role of estrogen receptor and
androgen receptor signaling in the progression of lung
cancer”, “Signal transduction Adenosine A3 receptor
signaling pathway”, and “Transport RAN regulation
pathway” (Figure 12 and Supplementary Table 5).
PSMD10 was involved in “DNA damage Nucleotide
excision repair”, “CFTR folding and maturation (normal
and CF)”, “Immune response Antigen presentation by
MHC class II”, “Regulation of degradation of deltaF508-
CFTR in CF”, “Cell cycle Role of SCF complex in cell
cycle regulation”, and “Immune response BAFF-induced
non-canonical NF-kB signaling” (Figure 13 and
Supplementary Table 6). PSMD12 was involved in “DNA
damage ATM/ATR regulation of G2/M checkpoint:
nuclear signaling”, “Cell cycle Initiation of mitosis”,
“Cell cycle ESR1 regulation of G1/S transition”, “Cell
cycle_Nucleocytoplasmic transport of CDK/cyclins”, and
“Mitogenic action of estradiol/ESR1 (nuclear) in breast
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Figure 9. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 1 (PSMD1) family gene
in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "Cell cycle_Role of APC in

cell cycle regulation" were correlated with BRCA development.
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Figure 10. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 2 (PSMD2) family gene
in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "Cell cycle_The metaphase
checkpoint" were significantly associated with BRCA development.
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Figure 11. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 3 (PSMD3) family gene
in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "Cell cycle_Spindle
assembly and chromosome separation" were significantly associated with BRCA development.
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Figure 12. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 7 (PSMD7) family gene
in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "Cell cycle_ESR1 regulation

of G1S transition" were significantly associated with BRCA development.
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Figure 13. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 10 (PSMD10) family

gene in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to

response_Antigen presentation by MHC class II" were significantly associated with BRCA development.

"Immune

www.aging-us.com 24894

AGING



cancer” (Figure 14 and Supplementary Table 7).
PSMD14 was involved in “Cell cycle The metaphase
checkpoint”, “Regulation of degradation of deltaF508-
CFTR in CF”, “Cell cycle_Sister chromatid cohesion”,
“Oxidative stress_Role of ASK1 under oxidative
stress”, and “Transport RAN regulation pathway”
(Flgure 15 and Supplementary Table 8). Meanwhile, we
obtained similar results from the cBioPortal and the
Cytoscape and METABRIC databases, which revealed
that these PSMD members were correlated with
metabolic pathways and the cancer development-related
genes (Supplementary Figure 2).

DISCUSSION

Recent epidemiologic studies indicated that BRCA
has been displaced lung cancer in term of the most
frequently diagnosed cases among women globally.
Despite some improvements having been made
in medical and surgical treatments of BRCA, a
shortage of detection methods for early screening or
diagnosis, accompanied by high risks of metastasis,
chemoresistance, endocrine-resistance, and recurrence
has resulted in a top ranking in overall mortality for this
disease, which still needs to be fully investigated.
Therefore, identifying specific key molecular pathways

and highly sensitive, reliable biomarkers is urgently
needed [48-53]. In recent times, the rapid growth of
microarray and high-throughput sequencing data
has provided convenient and comprehensive online
platforms to elucidate the pathogenesis of tumors, which
has allowed us to properly monitor tumor progression
and prognoses [22-26].

Based on the results of this study, it suggested that most
of the PSMD family are generally dysregulated in
hundreds of distinctive types of cancers. On the other
hand, expression profiles indicated that this family's
genes not only accompany tumor multi-stage
progression but are also involved in other tumor-related
issues. For instance, upregulation of the PSMD1 gene
was mainly enriched alongside a rise in tamoxifen
resistance displayed by BRCA cells [55]. The
autophagic degradation of 19S proteasomal subunits of
both PSMD1 and PSMD2 were mediated by ATG16
[56]. PSMD3 is believed to be involved in stabilizing
HER2, a growth-promoting protein on the exterior of all
breast cells, from degradation [57]. Upregulation of the
PSMD4 gene by hypoxic conditions in prostate cancer
cells suggests a novel therapy for treatment [58].
PSMD7 was significantly linked to earlier stimulation
of prostate cancer [59]. PSMD10 overexpression was
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Figure 14. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 12 (PSMD12) family
gene in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "DNA damage_|Intra
S-phase checkpoint" were significantly associated with BRCA development.
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supposed to substantially contribute to the onset of
tumors as observed in various cancer types [60].
PSMD11 is a novel biomarker of pancreatic cancer
progression [61]. High levels of PSMD12 enhanced both
the proliferation and invasion of BRCA and gliomas,
one of the fastest-growing and most aggressive brain
neoplasms, by upregulating nuclear factor erythroid 2-
related factor 2 (Nrf2) [62]. In the case of proteasomal
degradation, consistently high levels of PSMD14, which
regulates the de-ubiquitination substrate, may lead to a
worse prognosis of lung adenocarcinomas [63]. The
recent literature indicated that PSMDs play important
roles in various cancers, and may represent possible
biomarkers for predicting clinical out-comes and precise
diagnoses, which provides promising molecular targets
for the research and development of drugs and targeted
therapies.

Despite extensive efforts having been made to properly
understand the roles of each PSMD family member in
various clinical diseases and cancer development, there

2 4 6 8 1012 jogvalue)

gLl ill) _. | 1.Cell cycle_The metaphase
checkpoint

2 2.Cell cycle_Role of APC in
cell cycle regulation

3L L4 —— 3.Cell cycle_Spindle assembly
and chromosome separation

4.DNA damage_ATM/ATR regulation

of G2/M checkpoint:

cytoplasmic signaling

.Cell cycle_Role of Nek in

cell cycle regulation

6L L 6.DNA damage_Intra S-phase
checkpoint

gl il Ll 7.Cell cycle_Chromosome Q

in pr MEK3
(MAP2K3)

w
]

.DNA damage_G2 checkpoint in
response to DNA mismatches
9.DNA damage_ATM/ATR regulation
of G2/M checkpoint: nuclear

signaling
L [ ERRERERES 10.Regulation of degradation of
deltaF508-CFTR in CF

11 L 11.Cell cycle_Sister chromatid
cohesion

12 : 12.Oxidative stress_Role of ASK1 v
under oxidative stress

1 SRR RE 13.Cell cycle_Initiation of
mitosis

0

o
=

+P

s

e,

14 : 14.Transport_RAN regulation
pathway
by S 15.Abnormalities in cell cycle in
SCLC
16.Possible regulation of HSF-1/
16, . chaperone pathway in
Huntington's disease
Microsatellite instability in
gastric cancer

17 17.

1glest L 18.CFTR folding and maturation
(normal and CF)
19.Release of pro-inflammatory
19 4 mediators and elastolytic
enzymes by alveolar
macrophages in COPD
20, L 20.Reproduction_Progesterone-
mediated oocyte maturation
21.Cell cycle_Role of SCF
complex in cell cycle
regulation
22 22.Apoptosis and survival_
Granzyme A signaling

23.DNA damage_Mismatch repair
24.Signal transduction_MIF
signaling pathway
y 1. ] PER 25.Microsatellite instability in
colorectal cancer

% =} &

ima
(MAPK12)

uﬂx
(e

ME!
MEKS
(MNE,Z«,, (MAP3K1)

-7

2K 7

¥
X

(=]

v

GADDA4S alpha

*,
INK2(MAPKS)

is still limited evidence regarding relationships between
all PSMD family genes and BRCA. We therefore
conducted this study using available public databases to
analyze possible biological regulation of PSMD family
genes along with the occurrence and the development of
BRCA. The data revealed that higher mRNA and
protein levels of PSMD1, PSMD2, PSMD3, PSMD?7,
PSMD10, PSMD12, and PSMD14 lead to worse
prognoses in terms of both DMFS and RFS. Therefore,
we chose these PSMD family genes for further
bioinformatics analyses. Moreover, the coexpression and
pathway analysis also revealed the involvement of these
family genes together with cell metabolism, immune
responses, cyclin-dependent kinases (CDKSs), and other
cell-cycle pathways and signaling networks. The current
study was consistent with the previous literature; these
results credibly suggest that some specific genes of the
PSMD family act as oncogenes, whose differential
expressions may serve as potential molecular

biomarkers in terms of diagnosis, classification, and
prognosis for developing BRCA treatments.
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Figure 15. Cell cycle-related networks correlated with the 26S proteasome delta subunit, non-ATPase 14 (PSMD14) family
gene in breast cancer (BRCA). MetaCore pathway analysis of biological processes revealed that pathways related to "DNA
damage_ATMATR regulation of G;M checkpoint cytoplasmic signaling" were significantly associated with BRCA development.
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Based on our knowledge, this is the first ever report on
PSMD family genes expression in relation to patient
survival prediction in BRCA. Most of all, since various
types of high-throughput databases were integrated and
some underlying biological mechanism were revealed
that PSMD genes show prognostic and predictive value
in BRCA, hence they may possibly serve as novel
biomarkers in malignancy screening and/or potential
prognosticators in assessing BRCA severity and
prognosis.

