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ABSTRACT 
 

Background: Globally, colorectal cancer (CRC) is one of the most lethal malignant diseases. However, the 
currently approved therapeutic options for CRC failed to acquire satisfactory treatment efficacy. Tailoring 
therapeutic strategies for CRC individuals can provide new insights into personalized prediction approaches and 
thus maximize clinical benefits. 
Methods: In this study, a multi-step process was used to construct an immune-related genes (IRGs) based 
signature leveraging the expression profiles and clinical characteristics of CRC from the Gene Expression 
Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. An integrated immunogenomic 
analysis was performed to determine the association between IRGs with prognostic significance and cancer 
genotypes in the tumor immune microenvironment (TIME). Moreover, we performed a comprehensive in silico 
therapeutics screening to identify agents with subclass-specific efficacy. 
Results: The established signature was shown to be a promising biomarker for evaluating clinical outcomes in 
CRC. The immune risk score as calculated by this classifier was significantly correlated with over-riding 
malignant phenotypes and immunophenotypes. Further analyses demonstrated that CRCs with low immune 
risk scores achieved better therapeutic benefits from immunotherapy, while AZD4547, Cytochalasin B and S-
crizotinib might have potential therapeutic implications in the immune risk score-high CRCs. 
Conclusions: Overall, this IRGs-based signature not only afforded a useful tool for determining the prognosis 
and evaluating the TIME features of CRCs, but also shed new light on tailoring CRCs with precise treatment. 
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INTRODUCTION 
 

Colorectal cancer (CRC) is the third most frequently 

occurring cancer and the second leading cause of 

cancer-related deaths worldwide in 2018 [1]. The 

current therapeutic options for CRC include endoscopic 

and local surgical excision, downstaging preoperative 

radiotherapy and systemic therapy, extensive surgery, 

local ablative therapies for metastases, palliative 

chemotherapy, targeted therapy, and immunotherapy 

[2]. It’s a highly heterogeneous disease on account of 

accumulating mutations attributed to environmental and 

genetic factors for years, which makes prognostic 

prediction and treatment to be exceedingly challenging 

[3, 4]. Therefore, there is an urgent need to incorporate 

other important elements to guide personalized 

therapies for CRCs, thereby improving the survival and 

prognosis of CRCs. 
 

In recent years, a myriad of publications have highlighted 

that the tumor immune microenvironment (TIME) is 

critically involved in cancer initiation and progression  

[5, 6]. For example, tumor-infiltrating lymphocytes (TILs) 

were in close interaction with relapse and mortality 

prediction in CRC [7–9]. Besides, immune checkpoint 

inhibitors (ICIs) targeted programmed cell death protein 

1 (PD-1)/programmed Cell Death-Ligand 1 (PD-L1) 

have been proved effective in the treatment of CRC  

[10, 11], revolutionizing oncotherapy to a great extent. 

Michael J et al. have demonstrated that a combination of 

PD-1 inhibitor (nivolumab) and cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) inhibitor (ipilimumab) has 

comparatively better efficacy and is a promising new 

therapeutic option for metastatic DNA mismatch repair-

deficient and microsatellite instability-high (dMMR–

MSI-H) CRCs [12, 13]. As the most widely investigated 

marker, tumor PD-L1 expression might be useful as a 

predictive marker of response to anti-PD-1 treatment for 

non-small cell lung cancer (NSCLC), gastric cancer and 

gastroesophageal junction tumors [14, 15]. But in CRC, 

PD-L1 expression wasn’t tightly associated with the 

response or survival in the recent studies [16]. Thus far, 

several other biomarkers of potential response have  

been demonstrated, including high tumor mutation load 

[17, 18], high immunoscore [19, 20], and POLE mutation 

[21, 22]. However, these biomarkers that guided the use 

of ICIs in patients with CRC are not always consistent  

in clinical practice. For example, high immunoscore  

were also substantiated in pMMR–MSI-L CRCs,  

raising queries of whether single immunophenotype 

might robustly predict immunotherapy benefit [23]. 

Consequently, integrative immunogenic features  

of the TIME might be more precise in predicting 

immunotherapeutic response than either feature alone. In 

conclusion, developing a novel immune signature 

complementary for the currently established signatures is 

of great importance to optimize individual specialized 

immunotherapy for CRC patients. 

 

Within the past decade, studies have aimed at 

elucidating the roles of immune-related genes (IRGs) in 

CRC. Li et al. have constructed an IRGs signature 

leveraging expression profiles and clinical characteristics 

from the GEO database and the TCGA database. Robust 

prognostic ability was demonstrated, meanwhile, the 

enrichment with cytotoxic immune cells as well as 

depletion of myeloid-derived suppressor cells (MDSC) 

and regulatory T cells (Tregs) were estimated in low-risk 

signature CRCs [24]. Lin et al. also comprehensively 

analyzed the role of IRGs in CRCs via the TCGA 

dataset, reporting a higher prognostic performance of 10 

IRGs based signature in CRC and the infiltration degree 

of various immune cells [25]. Nevertheless, there has 

been no IRGs signature that comprehensively evaluates 

the TIME and predicts prognostic significance in 

conjunction with the response to chemotherapeutic and 

immunotherapeutic options of CRC. 

 

In this study, we aimed at establishing a novel IRGs-

based signature for CRC to investigate the interplay 

between colorectal immune activity profile and oncology 

genotype. Through systematic in silico analysis based on 

the constructed signature, we discovered that the IRGs 

risk score for CRC was associated with overall survival 

(OS), clinicopathological factors, and immunophenotypic 

characteristics. Moreover, we also assessed the efficiency 

of this IRGs signature in identifying chemotherapeutic 

compounds and immunotherapy with subtype-specific 

efficacy. 

 

MATERIALS AND METHODS 
 

Data preparation 

 

Processed RNA-Seq FPKM data and clinical 

information of CRC were collected from the TCGA 

database. The TCGA colon adenocarcinoma (COAD, n 

= 512) cohort and rectum adenocarcinoma (READ, n = 

177) cohort were obtained from the GDC data portal 

(https://portal.gdc.cancer.gov/repository). For validation, 

the expression profiles and detailed clinical information 

of GSE39582 (including 562 CRC samples based on 

GPL570 platform) were retrieved from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/). The 

immune gene lists were obtained from the ImmPort 

database (https://immport.niaid.nih.gov) [26] and 

overlapping genes from the TCGA dataset were defined 

as IRGs in the current study and extracted for the 

subsequent analysis. 

 

To analyze the drug sensitivity in human CRCs, 

GSE17538 (including 232 CRC samples based on the 

https://portal.gdc.cancer.gov/repository
https://www.ncbi.nlm.nih.gov/geo/
https://immport.niaid.nih.gov/
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GPL570 platform) was obtained from the GEO 

database. The expression profiles of human cancer  

cell lines (CCLs) were achieved from the Broad 

Institute Cancer Cell Line Encyclopedia (CCLE)  

project (https://portals.broadinstitute.org/ccle/) [27]. 

Drug sensitivity data of CCLs were extracted from  

the Cancer Therapeutics Response Portal (CTRP, 

https://portals.broadinstitute.org/ctrp) and PRISM 

Repurposing dataset (https://depmap.org/portal/prism/). 

The PRISM is composed of sensitivity data for 1448 

compounds over 482 CCLs and the CTRP comprises of 

sensitivity data for 481 compounds over 835 CCLs. The 

area under the dose-response curve (area under the 

curve-AUC) values as a measure of drug sensitivity are 

presented in both two datasets, with lower AUC values 

indicating higher drug sensitivity. After the exclusion  

of compounds with more than 20% of missing data,  

the missing AUC values were imputed by K-nearest 

neighbor (k-NN) imputation. 

 
To investigate the response to immunotherapy, tumor 

expression profiles of six immunotherapeutic cohorts 

were obtained. Roh et al. (dataset contained melanoma 

patients receiving CTLA-4 or PD-1 blockade therapy 

was extracted from the supplementary files of reference 

[28]. Gene expression profiles and survival information 

of metastatic melanoma patients treated with CTLA-4 

immuno-inhibitor were obtained from the work of Van 

Allen et al. (2015) [29]. The data of Ulloa Montoya et al. 

(2013) cohort with non–small-cell lung cancer (NSCLC) 

patients who were administered MAGE-A3 antigen-

specific immunotherapy were downloaded from 

(GSE35640) [30]. The dataset of Hugo et al. (2016) 

included metastatic melanoma patients treated with anti-

PD-1 agents was acquired from GSE78220 [31]. 

Moreover, patients with metastatic urothelial cancer 

treated with PD-L1 blockade therapy from the 

IMvigor210 cohort [32] and the dataset of Snyder et al. 

(2017) [33] were also enrolled. 

 
Construction of the IRGs signature for CRC 

 

Differentially expression genes (DEGs) between tumor 

and normal samples from CRC patients from TCGA-

COAD and TCGA-READ cohorts were first screened by 

limma package [34] with a cutoff value of false discovery 

rate (FDR)-adjusted P-value < 0.01 and log2 | fold 

change (FC) | > 1. Then differentially expressed IRGs 

between the aforementioned CRC tumor and normal 

tissues were obtained using a strict criterion of FDR-

adjusted P-value < 0.01 and log2 | fold change (FC) | > 2. 

Heatmaps were plotted utilizing pheatmap package and 

volcano plots were generated via R software. 

 
The CRC tumor samples from the TCGA cohort were 

enrolled as the training cohort to construct the IRGs 

signature. Univariate Cox regression analysis of 

differentially expressed IRGs was performed by survival 

package in R. The prognosis-related IRGs (PRIRGs) 

were selected by a cutoff value of P < 0.01. To avoid the 

overfitting of IRGs signature and to delete highly 

correlated genes, dimensionality reduction analysis was 

conducted by the Least Absolute Shrinkage and 

Selection Operator (lasso) regression through survival 

and glmnet R packages using gene expression profiles 

and overall survival data. Lambda.min was set up as 

cutoff point to produce minimum mean cross-validated 

error and genes with the highest lambda values were 

selected for further analysis. Subsequently, multivariate 

Cox regression was harnessed to develop an IRGs 

signature based on the expression of these genes and  

to calculate the risk score for signature: 1  n

i i xi=    

(β represents the regression coefficient, and x stands for 

gene expression value). The training cohort samples 

were stratified into high- and low- risk groups according 

to the median value of the IRGs signature risk score. 