MATERIALS AND METHODS
Oncomine and UALCAN analysis

Oncomine, available at (https://www.oncomine.org), is
generally recognized as a bioinformatics analytical tool
for gene expression microarrays among PSMD family
members [64]. Differences in expression between
normal tissues and 20 types of cancer counterparts
were comprehensively evaluated, under conditions that
thresholds of three parameters were adjusted to a
multiple of change >2; p<0.0001; and gene ranked in the
top 10%; with data type as “all”. Numbers of significant
unique analyses that met the selection criteria in BRCA
are presented as digits, while overexpressed and under-
expressed genes are displayed in red and blue gradients,
respectively, in descending order of the gene rank
percentile. In the subsequent stage, the ggpubr package
in R environment was run to obtain plots of BRCA
subtypes as we previously described [65-68].

Transcriptomic expressions of PSMD family members
were analyzed in BRCA sample using the UALCAN
(http://ualcan.path.uab.edu/)  platform. UALCAN
collected TCGA level 3 RNA-Seq and clinical data
from different cancer types. With genes of interest,
UALCAN allows wusers to perform biomarkers
identification to verify gene expressions with multiple
clinical factors. A boxplot was drawn of PSMD mRNA
expression levels measured in BRCA specimens (red)
compared to their normal counterparts (blue) obtained
from the UALCAN database. Statistical analysis was
performed using Student’s t-test, and p<0.05 was
considered statistically significant [69].

Evaluation of differential PSMD expressions in
cancer cell lines by a cancer cell line encyclopedia
(CCLE) analysis

To further search for individual expression levels of
PSMD family genes on a larger scale, the CCLE project
(available at https://portals.broadinstitute.org/ccle) was
launched [70]. 1000 This web-based tool offers public
access to both genetic and pharmacologic
characterizations of numerous human cancer models,

including over human cancer cell lines and over 130,000
unique datasets. Moreover, the integrated RNA-Seq
Aligned Reads tool was applied to 60 independent BRCA
cell lines prior to plotting expressions of PSMD family
members one at a time [71-73].

Kaplan-Meier (KM) overall survival analysis

The KM database (https://kmplot.com/), an integrated
online database well-known for assessing target genes of
survivors among 21 cancer types, was subsequently
leveraged to further expand some prognosis-related
issues. By concurrently integrating mRNA expression
levels and clinical data obtained from target genes, the
independent prognostic values of PSMD target genes on
patients diagnosed with BRCA, including both distant
metastasis-free  survival (DMFS) and relapse-free
survival (RFS), were represented as KM survival plots of
two distinct groups of patients. Comparisons of the two
patient cohorts were performed with 95% confidence
intervals of hazard ratios (HRs) and fixed log-rank
p values [74].

Analysis of protein expressions in clinical human
specimens

The Human Protein Atlas (HPA, https://www.
proteinatlas.org) provides a wealth of information on
sequences, pathology, expressions, and distributions in
various cancer tissues. The first version of this database
contained more than 400,000 high-resolution images
corresponding to more than 700 antibodies to human
proteins [75]. This study analyzed the differential status
of protein expressions and the localization of select
PSMD family protein expression in breast tissue.

Functional enrichment analysis of PSMD target genes

To visualize genomics datasets on a large scale,
particularty TCGA and METABRIC databases
(available at the cBioPortal platform), the InteractiVenn
tool (http://www.interactivenn.net/) was chosen to
draw a one-way Venn diagram which illustrates the
overlap and numbers of genes associated with
expressions of PSMD target genes across the two given
datasets [76]. The intersection between the two sets was
subsequently analyzed for related pathways and
involved networks using the online MetaCore platform
(https://portal.genego.com/), with p-value of <0.05, as
we previously described [77-82].

Tumor immune estimation resource (TIMER)
database analysis

TIMER vers. 2.0 (available at http://timer.comp-
genomics.org/) is generally known as a trustworthy
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resource for systematic analysis of host immune
infiltrates across multiple cancer types and related
diseases. In other words, this webserver can help
estimate abundances of six given immune cell types
which belong to two separate groups: the lymphoid
lineage (B cells, cluster of differentiation 4-positivie
(CD4*) T cells, and cluster of differentiation 8-positivie
(CD8*) T cells) and myeloid lineage (neutrophils,
macrophages, and dendritic cells) in the tumor
microenvironment, under the DiffExp module with
default parameters. Finally, correlations were illustrated
as a scatterplot, while PSMD gene expression levels
were represented on the x-axis and related tumor-
infiltrating immune cell markers were represented on
the y-axis [83, 84].
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SUPPLEMENTARY MATERIALS

Supplementary Figures

PSMD1 PSMD2 PSMD3 PSMD4

o o =] S
-] HR = 1.82 (1.15 - 2.89) -] HR = 1.91 (1.2 - 3.03) ) HR = 1.56 (0.99 - 2.47) - HR = 1.93(1.19 - 3.12)
logrank P = 0.0096 \ logrank P = 0.0056 logrank P = 0.056 ® logrank P = 0.0067
3 kY 2l 2. @
22 -, Ze \w 2w ' ze
= o hAL T = o g = o = = o L]
2 i 3 S S 3 -
o . Q2 - . a - i S < | ——t
22 RFS £3|RFS ~ 3 RFS L T
+ ~ )
8 | Expression 3 - Expression S | Expression © | Expression
low low low — low
e high i high < high e high
s ™ s1— =5 — e s 9 —
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (months) Time (months) Time (months) . Time (months)
Number at risk Number at risk Number at risk Number at risk
low 115 72 25 4 0 low 114 78 25 6 1 low 13 65 24 4 1 low 1 100 37 7 ]
high 115 52 18 5 1 high 116 a8 18 3 0 high 117 59 19 s 0 high 59 24 6 2 1
o o Y o o Y
= HR = 0.82 (0.51 - 1.32) HR = 1.46 (0.91 - 2.35) = HR =1.9(1.2 - 3.02) 13, HR = 1.95 (1.21 - 3.16)
logrank P = 0.41 logrank P = 0.12 - logrank P = 0.0053 ,V‘L logrank P = 0.0054
© L] ©
S o 1 =] o 55‘ S
ze : - ze 9 ze . ze M,
= o] = o | + = ° b =0 *
3° 3 L. 3 T M
g o ] g = [E— ) L
£3{RFS 23 RFS £31RFS £31 RFS
~ - ~ . ~ R - N
g “| Expression o | Expression o | Expression o | Expression
— low — low — low — low
o i o high e high < high
R : ERE ke : . sk - . : : P : : ,
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (months) Time (months) Time (months) Time (menths)
Number at risk Number at risk \ q;';'hw L "5‘;1 3 s ) Number at risk
low 70 38 14 1 [ fow 1 93 29 3 0 ey - a & H low 66 28 a 0
high 160 86 29 8 1 high 70 31 14 3 1 9 . - - high 128 58 15 5 1
o 2 e g o
A7 HR = 0.56 (0.34 - 0.9) - HR = 1.36 (0.83 - 2.24) ~ HR = 0.68 (0.41 - 1.11) — \,‘L HR = 1.94 (1.14 - 3.31)
kY logrank P = 0.016 - logrank P = 0.23 logrank P = 0.12 R logrank P = 0.013
@ 2| @ | RN
o - = o
2 e \\\:H s - 29 e ze T s 20 \m
£ 51 v i =5 - = o = o | iy
3 i 2 E | T
] ] + P
= = ] L .| 8= e .
22 RFS ~——| £37 RFS £3RFS L. £31RFS
~
g 7 Expression o | Expression S 7 Expression S “| Expression
— low — :?Wh — low — low
high 2 igl = high = high
g T ° T T T T < T T T T e T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (months) Time (months) Time (months) Time (months)
Number at risk ko ';l;r;\bef at "595” 33 s L o Number atrisk o Number at risk o . N
r:;: 15031 12;u 157 g ‘1’ high &1 28 10 1 o r-z;: 1316 50 gf 2 3) high 153 73 24 5 0
o
23 HR = 1.34 (0.78 - 2.31) = HR = 1.59 (0.98 - 2.59)
k logrank P = 0.28 logrank P = 0.058
@ @ ]
=l =]
ey .
ze L WG TR ze R S
i AT z TG e
o< [
E-1 S«
¢34 RFS . 21 RFS
~
o 7 Expression © 7| Expression
— low — low
g high g high
0 S0 100 150 200 0 50 100 150 200
Time (months) Time (months)
Number at risk Number at risk
low 59 37 14 2 '] fon 170 96 3 7 1
high 17 87 29 7 1 high 60 28 10 2 0