 

Survival analysis for high- and low-risk subgroups was 

then carried out using Kaplan-Meier methods and the 

log-rank test was used to determine the statistical 

significance of differences. Time-dependent receiver 

operating characteristic (ROC) curves were also 

generated leveraging survivalROC R package to 

validate the prognostic ability of the IRGs signature. 

The IRGs signature obtained from the training cohort 

were used to assign the validation cohort as well as 

datasets containing therapeutic information into high- 

and low- risk score subtypes. Furthermore, to assess the 

independence of the constructed signature’s predictive 

ability, we performed univariate analysis on the IRGs 

signature using all clinical factors in the training and 

validation cohort. The hazard ratio (HR) was measured 

by a Cox regression model using survival package in R 

and forest plots were drawn. 

 

Gene set enrichment analysis 
 

Gene set enrichment analysis (GSEA) in the CRC 

cohorts was carried out by clusterProfiler R package [35]. 

Fold change (FC) of each gene between subgroups was 

firstly produced by limma R package, and input genes 

were then ranked in descending order according to the 

logFC values. GSEA was subsequently applied to enrich 

50 hallmark gene sets (h.all.v7.0.symbols) achieved from 

the Molecular Signatures Database (MSigDB) [36]. 

Enrichment significance was evaluated using default 

settings and FDR adjusted P-value < 0.05 was considered 

significantly enriched. The single sample gene set 

enrichment analysis (ssGSEA) [37] implemented in R 

package GSVA, was adopted to calculate the normalized 

enrichment score (NES) of immune-related signatures in 

the training and validation cohorts. 

https://portals.broadinstitute.org/ccle/
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism/
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Collection of cancer- and immune-related data 

 

Four consensus molecular subtypes (CMS) CMS1-CMS4 

of training and validation group were classified through 

CMScaller R package [38]. Six immune subtypes C1-C6 

of CRC were sorted out by ImmuneSubtypeClassifier 

package in R [39]. The ESTIMATE score, immune 

score, stromal score, and tumor purity for each CRCs 

were quantified by the estimate algorithm [40]. The 

cytolytic activity (CYT) score was yielded as the 

geometrical mean of the GZMA and PRF1 for evaluating 

the cytolytic T-cell activity in TIME [17], 78 

immunomodulators [39], 8 fibroblasts [41], and 335 gene 

signatures of 10 oncogenic pathways [42] were extracted 

from the previously published literature, respectively. 

 

CIBERSORT package in R was employed to estimate 

the proportion of 22 immune cell types based on 

expression profiles [43], with the perm set at 1000. The 

infiltration levels of 24 immune cell types in the CRC 

TIME were further calculated by ssGSEA implemented 

with deconvolution approach, applying gene signatures 

expressed by specific immune cell populations [44]. 

 

Estimation of drug response in clinical samples 

 

Large-scale drug screening and molecular data across 

hundreds of cancer cell lines in pharmacogenomic 

databases of CTRP and PRISM make it possible for 

precise drug response prediction in clinical samples. 

Ridge regression model that located in the R package 

pRRophetic [45] was used to evaluate the drug 

responses in clinical samples, with a robust predictive 

power assessed by 10-fold cross-validation in default. 

The prediction model was merely employed on 

expression profiles and drug response data of solid 

CCLs, and the AUC value of each agent in each clinical 

sample was ultimately estimated. Agents with NAs in 

more than 20% of the samples and hematopoietic as 

well as lymphoid tissue-derived CCLs were excluded. 

Subclass mapping (SubMap) analysis (Gene Pattern 

modules, https://cloud.genepattern.org/), which can 

assess the similarity of molecular subtypes between 

independent patient cohorts based on mRNA expression 

matrix, was utilized to determine the potential 

immunotherapeutic benefit of distinct subtypes 

employing the available clinical response data and gene 

expression profiles from six immunotherapy datasets. 

 

Statistical analysis 

 

R statistical software (version 4.0.2) was implemented 

for all statistical analyses. The evaluation of normality 

distribution within continuous variables was performed 

by Shapiro-Wilk test. Comparison of a continuous 

variable in two or more than two groups was conducted 

by parametric test (Student’s t-test or analysis of 

variance, respectively) if the variable was normally 

distributed, otherwise, nonparametric test (Wilcoxon 

rank-sum test or Kruskal-Wallis test) was performed. 

Correlation between two continuous variables was 

evaluated by either Pearson’s r correlation or Spearman’s 

rank-order correlation. For all statistical analyses, unless 

otherwise noted, a two-tailed P-value < 0.05 was defined 

as statistically significant. 

 

RESULTS 
 

Construction of IRGs signature in CRC cohorts 

 

A total of 638 CRC and 51 adjacent normal tissues were 

acquired from the TCGA database. To establish a 

predictive IRGs signature, we performed differential 

expression analysis of genes and IRGs between tumor 

and normal tissues. A total of 3741 DEGs were 

identified, including 2,502 upregulated genes and 1,239 

downregulated genes (Supplementary Figure 1A, 1B). 

2,483 IRGs were also collected from the ImmPort 

database (Supplementary Table 1). Fulfilling the 

screening criteria, 294 differentially expressed IRGs 

were obtained, containing 99 upregulated IRGs and 195 

downregulated IRGs (Supplementary Figure 1C, 1D). In 

total, 606 CRC samples with complete gene expression 

profiles and intact follow-up information from the 

TCGA database were enrolled for establishing IRGs 

signature in the training cohort. 

 

To determine the IRGs related to tumorigenesis and 

development in CRC, univariate Cox regression analysis 

was implemented on the differentially expressed IRGs in 

the training cohort (P < 0.01), and 11 PRIRGs in all 

were obtained (Supplementary Figure 1E). Moreover, 

lasso regression was conducted to lessen the number of 

PRIRGs, and eight PRIRGs were thus filtered out 

(Supplementary Figure 1F, 1G and Supplementary Table 

2). Through multivariate Cox regression analysis, seven-

IRGs based signature was ultimately established, as 

depicted in Supplementary Table 3. The formula for 

calculating risk score is: Risk score = 0.139 х ExpFABP4 + 

0.176 х ExpAMH + 0.207 х ExpGRP + 0.211 х ExpINHBB - 

0.691 х ExpNRG1 + 0.274 х ExpUCN + 0.366 х ExpMC1R. 

Among these IRGs, NRG1 exhibited a negative 

coefficient, implying that it could be considered as a 

protective factor for CRCs; on the contrary, FABP4, 

AMH, GRP, INHBB, UCN, and MC1R possess positive 

coefficients, implying poor prognoses in CRCs with 

overexpression of these six genes. 

 

According to the median value of the risk score (0.948), 

the 606 CRCs in the training cohort were divided into a 

high-risk group (n = 303) and a low-risk group (n = 

303). The distribution of risk scores, survival status as 

https://cloud.genepattern.org/
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well as the expression level of seven IRGs for the two 

subgroups in the training cohort were correspondingly 

displayed in Figure 1A. Kaplan-Meier survival analysis 

(Figure 1B) indicated dismal prognosis for patients in 

the high-risk group (P < 0.0001). To assess the 

predictive efficiency of the constructed seven IRGs 

signature, time-dependent ROC curves were plotted. As 

shown in Figure 1C, the AUCs for 1-, 3-, 5- year 

survival prediction was 0.692, 0.676, and 0.721, 

respectively. 

 

To evaluate the performance of the seven IRGs 

signature, the GSE39582 dataset (n=562) was used for 

validation. On the basis of signature information 

acquired from the training cohort, CRCs in the 

validation cohort were also classified into high-risk 

group (n = 281) and low-risk group (n = 281). The 

distribution of risk scores, survival status, and the 

expression level of seven IRGs for different subclasses 

in the validation cohort are correspondingly displayed 

in Supplementary Figure 2A. Kaplan-Meier survival 

analysis in Supplementary Figure 2B also revealed poor 

prognosis in patients of high-risk score (P < 0.0001). 

Similarly, time-dependent ROC curves were plotted. As 

exhibited in Supplementary Figure 2C, the AUC for 1-, 

3-, 5- year survival prediction was 0.615, 0.616, and 

0.662, respectively. 

 

Evaluation of the IRGs signature in CRC cohorts 

 

A detailed summary of the training and the validation 

cohorts selected for univariate analysis in this study is 

presented in Supplementary Table 4. Univariate analysis 

of the TCGA dataset suggested that age (P = 0.003), 

history of colon polyps (P = 0.020), tumor stage  

(P < 0.001), mismatch repair system (MMR) status  

(P = 0.045), EGFR mutation (P = 0.003), and risk score 

(P < 0.001) were significantly associated with OS (Figure 

1D). Meanwhile, a high-risk score was correlated with 

increased age, history of colon polyps, right half of CRC, 

dMMR as well as EGFR mutation (Supplementary Table 

4). Analogous analyses in the validation dataset showed 

that tumor stage (P < 0.001), KRAS mutation (P = 

0.048), and risk score (P < 0.001) were closely connected 

with patient survival (Supplementary Figure 2D). As 

shown in Figure 1E, the risk score was significantly 

higher in right-side colorectal cancer than the left-side, 

and the risk score was significantly elevated as colorectal 

cancer progressed to an advanced stage. 

 

The differences in the distribution of molecular subtypes 

within the IRGs risk score model were also investigated. 

In the TCGA cohort, there was no significant difference 

between the risk score and the immune subtypes (Figure 

1F, 1G). Similar results were manifested in the 

validation dataset (Supplementary Figure 2E, 2F), 

probably because six immune subtypes were generated 

by immunogenomics analyses encompassing multiple 

cancer types [39]. With regards to CMS, the CMS4 

subtype had significantly higher IRGs risk score than the 

other three molecular subtypes, whereas the CMS2 

subtype held the lowest risk score (Figure 1F, 1H). A 

significantly difference was demonstrated among the 

four CMSs (P = 1.5e−11). In the GEO validation dataset, 

CMS was likewise found distributed between high- and 

low- risk subgroups (Supplementary Figure 2E), and 

allied results (P < 2.2e−16) were displayed in violin plot 

(Supplementary Figure 2G). Remarkably, the 

international CRC Subtyping Consortium proposed that 

superior survival was demonstrated in CMS2 patients 

while CMS4 patients displayed worse OS [46], 

consistent with our finding that a larger proportion of 

long-term survivors were identified in low-risk CRCs 

than the high-risk subset. The GSEA of 50 hallmark 

gene sets indicated that up-regulated genes of the high-

risk group were enriched in multiple carcinogenesis 

related pathways, such as epithelial-mesenchymal 

transition (EMT), angiogenesis, Hedgehog signaling, 

myogenesis, transforming growth factor-beta (TGFβ) 

signaling, as well as hypoxia pathway targeted HIF1A 

(Figure 2A and Supplementary Figure 3A). GSEA 

analyses revealed the enrichment of tumor proliferation-

associated signatures, such as E2F targets, MYC targets, 

and G2M checkpoint in IRGs low-risk subgroup. 