Supplementary Figure 1. Prognostic values of 26S proteasome delta subunit, non-ATPase (PSDM) family genes in breast
cancer (BRCA) patients (GSE21653 database). A recurrence metastasis-free sur-vival (RFS) dataset was used for the analysis. An auto-
cutoff strategy was set in this analysis to differentiate patients into two groups based on the value of PSMDs mRNAs. The two survival curves
respectively illustrate survival outcomes (including survival per-centages and survival times) of BRCA patients with high (red) or low (black)
expression levels of PSMD family members. Increased mRNA levels of most PSMD family genes resulted in poor prognoses, while an
increasing level of PSMD9 was associated with favorable outcomes (p<0.05 was considered statistically significant).
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Supplementary Figure 2. Correlations among different 26S proteasome delta subunit, non-ATPase (PSMD) family members
in breast cancer (BRCA). (A) Correlations between PSMD family members and cell-cycle-related genes in BRCA patients from the
METABRIC database, and in-significant correlations are marked by crosses. (B) Through a Cytoscape analysis, high correlations between
PSMD members and cancer development-related pathways were observed.
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Supplementary Tables

Supplementary Table 1. Univariate and multivariate Cox proportional hazards regression analysis of breast
cancer (BRCA) overall survival (OS) outcomes.

Variables Patient Univariate Multivariate
number HR (95% CI) p value HR (95% CI) p value
Agies(gear) 533 reference 0.0001 reference 0.000165 ***
> 60 461 1.97 (1.40 - 2.77) ' 1.966 (1.383 — 2.795) '
Gender 1 reference
Male 983 0.945 0.956
Female (0.132-6.78)
Tumor stage
Stage I/1I 740 reference 1.26-08 *** reference 0.000116 ***
Stage LIV 236 2.791 (1.96 — 3.97) 0.0189 * 3.4 (1.825-6.34) 0.055078
g 18 2.56 (1.17 - 5.6) ' 3.503 (0.97 - 12.61) '
Stage X
T
T1T2 841 reference 0.0019* reference 0.496934
T3/T4 150 1.85(1.25 - 2.73) 0.527 0.834 (0.494 - 1.4) 0.039511 *
T 3 0.527 (0.072 — 3.84) ' 0.098 (0.01 - 0.89) '
N
NO/NL 799 reference 4.756-05 *** reference 0.407585
N2/N3 176 2.32 (1.547 — 3.484) 3.736-05 *** 0.784 (0.44 — 1.39) 0.022777 *
NX 19 3.97 (2.06 — 7.65) ' 2.79 (1.154 - 6.76) '
M
834 reference .
e 20 5.296(3.09 - 9.05) 1'085'2%92 . zre(gegeﬂcze 0 0.62
140 1.396 (0.778 — 2.5) ' B '
MX
P?_'::IVI\:IH expression 497 reference 0.064
High 497 1.4 (0.98-2)
Pil\(:lv[\?z expression 497 reference 0.457
High 497 1.137 (0.81 - 1.59)
P?_'\C:IVI\:I)S expression 497 reference 0.421
High 497 1.149 (0.81 — 1.61)
P?_'\(:IVI\:IN expression 497 reference 0.343
High 497 1.178 (0.84 - 1.7)
PSMD10 expression
497 reference o reference o
h?g\;] 497 1.68 (1.188 — 2.396) 0.0035 1.798 (1.251 — 2.585) 0.001508
Pil\oﬂvl\?lz expression 497 reference 0.168
High 497 1.27 (0.9 -1.792)
PSMD14 expression
Low 497 reference 0.127

High 497 1.3 (0.93 — 1.836)

Factors showing significant relationships with OS from a univariate analysis were then used for a multi-variate analysis. HR,
hazard ratio; Cl, confidence interval; * p<0.05.
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Supplementary Table 2. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 1 (PSMD1) from public breast cancer (BRCA) databases using the MetaCore platform (with p<0.01 set as
the cutoff value).