Several evidences suggested that they might denote dual 

role of regulating anti-tumor immunity and tumor cell 

proliferation. It’s indicated that the E2F1/SP3/STAT6 

axis induced by IL-4 promoted EMT in CRC cells [47]. 

Activation of IL-6/p-STAT3/c-MYC signaling was 

demonstrated to enhance colorectal tumor growth in a 

TLR4-dependent manner [48]. In addition, MYC/PVT1 

signaling induced immune surveillance via CD8+ TILs 

and peripheral blood mononuclear cells in CRCs [49]. 

As for G2M checkpoint, in-vitro co-culture assays of T 

cells and HCT-116 colorectal cancer cells reflected that 

immune checkpoint TIGIT blockade suppressed G2M 

transit [50]. Overall, these tumor proliferation-related 

pathways might also exert tumor immunity associated 

effects on the TIME of CRC, and the underlying 

mechanism deserved future investigation. Metabolism-

related processes consisting of oxidative phosphorylation 

and fatty acid metabolism, as well as immune-related 

signaling involved in IL6/JAK/STAT3, were observed 

in the low-risk group. 

 

Besides, variation in the NES values of 10 common 

oncogenic pathways between the two subclasses were 

evaluated in the TCGA COAD and READ patients 

(Figure 3A). The Hippo-, Notch-, NRF2- and Wnt-

related pathways exhibited significantly higher NES 

values in high-risk subtype than in low-risk subtype. 

The NES values of the PI3K, RAS, and TP53-related 
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Figure 1. Exploration of the predictive power and clinical characteristics of seven IRGs signature in the training cohort.  
(A) Distribution of risk score, survival status, and expression of seven IRGs of CRCs. (B) Kaplan-Meier survival curve of the high- and low- risk 
subgroups. (C) ROC curve analysis of IRGs. (D) Univariate Cox analysis of prognostic factors and OS of CRCs. (E) Violin plot illustrated the 
correlation between risk score and tumor site as well as tumor stage. (F) Alluvial diagram for the two subtypes versus different immune 
subtypes and CMS. (G) Violin plot illustrated the correlation between risk score and immune subtypes, and (H) CMS. AUC, area under the 
curve; OS, overall survival; CRC, colorectal cancer; IRGs, immune-related genes; ROC, receiver operating characteristic; CMS, consensus 
molecular subtypes. 
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Figure 2. Evaluation of the role of IRGs-based risk score in the training cohort. (A) Results of GSEA of the high-risk group (red) 

compared with the low-risk group (blue). Color toward gray represents no statistical significance. (B) Heatmap and violin plots of the 
ESTIMATE score, immune score, stromal score, tumor purity between high- and low- risk subtypes. (C) Violin plot of the CYT score between 
high- and low- risk subtypes. (D) Violin plot of fibroblasts between two subtypes, and the association between risk score and the NES of 
fibroblasts. Statistical significance at the level of ns ≥ 0.05, * < 0.05, ** < 0.01 and *** < 0.001. GSEA, gene set enrichment analysis; CYT, 
cytolytic activity; NES, normalized enrichment score. 
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pathways were significantly higher in the immune risk 

score-low subtype than in the immune risk score-high 

subtype. Analogous effects in Hippo-, Notch- and Wnt-

associated pathways were investigated in the GSE39582 

validation cohort (Supplementary Figure 5C). 

 

The immune landscape of the microenvironment in 

CRC subclasses 

 

To further evaluate the potential molecular mechanism, 

the connection between four types of score produced by 

the ESTIMATE algorithm and risk score was also 

examined. Among the training dataset, a higher risk 

score was unveiled with elevated ESTIMATE score and 

stromal score, nevertheless, with decreased tumor purity 

(Figure 2B). Analogous patterns were found in the 

validation dataset except for a significantly positive 

correlation between risk score and immune score 

(Supplementary Figure 3B). Besides, no statistical 

significance was shown in the CYT score between the 

two subclasses (Figure 2C and Supplementary Figure 

3C). It has been documented that fibroblasts are critical 

in multiple immunologic responses and inflammatory 

responses to tumor tissue injury [51, 52]. In the training 

group, the risk score was markedly correlated with the 

NES of fibroblasts (Spearman’s r = 0.18, P-value < 

0.001, Figure 2D). Likewise, we found increased NES 

in high-risk subgroup of the validation cohort 

(Supplementary Figure 3D). 

 

Immunomodulators (IM) play a determinant role in 

clinical oncology and plenty of IM-related agonists and 

antagonists are being assessed [53]. To further figure 

out the underlying immune modules of the constructed 

IRGs model, the IM gene expression level between two 

subgroups in two CRC cohorts was compared. Among 

the IMs under investigation for cancer immunotherapy, 

certain of them were significantly related to the risk 

score (Figure 4A and Supplementary Figure 4A, 4B). In 

addition, we deeply investigated whether the risk score 

was associated with the expression level of T cell 

markers (CD4 and CD8A) and with six vital immune 

checkpoint genes (CD47, CTLA-4, LAG3, MAGE-A3, 

PD-1, and PD-L1). As shown in Figure 4B, the 

expression level of PD-1 was significantly higher in 

CRC of the high-risk subtype, while the risk score was 

negatively correlated with CD47 expression. Moreover, 

the differences in the expression level of CD47 and PD-

1 between two subtypes of the TCGA dataset were 

statistically significant (Figure 4C). Even though the 

expression level of CD4 inclined to be elevated in high-

risk subclass, no statistical difference was determined in 

the TCGA cohort. Statistical significance was verified 

in the validation cohort (Supplementary Figure 4C). 

 

To investigate whether the immunophenotype may be 

shaped by immune cells, the relationship of immune 

infiltration with subtypes in both TCGA and GEO 

samples was examined in depth. We found that there was 

conspicuous heterogeneity in immune cell population 

among the established classifications, consistent with 

previous published TILs subpopulations in CRC [54]. As 

illustrated in Figure 4D and Supplementary Figure 5A, 

the infiltrated fractions of Tregs, activated NK cells, 

macrophage M0, and macrophage M2 was outstandingly 

augmented in the high-risk group. By contraries, 

 

 
 

Figure 3. (A) Heatmap and violin plots of the NES of 10 oncogenic pathways between two subtypes in the TCGA cohort. (B) Kaplan-Meier 

survival curve of the high- and low- risk subgroups in GSE17538 dataset for identifying potential therapeutic agents. (C) Spearman’s 
correlation analysis and differential drug response analysis of 10 CTRP-derived compounds. (D) Spearman’s correlation analysis and 
differential drug response analysis of 10 PRISM-derived compounds. NES, normalized enrichment score.  



 

www.aging-us.com 25526 AGING 

markedly increased infiltration of CD4+ memory resting 

T cells, CD4+ memory activated T cells, activated 

dendritic cells (DCs), and neutrophils was observed in 

the low-risk group. Furthermore, we evaluate the 

correlation between the expression of seven IRGs and the 

infiltration of 24 types of immune cells by ssGSEA in 

CRC tissues. In the TCGA cohort (Figure 4E), there was 

a strong correlation of the FABP4 expression with the 

infiltration of NK cells (Spearman’s r = 0.34, P < 0.001), 

GRP with NK cells (Spearman’s r = 0.41, P < 0.001) or 

Th17 cells (Spearman’s r = -0.32, P < 0.001), INKBB 

with NK cells (Spearman’s r = 0.31, P < 0.001), as well 

as UCN with Tgd (Spearman’s r = -0.31, P < 0.001) 

(Supplementary Table 5). For the training dataset and 

validation dataset, strong connection was confirmed 

between the expression of FABP4 and the infiltration of 

DC (Spearman’s r = 0.38, P < 0.001), iDC (Spearman’s r 

= 0.44, P < 0.001), macrophages (Spearman’s r = 0.46,  

P < 0.001), and mast cells (Spearman’s r = 0.40,  

P < 0.001), the expression of GRP and infiltration  

of macrophages (Spearman’s r = 0.30, P < 0.001) 

included (Figure 4E and Supplementary Figure 5B and 

Supplementary Table 5). 

 

Identification of potential therapeutic agents for 

CRCs with immune high-risk score 

 

The CTRP and PRISM datasets shared 160 compounds, 

with 1770 compounds remained in total after removing 

duplication (Supplementary Table 6). Two approaches 

were utilized to screen candidate compounds with 

higher drug sensitivity in CRCs of high-risk score. By 

stratifying CRCs in GSE17538 dataset into high- and 

low- risk score subtypes based on seven IRGs (Figure 

3B), the analyses were operated using CTRP and 

PRISM-derived drug response data, successively. First, 

differential drug response analysis between high- and 

low- risk groups was conducted to identify agents with 

differential estimated AUC values between subclasses 

(FDR < 0.05). Next, the Spearman correlation test 

 

 
 

Figure 4. The immune landscape of two distinctive subclasses in the training cohort. (A) The differential expression level of 

immune checkpoint molecules between two subclasses with statistical significance. (B) Violin plots of the CD4, CD8A, CD47, CTLA4, LAG3, 
MAGE-A3, PD-1 and PD-L1 expression levels for two subtypes. (C) The association between risk score and CD47 as well as PD-1 expression 
levels. (D) Immune infiltration between high- and low- risk subtypes with statistical significance in the training cohort. (E) Correlation analysis 
between the expression of seven IRGs and the infiltration of immune cells. Statistical significance at the level of ns ≥ 0.05, * < 0.05, ** < 0.01 
and *** < 0.001. 
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between AUC value and risk score was adopted to 

identify drugs with negative correlation coefficient 

(Spearman’s r < −0.30 for CTRP or −0.40 for PRISM). 