No. Map p-Value Network objects from active data
1 Cell cycle_Role of APC in cell cycle 458E-16 BUBL, CDC18L (CDC6), Tome-1, Geminin, Emil, Cyclin A, Aurora-A, PLK1,
regulation ' Aurora-B, CDC20, Cyclin B, MAD2a, Securin, ORC1L, CKS1
. BUBL, SPBC25, CENP-A, Aurora-A, PLK1, Aurora-B, HEC, CDC20, HZwint-
2 Cell cycle_The metaphase checkpoint 1.10E-13 1, CENP-F, MAD2a, Survivin, CENP-E, AF15q14
3 Cell cycle_Spindle assembly and chromosome 6.96E-13 Importin (karyopherin)-alpha, TPX2, CSE1L, Aurora-A, KNSL1, Aurora-B,
separation ' HEC, CDC20, Tubulin alpha, Cyclin B, MAD2a, Separase, Securin
4 Cell cycle_Start of DNA replication in early S 110E-11 CDC18L (CDC6), Geminin, DP1, MCM4, MCM3, Cyclin E, MCM10, ORC6L,
phase ' MCM4/6/7 complex, MCM2, ORC1L, CDC45L
PCNA, CDC18L (CDC6), BLM, FANCD2, DTL (hCdt2), Histone H2AX,
5 DNA damage_Intra S-phase checkpoint 8.17E-10 MCM4, MCM3, Cyclin A, Chkl, MCM7, MCM10, MCM2, Histone H3,
CDC45L
Cell cycle_Chromosome condensation in CAP-C, Cyclin A, CAP-G/G2, Aurora-A, Aurora-B, CAP-E, Cyclin B, TOP2,
6 1.08E-09 -
prometaphase Histone H3
7 f:]eg‘;'a“on of degradation of deltaFS08-CFTR 5 ggr 6 cop. HSP70, RNF4, UFD1, SUMO-2, Derlin1, UCHLL, Hdj-2, SUMO-3, HSC70
Cigarette smoke-mediated regulation of
8 NRF2-antioxidant pathway in airway epithelial 5.08E-07 PRDX1, TXNRD1, NRF2, SRX1, GCL reg, ME1, TALDO, DJ-1
cells
9 Cell cycle_Initiation of mitosis 3.22E-06 Nucleolin, PLK1, KNSL1, Cyclin B2, FOXM1, Kinase MYT1, Histone H3
10 rcezlllig;%e’;Trans't'O” and termination of DNA 5 5, g TOP2 alpha, PCNA, Bard, Cyclin A, MCM2, TOP2, FENL1
11 DNAdamage ATM/ATR regulation of G2IM ¢ o ¢ UBE2C, JABL, Chkl, Aurora-A, PLK1, Aurora-B, DCK, Histone H3, 14-3-3
checkpoint: cytoplasmic signaling
12 rceeg'l'ﬂ?t’gi—m'e of SCF complex in cell cycle 7.15E-06 Emil, Cyclin E, Chk1, PLK1, RING-box protein 1, NEDD8, CKS1
13 Abnormalities in cell cycle in SCLC 7.15E-06 PCNA, Cyclin A, Cyclin E, Aurora-B, Histone H3, Cyclin E2, CKS1
14 Cell cycle_Role of Nek in cell cycle regulation 1.44E-05 TPX2, Aurora-A, PI3K cat class IA, HEC, Tubulin alpha, MAD2a, Histone H3
15 IGF signaling in lung cancer 1 49E-05 4E-BP1, Histone H2AX, PI3K cat cGIaF:sBIZA SOS, RHEB2, Survivin, mTOR,
DNA damage_ ATM/ATR regulation of G2/M CDC18L (CDCS6), Histone H2AX, Cyclin A, Chk1, PLK1, Cyclin B, Cyclin B2,
16 . . . 1.78E-05
checkpoint: nuclear signaling TTK
17~ 'mmune response_Antigen presentation by 7.00E-05 PSMBS, HSP70, TAPL (PSF1), IDE, Nardilysin, TAP, PSMB2, TAP2 (PSF2)
MHC class I, classical pathway
18 NRF2 regulation of oxidative stress response 7 00E-05 Thioredoxin, PRDX1, TXNRD1, NRF2,1GCL reg, PI3K cat class IA, SOD1, DJ-
19 Oxidative stress_Role of ASK1 under 7 00E-05 HPK38, UNRIP, Thioredoxin, PRDX1, MT-TRX, 14-3-3 zeta/delta, SOD1, 14-3-
oxidative stress ' 3
GTOW‘h factors in regulation of - 4E-BP1, 14-3-3 beta/alpha, CD80, PI3K cat class IA, 14-3-3 zeta/delta, Caspase-
20 oligodendrocyte precursor cells survival in 9.25E-05
. . 3, mTOR
multiple sclerosis
Development_Growth hormone signaling via
21 PI3K/AKT and MAPK cascades 9.25E-05 4E-BP1, ATF-2, Elk-4, SOS, RHEB2, mTOR, GRB2
gy ~ DNAdamage Role of Breal and Brea2 in 1.03E-04 PCNA, FANCD2, Histone H2AX, Rad51, MSH6, Bardl
DNA repair
23 Immune response_IFN-alpha/beta signaling 1.60E-04 PCNA, 4E-BP1, Cyclin A, Cyclin E, GBP1, p19, PI3K cat class IA, DHFR,
via PI3K and NF-kB pathways ' RSAD2, ISG15
24 Cell cycle_Cell cycle (generic schema) 1.66E-04 E2F5, DP1, Cyclin A, Cyclin E, Cyclin B
25 Signal transduction_PTEN pathway 1.68E-04 PCNA, PI3K cat class IA, SOS, Caspase-3, RHEB2, mTOR, GRB2
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Supplementary Table 3. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 2 (PSMD2) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the

cutoff value).

No. Map p-Value Network objects from active data

1 Cell cycle_Role of APC in cell cycle  5.61E-20 Nek2A, BUB1, MAD2b, CDC18L (CDC6), Tome-1, Emil, Cyclin A, Aurora-A, PLK1,
regulation Aurora-B, CDC25A, CDC20, SKP2, Cyclin B, MAD2a, Securin, ORC1L, CDK2, CKS1

2 Cell cycle_The metaphase 9.51E-16 Nek2A, BUB1, MAD2b, SPBC25, CENP-A, Aurora-A, PLK1, Aurora-B, HEC, CDCAL1,
checkpoint CDC20, HZwint-1, CENP-F, MAD2a, Survivin, CENP-E, AF15q14

3 Cell cycle_Spindle assembly and 9.84E-14 Nek2A, Importin (karyopherin)-alpha, TPX2, CSE1L, Aurora-A, KNSL1, Aurora-B, HEC,
chromosome separation CDC20, Tubulin alpha, Cyclin B, MAD2a, Separase, Securin, Tubulin (in microtubules)

4 Cell cycle_Cell cycle (generic 8.83E-13  CDC25C, CDK4, DP1, p107, Cyclin A, Cyclin E, CDC25A, Cyclin B, E2F2, CDC25B, E2F4,
schema) CDK2

5 Cell cycle_Chromosome 8.83E-13 CAP-H/H2, Condensin, CAP-C, Cyclin A, CNAP1, CAP-G/G2, Aurora-A, CAP-D2/D3,
condensation in prometaphase Aurora-B, CAP-E, Cyclin B, TOP2

6 DNA damage_Intra S-phase 1.45E-12 TOPBP1, CDC18L (CDC6), BLM, FANCD2, DTL (hCdt2), Chk2, MCM4, MCM3, Cyclin A,
checkpoint Chk1, FANCI (KIAA1794), PP1-cat, CDC25A, MCM7, MCM10, PP1-cat alpha, CDC?7,

MCM2, CDK2, CDC45L

7 Cell cycle_Start of DNA replication 2.63E-11 CDC18L (CDC6), DP1, MCM4, MCM3, Cyclin E, MCM10, ORC6L, MCMA4/6/7 complex,
in early S phase CDC7, MCM2, ORC1L, CDK2, CDC45L

8 Cell cycle_Role of SCF complex in 1.2E-10 Cullin 1, CDK4, Emil, Cyclin E, Skp2/TrCP/FBXW, Chkl, PLK1, CDC25A, SKP2, NEDDS,
cell cycle regulation CDK2, CKS1

9 Reproduction_Progesterone- 6.99E-10 CDC25C, BUB1, MEK1(MAP2K1), Cyclin B1, Aurora-A, PLK1, c-Raf-1, GSK3 beta,
mediated oocyte maturation Adenylate cyclase, CDC20, SOS, CDC25B, Kinase MYT1

10 Cell cycle_ESR1 regulation of G1/S ~ 1.58E-09 Cullin 1, CDK4, Cyclin A2, E2F4/DP1 complex, Cyclin A, Cyclin E, Skp2/TrCP/FBXW,
transition CDC25A, SKP2, E2F4, CDK2, CKS1

11 DNA damage_ ATM/ATR regulation ~ 3.6E-09 CDC25C, CDC18L (CDC6), Cyclin B1, Chk2, Cyclin A, DNMT1, Chk1, PLK1, GTSE1,
of G2/M checkpoint: nuclear Cyclin B, Cyclin B2, TTK, CDK2
signaling

12 Cell cycle_Role of Nek in cell cycle 7.47E-09 Nek2A, Tubulin beta, Tubulin gamma, Cyclin B1, TPX2, Aurora-A, PI3K cat class IA, HEC,
regulation Tubulin alpha, MAD2a, Tubulin (in microtubules)

13 DNA damage_ ATM/ATR regulation ~ 1.93E-08 CDC25C, UBE2C, Cyclin B1, Chk2, PP2A regulatory, Chk1, Aurora-A, PLK1, PP1-cat,
of G2/M checkpoint: cytoplasmic Aurora-B, CDC25A, CDC25B, 14-3-3
signaling

14 Cell cycle_Regulation of G1/S 2.39E-08 CDKA4, Cyclin A2, E2F4/DP1 complex, DP1, p107, Cyclin A, Cyclin E, GSK3 beta, E2F4,
transition (part 2) CDK2

15 Abnormalities in cell cycle in SCLC ~ 3.53E-08 CDK4, Cyclin B1, Cyclin A, Cyclin E, Aurora-B, SKP2, E2F2, Cyclin E2, CDK2, CKS1

16 Cell cycle_Initiation of mitosis 1.68E-07 CDC25C, Lamin B, Cyclin B1, PLK1, KNSL1, Cyclin B2, CDC25B, FOXM1, Kinase MYT1

17 Cell cycle_Nucleocytoplasmic 2.04E-07 CDK4, Importin (karyopherin)-alpha, Cyclin B1, Cyclin A, Cyclin E, GSK3 beta, CDK2
transport of CDK/Cyclins