Above analyses yielded 10 CTRP-derived agents 

(including AT7867, AZD4547, BRD-K37390332, 

Cytochalasin B, PLX-4720, SGX-523, PLX-4032, TG-

101348, lovastatin, and BRD-K16147474) and 10 

PRISM-derived agents (including AMG458, LE135, 

mevastatin, creatine, S-Crizotinib, Colforsin daproate, 

erythritol, CHIR-98014, epinephrine, and tandutinib). 

All these compounds presented lower estimated AUC 

values in the high-risk subgroup and a negative 

correlation with IRGs-based risk score (Figure 3C, 3D). 

Although the 20 candidate agents displayed a higher 

drug sensitivity in IRGs score-high patients, solely  

the analyses above could not draw to the conclusion  

that these compounds are promising treatment modality 

for the eradication of CRC. Therefore, an integrated 

literature retrieval was conducted in PubMed, 

DrugBank [55], and HERB [56] databases to search for 

the experimental and clinical evidence of candidate 

compounds for CRC (Supplementary Table 7). BRD-

K16147474, SGX-523, BRD-K37390332, AMG458, 

LE135, creatine, colforsin daproate, erythritol, CHIR-

98014, and epinephrine without supporting evidence for 

CRC were firstly excluded. Secondly, PLX-4032 [57, 

58] and PLX-4720 [59] targeted B-rafV600E, AT7867 

targeted Akt [60], tandutinib targeted Akt/mTOR 

pathway [61], TG-101348 targeted the JAK2/STAT3/ 

PIM1 pathway [62], lovastatin [63] and mevastatin [64] 

inhibiting 3-hydroxy-3-methylglutaryl coenzyme A 

(HMG-CoA) reductase weren’t considered as the 

potential compounds for risk score-high subclass. This 

is because these drugs functioned inconsistently with 

targets enriched in the immune score-high subclass 

through GSEA (Figure 2A and Supplementary Figure 

3A). Collectively, AZD4547, Cytochalasin B and S-

crizotinib, which held true in vitro and in silico 

evidence, were deemed the most promising therapeutic 

agents for CRCs with high IRG risk scores. 

 

CRC subgroups have distinct responses to 

immunotherapy 

 

Two different procedures were adopted in this study to 

identify subclass-specific candidate immunotherapies. 

Submap analysis was first used to find potential 

immunotherapeutic benefit of two subgroups through 

six immunotherapy datasets available with clinical 

response and gene expression information. As exhibited 

in Figure 5F, the high-risk subclass shared high 

similarity with anti-MAGE-A3 nonresponse group in 

Ulloa Montoya et al. (2013) dataset (P = 0.049) and 

anti-PD-1 nonresponse group in Hugo et al. (2016) 

dataset (P = 0.002), and the high-risk subgroup tended 

to be correlated with anti-PD-L1 nonresponse group in 

IMvigor210 cohort although no statistical significance 

was found (P = 0.08). 

 

Patients received immunotherapy in Van Allen et al. 

(2015) dataset, Hugo et al. (2016) dataset, IMvigor210 

dataset, and Snyder et al. (2017) dataset were classified 

into high-risk subtype and low-risk subtype using the 

median IRGs-based risk score as the cutoff. Then, the 

AUC values for classifying the responder and non-

responder cases of several previous signatures, including 

CD8 [65], CYT [17], T cell-inflamed GEP [66], IFNγ 

[66], IPRES [67], MHC [68], Chemokine [69], and PD-

L1 [65] signatures as well as IRGs-based signature were 

calculated across all the four immunotherapeutic datasets 

with abundant gene expression profiles. Notably, IRGs 

signature outperformed the other eight signatures and the 

AUC values exceeded 0.7 in three out of four datasets 

(Figure 5A–5D). The results of performance comparison 

in four independent datasets suggested that the 

predictive power of IRGs signature ranked the highest. 

The association across these signatures indicated that 

five signatures, including IFNγ, CD8, MHC, IPRES, and 

PD-L1 signatures correlated closely with each other 

(Figure 5E). By contrast, IRGs signature displayed 

relatively weak correlation with other signatures, 

implying its complementary role rather than the 

alternative as an immunotherapeutic indicator. Patients 

in the low-risk subclass presented significant longer OS 

than those in the high-risk subclass of Van Allen et al. 

(2015) dataset (log-rank test P-value < 0.001, Figure 

5G), IMvigor210 dataset (log-rank test P-value = 0.036, 

Figure 5I) and Snyder et al. (2017) dataset (log-rank test 

P-value = 0.027, Figure 5J), however, no statistical 

difference was observed in Hugo et al. (2016) dataset 

(log-rank test P-value = 0.096, Figure 5H). These 

findings demonstrated that the lower risk score was 

associated with better survival outcomes in tumor 

patients treated with immunotherapy. Collecting 

immunotherapeutic response data in four cohorts 

mentioned above, we determined the correlation 

between immunotherapeutic response and risk score. It’s 

shown that patients in the low-risk subtype had a 

dramatically higher response to immunotherapy than 

patients in the high-risk subtype among three datasets 

(P-value = 0.024 for Van Allen et al. anti-CTLA-4 

cohort, P-value = 0.001 for IMvigor210 anti-PD-L1 

cohort, and P-value = 0.029 for Snyder et al. anti-PD-L1 

cohort; 2 test, Figure 5K, 5M, 5N), apart from (P-value 

= 0.194 for Hugo et al. anti-PD-1 cohort, 2 test, Figure 

5L). According to Van Allen et al. (2015) anti-CTLA-4 

cohort (Figure 5O), IMvigor210 anti-PD-L1 cohort 

(Figure 5Q), and Snyder et al. (2017) anti-PD-L1  

cohort (Figure 5R), violin plots revealed that the  

risk score was significantly decreased in patients 

responsive to the immunotherapeutic invention, 

compared to non-responsive patients. Nonetheless, no 
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statistical significance was observed in Hugo et al. 