18 Immune response_IFN-alpha/beta 2.07E-07 CDK4, I-kB, MEK1/2, I-TAC, p107, Cyclin A, p70 S6 kinases, Cyclin E, PI3K cat class IA, c-
signaling via PI3K and NF-xB Raf-1, GSK3 beta, p107/E2F4, CDC25A, elF4G1/3, E2F4, CDK2
pathways

19 Translation_Regulation of EIF2 6.24E-07 GSK3 alpha/beta, Casein kinase 11, beta chain (Phosvitin), MEK1/2, Casein kinase I, PP1-cat,
activity PI3K cat class IA, c-Raf-1, SOS, PP1-cat alpha, elF2B5

20 Regulation of degradation of 8.12E-07 HSP90, Csp, Stil, HSP70, Ahal, SAE1, SUMO-2, NPL4, VCP, SUMO-3
deltaF508-CFTR in CF

21 Cell cycle_Influence of Rasand Rho  2.23E-06 = CDK4, MEK1(MAP2K1), Cyclin A2, DIAL, Cyclin E, PI3K cat class IA, c-Raf-1, GSK3 beta,
proteins on G1/S Transition SKP2, LIMK2, CDK2

22 Cell cycle_Transition and 2.31E-06 TOP?2 alpha, Ribonuclease H1, Cyclin A, MCM2, TOP2, POLD reg (p50), FEN1, CDK2
termination of DNA replication

23 Possible regulation of HSF-1/ 5.55E-06 HSP90, GSK3 alpha/beta, PLA2, HSP70, PLK1, SUMO-2, HSP90 beta
chaperone pathway in Huntington's
disease

24 Cell cycle_Regulation of G1/S 5.95E-06 CDK4, Chk2, PP2A regulatory, Cyclin A, Cyclin E, Skp2/TrCP/FBXW, GSK3 beta, CDC25A,
transition (part 1) CDK2

25 LRRK?2 in neurons in Parkinson's 1.65E-05 AP-2 alpha subunits, HSP90, MEK1/2, GSK3 beta, MARK2, AP2A1, Tubulin (in

disease

microtubules), 14-3-3
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Supplementary Table 4. Pathway analysis of genes co-expressed with 26S proteasome delta subunit,
non-ATPase 3 (PSMD3) from public breast cancer databases using the MetaCore platform (with p<0.01 set as
the cutoff value).

No. Map p-Value Network objects from active data
. . Nek2A, CDC18L (CDC6), CDH1, Tome-1, Aurora-A, PLK1, Aurora-B,
1 Cell cycle_Role of APC in cell cycle regulation 3.21E-11 CDC25A, Cyclin B, MAD2a, ORCIL, CDK2
Cell evele Snindle assembly and chromosome Nek2A, Importin (karyopherin)-alpha, TPX2, CSE1L, DCTN2, Aurora-A,
2 yCle_sp y 4.92E-11 Aurora-B, Tubulin alpha, Cyclin B, MAD2a, Separase, Tubulin (in
separation -
microtubules)
. . ) Nek2A, Tubulin beta, Tubulin gamma, Cyclin B1, TPX2, Aurora-A,
3 Cell cycle_Role of Nek in cell cycle regulation 6.49E-10 Tubulin alpha, MAD2a, Histone H1, Histone H3, Tubulin (in microtubules)
CDC18L (CDC6), CDH1, DTL (hCdt2), Chk2, MCM4, PP1-cat, CDC25A,
4 DNA damage_Intra S-phase checkpoint 2.89E-09 MCM?7, Brcal, PP1-cat alpha, MCM2, Histone H3, CDK2, GCNS5,
CDC45L
5 DNA damage_ ATM/ATR regulation of G2/M 1 39E-08 UBE2C, Cyclin B1, Chk2, PP2A regulatory, Aurora-A, PLK1, PP1-cat,
checkpoint: cytoplasmic signaling ' Aurora-B, CDC25A, Brcal, Histone H3, 14-3-3
Cell cycle_Transition and termination of DNA TOP2 alpha, Brcal, TOP1, MCM2, TOP2, POLD reg (p50), FEN1, DNA
6 L 2.28E-08 X
replication ligase I, CDK2
Cell cycle_Chromosome condensation in CAP-H/H2, Aurora-A, Aurora-B, TOP1, Cyclin B, TOP2, Histone H1,
7 5.90E-08 -
prometaphase Histone H3
. I Tubulin beta, Keratin 8, Tubulin gamma 1, Keratin 18, Keratin 19, Tubulin
8 Cytoskeleton remodeling_Keratin filaments 5.33E-07 alpha, Keratin 8/18, GRB2, Tubulin (in microtubules)
9 Transcription_Negative regulation of HIF1A 3.57E-06 HSP90, Calpain 1(mu), HSP70, RUVBL2, Casein kinase | delta, Sirtuin7,
function ' HSP90 beta, MCM7, VCP, MCM2, PSMA7
10 Cell cycle_The metaphase checkpoint 6.04E-06 Nek2A, Aurora-A, PLK1, Aurora-B,EHZwmt-l, MAD?2a, Survivin, CENP-
1 Engu'a“O” of degradation of deltaF508-CFTRin ;4 o5 HSP90, Csp, Sti1, HSP70, Ahal, NPL4, Derlinl, VCP
12 gﬁ;‘sgyc'e—sm” of DNA replication in early S 2.61E-05  CDCI8L (CDC6), MCM4, MCM2, ORCLL, Histone H1, CDK2, CDC45L
13 LRRK?2 in neurons in Parkinson's disease 3.93E-05 AP-2 alpha subunits, HSP90, MARK2, AP2AL, Tubulin (in microtubules),
Beta-adaptin 2, 14-3-3
DNA damage_ATM/ATR regulation of G2/M ) . .
14 checkpoint: nuclear signaling 3.44E-05 CDC18L (CDC6), Cyclin B1, CDH1, Chk2, PLK1, Brcal, Cyclin B, CDK2
Signal transduction_mTORC1 downstream SCD, p70 S6 kinase2, MVK, p70 S6 kinases, UBF, SIN1, MAF1, ATG13,
5 signaling 4.588-05 ULK1
16 Apoptosis and survival_Regulation of apoptosis 471E-05 Calpain 1(mu), PKC-delta, Metaxin 1, Smac/Diablo, RAD9A, 14-3-3
by mitochondrial proteins ’ zeta/delta, PP1-cat alpha, PP2C, LETM1, RAD9, SOD1, CDK2
Regulation of lipid metabolism_Regulation of .
17 lipid metabolism via LXR, NF-Y and SREBP 8.45E-05 AMPK gamma subunit, SCD, FASN, LDLR, ACACA, ACLY, RARalpha
18 Translation_Regulation of EIF2 activity 8.45E-05 PKR, Casein kinase |, PP1-cat, H-Ras, PP1-cat alpha, elF2AK1, GRB2
19 DNA damage_ATM-dependent double-strand 9.86E-05 STARING, PRMT1, NPL4, Histone H2A, Brcal, VCP, BRG1, Histone H3,
break foci ' GCN5
Apoptosis and survival_Endoplasmic reticulum Calpain 1(mu), I-xB, TRAF2, PP1-cat, Derlinl, GRP78, PP1-cat alpha,
20 1.72E-04
stress response pathway ERP5
21 Regulation of degradation of WiCFTR 1.99E-04 HSP90, Csp, NPL4, Derlinl, VCP
22 NETosis in SLE 2.06E-04 DNase I, Histone H2, Histone H2A, PKC, Histone H1, Histone H3
SCAP/SREBP Transcriptional Control of
23 Cholesterol and FA Biosynthesis 2.56E-04 ELOVL1, SCD, FASN, ERG1, MVK, ACACA, ACLY
24 msgh;':;“rs of resistance to EGFR inhibitorsin 5 g g HSP90, E-cadherin, H-Ras, Claudin-7, ErbB2, Survivin, GRB2
25 Transport_Induction of Macropinocytosis 2 96E-04 HSP90, ARF1, BAIAP2, SHIP2, H-Ras, 14-3-3 zeta/delta, PDGF-B, PKC,
RhoGDI alpha
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Supplementary Table 5. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 7 (PSMD7) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the

cutoff value).

No. Map p-Value Network objects from active data

1 Cell cycle_Role of APC in cell cycle 2.73E-11 BUB1, CDH1, Geminin, Emil, Cyclin A, Aurora-A, PLK1, PKA-cat (CAMP-
regulation dependent), Cyclin B, MAD2a, Securin, CKS1

2 Cell cycle_ESR1 regulation of G1/S 2.64E-08 CDKA4, Cyclin A2, E2F4/DP1 complex, p130, Cyclin A, ERK1/2, E2F4, ERK2
transition (MAPK1), CKS1, CDK6

3 Cell cycle_Regulation of G1/S transition 4.24E-08 CDK4, Cyclin A2, E2F4/DP1 complex, p130, DP1, Cyclin A, ERK1/2, E2F4,
(part 2) CDK6

4 Cell cycle_Cell cycle (generic schema) 5.29E-08 CDK4, E2F5, p130, DP1, Cyclin A, Cyclin B, E2F4, CDK6

5 Cell cycle_Spindle assembly and 2.09E-07 Importin (karyopherin)-alpha, Aurora-A, HEC, Tubulin alpha, Cyclin B, MAD2a,
chromosome separation Securin, Ran, Tubulin (in microtubules)

6 Cell cycle_The metaphase checkpoint 4.73E-07 BUBL, SPBC25, CENP-A, Aurora-A, PLK1, HEC, HZwint-1, MAD2a, CENP-E

7 The role of aberrations in CDKN2 locus 6.81E-07 CDK4, E2F4/DP1 complex, E2F5, p130, DP1, E2F5/DP1 complex, E2F4, CDK6
and CDK4 in familial melanoma

8 Possible regulation of HSF-1/ chaperone 1.08E-06 HSP90, PLA2, HSP70, HSP90 alpha, PLK1, ERK1 (MAPK3), p23 co-chaperone
pathway in Huntington's disease

9 Putative role of Estrogen receptor and 4.23E-06 MEK1(MAP2K1), E-cadherin, p38 MAPK, ERK1 (MAPK3), G-protein alpha-i
Androgen receptor signaling in progression family, Caspase-3, ERK1/2, ERK2 (MAPK1), SRD5A1, 14-3-3
of lung cancer

10 Signal transduction_Adenosine A3 receptor 6.26E-06 HIF1A, MEK1/2, p38 MAPK, G-protein alpha-i family, G-protein alpha-i3, G-
signaling pathway protein alpha-i2, ERK1/2, PKC, G-protein alpha-g/11

11 Transport_RAN regulation pathway 6.57E-06 NTF2, NUP54, Importin (karyopherin)-alpha, RanBP1, NUP153, Ran

12 Cell cycle_Role of SCF complex in cell 1.19E-05 CDK4, p130, Emil, Chk1, PLK1, NEDD8, CKS1
cycle regulation

13 NRF2 regulation of oxidative stress 1.71E-05 Casein kinase Il, alpha chains, MEK1(MAP2K1), Thioredoxin, PRDX1, TXNRD1,
response GCL reg, ERK1 (MAPK3), PKC, ERK2 (MAPK1)

14 Cell cycle_Chromosome condensation in 1.79E-05 CAP-C, Cyclin A, CAP-G/G2, Aurora-A, CAP-E, Cyclin B
prometaphase

15 Cell cycle_Role of Nek in cell cycle 2.39E-05 Tubulin beta, Aurora-A, HEC, Tubulin alpha, MAD2a, Ran, Tubulin (in
regulation microtubules)

16 The role of KEAP1/NRF2 pathway in skin 2.39E-05 HSP70, Thioredoxin, E-cadherin, TXNRD1, ERK1 (MAPK3), ERK1/2, ERK2
sensitization (MAPK1)

17 Immune response_Antigen presentation by 2.64E-05 HSP90, Cathepsin L, Dectin-1, HSP90 alpha, Cathepsin V, p38 MAPK, Legumain,
MHC class Il MARCH1, ERK1/2, HSC70, PKC, MAP1LC3B, Tubulin (in microtubules)

18 Development_S1P1 receptor signaling via 3.63E-05 MEK1(MAP2K1), ERK1 (MAPKS3), G-protein alpha-i family, G-protein alpha-i3,
beta-arrestin G-protein alpha-i2, ERK1/2, ERK2 (MAPK1)

19 Development_Regulation of telomere 4.43E-05 HSP90, hnRNP C, TRF2, PTOP, hRap1, Staufen, p23 co-chaperone
length and cellular immortalization

20 G protein-coupled receptors signaling in 4.94E-05 PGE2R4, Galpha(i)-specific peptide GPCRs, G-protein alpha-i family, TGF-alpha,
lung cancer PKA-cat (cCAMP-dependent), Galanin, Galpha(q)-specific peptide GPCRs, CXCR4,

ERK1/2, G-protein alpha-g/11

21 HSP70 and HSP40-dependent folding in 5.30E-05 HSP90, HSP70, HSP90 alpha, PSMD1, Hdj-2, HSC70
Huntington's disease

22 DNA damage_ ATM/ATR regulation of 7.93E-05 p38alpha (MAPK14), Chk1, Aurora-A, PLK1, p38 MAPK, DCK, ERK2 (MAPK1),
G2/M checkpoint: cytoplasmic signaling 14-3-3

23 HCV-dependent cytoplasmic signaling 8.45E-05 MEK1(MAP2K1), p38 MAPK, PKA-cat (cCAMP-dependent), ERK1/2, PKC, ERK2
leading to HCC (MAPK1)

24 Non-genomic signaling of ESR2 1.05E-04 MEK1(MAP2K1), ERK1 (MAPK3), N-Ras, G-protein alpha-i family, TGF-alpha,
(membrane) in lung cancer cells PKA-cat (cCAMP-dependent), ERK1/2, ERK2 (MAPK1)

25 Signal transduction_CXCR4 signaling via 1.05E-04 MEK1(MAP2K1), MEK1/2, p38 MAPK, N-Ras, G-protein alpha-i family, G-

MAPKS cascades

protein alpha-i2, CXCR4, ERK1/2
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Supplementary Table 6. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 10 (PSMD10) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the

cutoff value).
No. Map p-Value Network objects from active data
1 HSP70 and HSP40-dependent folding in 9.52E-07 HSP90, Ubiquitin, HSP70, HSP90 alpha, PSMD1, Hdj-2, HSC70
Huntington's disease
. . . ERCC8, ERCC6, PCNA, HMG14, Centrin-2, TFIIS, Histone H2A, E2N(UBC13),
2 DNA damage_Nucleotide excision repair 3.58E-06 NEDD4, NEDDS
3 CFTR folding and maturation (normal and CF)  1.21E-05 HSP70, Calnexin, HSP105, HSP90 alpha, Hdj-2, p23 co-chaperone
4 Immune response_Antigen presentation by 1 43E-05 HSP90, Cathepsin L, 14-3-3 beta/alpha, HSP90 alpha, Cathepsin V, PI3K cat class
MHC class Il ' 1A, INK(MAPKS8-10), p38 MAPK, LAMP2, MARCH1, HSC70, SPPL2a
5 ﬁeg‘;'a“o” of degradation of deltaFS08-CFTR ~ 5o o HSP90, Ubiquitin, HSP70, RNF4, HSP105, Hdj-2, HSC70
6 Cell cycle_Role of SCF complex in cell cycle 5 gor g Ubiquitin, p130, Emil, Skp2/TrCP/FBXW, Weel, NEDDS
regulation
Immune response_BAFF-induced non- .
7 . . . 4.77E-05 Ubiquitin, SUMO-1, UBE1C, Skp2/TrCP/FBXW, E2N(UBC13), NEDD8
canonical NF-kB signaling
8 Development_Positive regulation of 5.15E-05 PP2C alpha, GSKIP, SIAH1, HSP105, INK(MAPKS8-10), SMAD4, PP2A
WNT/Beta-catenin signaling in the cytoplasm ' catalytic, RNF146, 14-3-3
9 Tricarbonic acid cycle 6.45E-05 SDHA, SUCLG], SDHB, CISY, SUCB1, IDH3B, DLDH, SCS-A
10 Role of XBP1 protein in multiple myeloma 6.70E-05 SERP1, DnaJB9, PSMAG, GRP78, ERP5
) . ) Ubiquitin, RAP-1A, p38alpha (MAPK14), MEK1/2, INK(MAPK8-10), p38
11 Role of GIP in pathogenesis of type 2 diabetes ~ 7.06E-05 MAPK, PP2A catalytic
1o  Possibleregulation of HSF-1/ chaperone 8.63E-05 HSP90, HSP70, HSP90 alpha, JNK(MAPKS-10), p23 co-chaperone
pathway in Huntington's disease
DNA damage_ATM/ATR regulation of G2/M JABL1, p38alpha (MAPK14), p38 MAPK, JNK2(MAPK9), DCK, PP2A catalytic,
13 . L . 1.39E-04
checkpoint: cytoplasmic signaling 14-3-3
14 Esgtsig:pt'on—'\'ega“ve regulation of HIFLA ) o7p o4 HSP90, PRDX4, Ubiquitin, HSP70, FBXW?7, LAMP2, Elongin C, HSC70
15 Proteolysis_Role of Parkinin the Ubiquitin- ) 700 o SIAHL, HSP70, FBXW?7, UBC7, Tubulin alpha
Proteasomal Pathway
G-protein signaling_G-Protein alpha-12 MEK1(MAP2K1), RAP-1A, 14-3-3 beta/alpha, P13K cat class IA, INK(MAPKS-
16 . . 1.90E-04
signaling pathway 10), p38 MAPK
17 'mmune response HSP60 and HSPTOITLR ) ok 04 Upiquitin, HSP70, 1-kB, MEK1/2, JNK(MAPKS-10), p38 MAPK, E2N(UBC13)
signaling pathway
18 Translation_Regulation of EIF4F activity 2 00E-04 MEK1(MAP2K1), elF4H, PI3K cat cIiSI?:Z: p38 MAPK, PP2A catalytic, RHEB2,
19 ggxz:?fgmem—(;'“°°°°r“°°'d receptor 2.09E-04 HSP90, SUMO-1, HSP70, NCOA2 (GRIPL/TIF2), p23 co-chaperone
g0  C-protein signaling_Ras family GTPases in 254E-04 MEKL(MAP2KL1), RAP-1A, p38alpha (MAPK14), INK(MAPKS-10), p38 MAPK
kinase cascades
21 Immune response_TLR5, TLR7, TLR8 and 3.15E-04 Ubiquitin, I-kB, MEK1/2, PI3K cat class IA, INK(MAPKS8-10), p38 MAPK,
TLR signaling pathways ' E2N(UBC13)
. . Ubiquitin, p38alpha (MAPK14), I-kB, MEK1/2, PI3K cat class IA, Histone H2A,
22 Immune response_IL-33 signaling pathway 3.15E-04 INK(MAPKS-10)
23 Signal transduction_AKT signaling 3.83E-04 HSP90, PCNA, I-kB, PI3K cat class IA, PP2A catalytic, RHEB2
24 ESRI(membrane) 36 kDaisoformsignaling 5 g HSP90, E-cadherin, MEK1/2, PI3K cat class IA, INK(MAPKS-10), CXCR4
in breast cancer
25 DNA damage_p53 activation by DNA damage  3.89E-04 TTCS (Strap), p38alpha (MAPK14), 14-3-3 theta, INK(MAPKS8-10), p38 MAPK,

PP2A catalytic, 14-3-3
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Supplementary Table 7. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 12 (PSMD12) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the

cutoff value).
No. Map p-Value Network objects from active data
Cell evele Role of APC in cell Nek2A, BUB1, CDC18L (CDC6), CDH1, Tome-1, Geminin, Emil, Cyclin A, Aurora-A,
1 yere_R 2.62E-23 PLK1, Aurora-B, CDC25A, CDC20, SKP2, Cyclin B, MAD2a, Securin, ORC1L, CDK2,
cycle regulation
CKS1
2 Cell cycle_The metaphase 3.68E-17 Nek2A, INCENP, BUB1, SPBC25, CENP-A, Aurora-A, PLK1, Aurora-B, HEC,
checkpoint ' CDCAL1, CDC20, HZwint-1, CENP-F, MAD2a, Survivin, CENP-E, AF15q14
DNA damage Intra S-phase PCNA, CDC18L (CDC6), BLM, CDH1, FANCD2, DTL (hCdt2), Histone H2AX, Chk2,
3 check ointg - p 2.96E-15 MCM4, MCM3, Cyclin A, Chk1, FANCI (KIAA1794), CDC25A, MCM7, MCM10,
P CDC7, MCM2, Histone H3, CDK2, CDC45L
Cell evele Spindle assembly and Nek2A, Importin (karyopherin)-alpha, TPX2, CSE1L, Aurora-A, KNSL1, Aurora-B,
4 yete_sp - y 5.66E-15 HEC, CDC20, Tubulin alpha, Cyclin B, MAD2a, Separase, Securin, Tubulin (in
chromosome separation -
microtubules)
5 ZNja‘t’iZTﬁ%gLMéhA;E int L36E12 CDC25C, WDHD1, CDC18L (CDC6), Cyclin B1, CDHL, HSFL, Histone H2AX, Chk2,
guration of pont: ' Cyclin A, Chkl, PLK1, Cyclin B, Cyclin B2, TTK, CDK2
nuclear signaling
6 Cell cycle_Start of DNA replication 2 97E-12 CDC18L (CDC6), Geminin, MCM4, MCM3, Cyclin E, MCM10, ORC6L, MCM4/6/7
in early S phase ' complex, CDC7, MCM2, ORC1L, CDK2, CDC45L
Cell cycle_Cell cycle (generic CDC25C, CDK4, E2F5, p107, Cyclin A, Cyclin E, CDC25A, Cyclin B, E2F2, CDC25B,
7 3.57E-12
schema) CDK2
8 Cell cycle_Chromosome 357E-12 INCENP, CAP-C, Cyclin A, CNAP1, CAP-G/G2, Aurora-A, CAP-D2/D3, Aurora-B,
condensation in prometaphase ' Cyclin B, TOP2, Histone H3
o Z%;@Ti‘ﬂe@g{ﬂ“ﬁcﬁz? vint LO7EAL CDC25C, UBE2C, Cyclin B1, JAB1, BORA, Chk2, Chk1, Aurora-A, PLK1, Aurora-B,
g OF 527V Checkpoint. ' CDC25A, DCK, CDC25B, Histone H3, 14-3-3
cytoplasmic signaling
10 Abnormalities in cell cycle in 1.95E-11 CDK4, PCNA, Cyclin B1, Cyclin A, Cyclin E, Aurora-B, SKP2, E2F2, Histone H3,
SCLC ' Cyclin E2, CDK2, CKS1
Cell cycle_Role of SCF complex in CDK4, Emil, Cyclin E, Skp2/TrCP/FBXW, Chk1, PLK1, CDC25A, SKP2, NEDDS,
11 . 2.83E-10
cell cycle regulation CDK2, CKS1
12 Cell cycle_Role of Nek in cell cycle 9.73E-10 Nek2A, Tubulin beta, Tubulin gamma, Cyclin B1, TPX2, Aurora-A, HEC, Tubulin alpha,
regulation ' MAD?2a, Histone H3, Tubulin (in microtubules)
13 Cell cycle_Initiation of mitosis 1.59E-09 CDC25C, Lamin B, Cyclin B1, PLK1, KNS_Ll, Cyclin B2, CDC25B, FOXM1, Kinase
- MYT1, Histone H3
14 Cellcycle ESR1 regulation of 2 91E-09 CDK4, Cyclin A2, NCOA3 (pCIP/SRC3), Cyclin A, Cyclin E, Skp2/TrCP/FBXW,
G1/S transition ' CDC25A, SKP2, CRM1, CDK2, CKS1
Cell cycle_Nucleocytoplasmic . - . . .
15 transport of CDK/Cyclins 5.40E-08 CDKA4, Importin (karyopherin)-alpha, Cyclin B1, Cyclin A, Cyclin E, CRM1, CDK2
16 DNA damage_ ATM/ATR 4.62E-07 CDK4, PCNA, Histone H2AX, Chk2, Cyclin A, Cyclin E, Chkl, CDC25A, CDK2,
regulation of G1/S checkpoint ' RFWD3
17 Mitogenic action of Estradiol / 1.01E-06 CDK4, NCOA3 (pCIP/SRC3), WIPL, Cyclin E, SGOL2, CDC25A, Cyclin E2, CDK2
ESR1 (nuclear) in breast cancer
Possible regulation of HSF-1/
18  chaperone pathway in Huntington's 1.53E-06 HSP90, PLA2, HSP70, HSF1, HSP9O0 alpha, PLK1, p23 co-chaperone
disease
19 Cellcycle_Role of 14-3-3 proteins 2.18E-06 CDC25C, Chk2, 14-3-3 theta, Chkl, CDC25A, 14-3-3 zeta/delta, CDC258B
in cell cycle regulation
Cell cycle_Sister chromatid . L
20 cohesion 3.06E-06 PCNA, Rad21, Cyclin B, DCC1, Separase, Securin, Histone H3
21 DNA damage_Nucleotide excision 5 95E-06 ERCCS6, PCNA, DTL (hCdt2), EZH2, UFD1, Histone H2A, DNA polymerase kappa,
repair ' Histone H2B, NEDDS8, Histone H4, Histone H3
gp  Celloycle Transitionand 7.60E-06 TOP2 alpha, PCNA, Cyclin A, MCM2, TOP2, FEN1, CDK2
termination of DNA replication
Regulation of degradation of . .
23 deltaF508-CETR in CE 1.50E-05 HSP90, Csp, Stil, HSP70, SAE1, HSP105, UFD1, Derlinl
o4 ~ Reproduction_Progesterone- 1.83E-05 CDC25C, BUBL, Cyclin B1, Aurora-A, PLK1, CDC20, CDC25B, Kinase MYTL
mediated oocyte maturation
Immune response_IFN-alpha/beta . .
25 signaling via PI3K and NF-kB 2 03E-05 CDK4, PCNA, 4E-BP1, p107, Cyclin A, Cyclin E, p19, DHFR, CDC25A, elF4E, CDK2,

pathways

ISG15
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Supplementary Table 8. Pathway analysis of genes co-expressed with 26S proteasome delta subunit, non-
ATPase 14 (PSMD14) from public breast cancer databases using the MetaCore platform (with p<0.01 set as the

cutoff value).

No. Map p-Value Network objects from active data

1 . Nek2A, BUBL, SPBC25, CENP-A, Aurora-A, PLK1, Aurora-B, HEC,
Cell cycle_The metaphase checkpoint 446E-14 CDCAL, HZwint-1, MAD2a, Survivin, CENP-H, CENP-E, AF15q14

2 . . Nek2A, BUBL1, Tome-1, Geminin, Emil, Cyclin A, Aurora-A, PLK1,
Cell cycle_Role of APC in cell cycle regulation 3.39E-12 Aurora-B, Cyclin B, MAD2a, Securin, CKS1

3 . Nek2A, Importin (karyopherin)-alpha, TPX2, CSE1L, Aurora-A, KNSL1,
Cell cyf:le_SplndIe assembly and chromosome 5.44E-12 Aurora-B, HEC, Tubulin alpha, Cyclin B, MAD2a, Securin, Tubulin (in
separation :

microtubules)

4 DNA damage_ ATM/ATR regulation of G2/M 1 68E-11 UBE2C, Cyclin B1, JAB1, 14-3-3 gamma, BORA, Chk2, Chk1, Aurora-A,
checkpoint: cytoplasmic signaling ' PLK1, PP1-cat, Aurora-B, DCK, Nucleolysin TIAR, Histone H3, 14-3-3

5 . . Nek2A, Tubulin beta, Cyclin B1, TPX2, Aurora-A, HEC, Tubulin alpha,
Cell cycle_Role of Nek in cell cycle regulation 2.23E-08 MAD2a, Histone H3, Tubulin (in microtubules)

6 . PCNA, DTL (hCdt2), Chk2, PP1-cat gamma, Cyclin A, RIF1, Claspin, Chk1,
DNA damage_Intra S-phase checkpoint 5.98E-08 FANCI (KIAA1794), PP1-cat, MCM10, CDC7, Histone H3, CDCA45L

7 Cell cycle_Chromosome condensation in Cyclin A, CAP-G/G2, Aurora-A, Aurora-B, CAP-E, Cyclin B, TOP2,

1.01E-07 .

prometaphase Histone H3

8 DNA damage_G2 checkpoint in response to DNA PCNA, MutSalpha complex, Chk2, MSH6, PMSL1, Claspin, Chk1, EXO1,

. 1.71E-07

mismatches MSH2

9 DNA damage_ ATM/ATR regulation of G2/M Cyclin B1, Chk2, Ku70, Cyclin A, Claspin, Chk1, PLK1, Cyclin B, Cyclin

o o 7.73E-07

checkpoint: nuclear signaling B2, TTK

10 gng”'a"O” of degradation of deltaFS08-CFTRIn 4 gr 0 Csp, HSP70, Ahal, HSP105, SUMO-2, Derlinl, UCHLL, Hdj-2, HSC70

11 Cell cycle_Sister chromatid cohesion 3.77E-06 PCNA, Rad21, Cyclin B, DCC1, RFC3, Securin, Histone H3

12 Oxidative stress_Role of ASK1 under oxidative 4.54E-06 HPK38, SOD2, UNRIP, 14-3-3 gamma, Thioredoxin, PRDX1, MT-TRX,
stress ' Glutaredoxin, SOD1, 14-3-3

13 Cell cycle_Initiation of mitosis 9.36E-06 Cyclin B1, Nucleolin, PLK1, KNSL1, Cyclin B2, FOXM1, Histone H3

14 Transport_RAN regulation pathway 1.06E-05 NUP54, SUMO-1, Importin (karyopherin)-alpha, NUP58, RanBP1, CRM1

15 Abnormalities in cell cycle in SCLC 2.05E-05 PCNA, Cyclin B1, Cyclin A, Aurora-B, Histone H3, Cyclin E2, CKS1

16 POSS'bI(? regullatlo_n of HSF-1/ chaperone pathway 2.87E-05 PLA2, HSP70, PLK1, SUMO-2, Calmodulin, p23 co-chaperone
in Huntington's disease

17 Microsatellite instability in gastric cancer 3.85E-05 PCNA, MutSalpha complex, MSH6, PMS1, EXO1, MSH2

18 CFTR folding and maturation (normal and CF) 6.59E-05 Csp, HSP70, Ahal, HSP105, Hdj-2, p23 co-chaperone

19 Release of pro-inflammatory mediators and
elastolytic enzymes by alveolar macrophages in 1.66E-04 MMP-12, Cathepsin L, MMP-1, IL-8, IP10, HDAC2
COPD

20 Reproduction_Progesterone-mediated oocyte 1.83E-04 BUB1, MEK1(MAP2K1), Cyclin B1, Aurora-A, PLK1, PKA-reg (CAMP-
maturation ' dependent), G-protein alpha-i family

21 Cell cycle_Role of SCF complex in cell cycle 2.04E-04 Emil, Chk1, PLK1, RING-box protein 1, NEDD8, CKS1
regulation

22 Apoptosis and survival_Granzyme A signaling 2.49E-04 Ku70/80, NDPK A, Ku80, HMGB2, Ku70, Histone H3

23 DNA damage_Mismatch repair 3.61E-04 PCNA, MutSalpha complex, MSH6, EXO1, MSH2, Histone H3

24 Signal transduction_MIF signaling pathway 5 04E-04 MEK1/2, PRDX1, SFK, IL-8, Gcsl;lrael?éf—protem alpha-i family, CXCR4,

25 Microsatellite instability in colorectal cancer 5.09E-04 PCNA, MutSalpha complex, Beta-2-microglobulin, MSH6, EXO1, MSH2

www.aging-us.com 24913 AGING