(2016) anti-PD-1 cohort (Figure 5P). 

 

DISCUSSION 
 

Despite the advances in treatment, CRC is a lethal 

disease of great heterogeneity, prompting therapeutic 

optimization to prolong survival outcomes and reduce 

mortality. Hence, it’s essential to acquire reliable 

prognostic biomarkers to stratify survival risk and  

to predict subclass-specific therapeutic strategies. 

Tailoring specialized management for patients depends 

on personalized clinical and molecular features. 

Gaining insight into IRGs involved in CRC enables 

scientists to recapitulate the underlying mechanism  

of carcinogenesis in CRC and identify patients  

who may benefit from adaptive therapy. In this study, 

by exploiting a compendium of IRGs, a robust 

prognostic immune-based signature was built using 

public CRC cohorts. CRC samples with intact 

expression profiles and clinical characteristics  

were downloaded from the TCGA and the GEO 

database. Multivariate Cox regression was utilized to 

calculate the risk score for each cohort based on the 

seven IRGs signature independently. Besides, 

bioinformatic analyses were separately performed in 

different CRC cohorts, the normalized process was 

thus unneeded. 

 

 
 

Figure 5. The immunotherapeutic benefit of the IRGs-based risk score in immunotherapeutic treatment cohorts.  
(A–D) Comparison of AUC values between IRGs-based signature and other eight previous published immune related signatures in four 
immunotherapeutic datasets. (E) Similarity comparison between IRGs-based signature and other seven previous signatures. (F) SubMap 
analysis utilizing six immunotherapy datasets. Kaplan-Meier survival curve of OS for patients with high- and low- risk score subtypes for (G) 
Van Allen et al. (2015) dataset, (H) Hugo et al. (2016) dataset, (I) IMvigor210 dataset, and (J) Snyder et al. (2017) dataset. Bar graph illustrated 
the treatment response to immunotherapy within high- and low- risk score subtypes in (K) Van Allen et al. (2015) dataset, (L) Hugo et al. 
(2016) dataset, (M) IMvigor210 dataset, and (N) Snyder et al. (2017) dataset. Violin plots illustrated the distribution of risk score for patients 
with different immunotherapy responses in (O) Van Allen et al. (2015) dataset, (P) Hugo et al. (2016) dataset, (Q) IMvigor210 dataset, and  
(R) Snyder et al. (2017) dataset. 



 

www.aging-us.com 25529 AGING 

The IRGs-based risk score was found to be significantly 

correlated with OS in CRCs and remained significant 

after adjustment for clinical and pathological parameters. 

To characterize the TIME immune infiltration, we 

explored the divergent immune cell subpopulation via 

the CIBERSORT algorithm between subgroups. The 

higher pro-tumor immunocytes encompassing Tregs, 

macrophage M0, and macrophage M2 were observed in 

the high-risk group, in contrast, immune cells 

orchestrating anti-tumor responses including CD4+ 

memory resting T cells, CD4+ memory activated T cells, 

activated DCs, and neutrophils accumulated in the low-

risk group. Imbalances in immune cell components are 

associated with undesirable prognosis and inferior 

survival outcomes in cancer patients [70, 71]. Toor et al. 

documented the aggregation of CD4+ and FoxP3+ TILs 

in CRC tissues, compared to para-carcinoma normal 

tissues [72]. In humans, the accumulation of Tregs 

within TIME is regarded as a disadvantageous 

prognostic factor in a plethora of cancers [73]. However, 

Tregs infiltration in CRC tissues is incapable of 

predicting the prognosis [74, 75]. Elevated infiltration of 

Tregs could trigger low tumor differentiation and 

aggrandized involvement of lymph node [74]. In 

contrast, enhanced Tregs densities have also been 

correlated with better relapse-free survival (RFS)  

[76, 77]. Some heterogeneous subsets of Tregs facilitate 

CRC progression, covering CD8+ Tregs [78] and 

RORγt+ Tregs [79]. Macrophage polarization plays  

a prominent role in tumor pathogenesis. In response  

to distinct microenvironments, primary macrophages 

(M0) migrate out of vessels and could be polarized 

toward pro-inflammatory (M1) macrophages or  

anti-inflammatory (M2) macrophages, while resting 

macrophages undergo diverse functional alterations  

[80, 81]. To some extent, M2 macrophage infiltration is 

closely linked with increased involvement of CRC liver 

metastasis and malignant lesion in the liver [82]. 

Moreover, cancer-associated fibroblasts (CAFs) in CRC 

fuel tumor-associated macrophages (TAMs) infiltration 

and macrophages M2 polarization in TIME, 

subsequently impairing the function of NK cells [83]. 

The increased level of CD4+ TILs has been deemed as 

favorable clinical outcome in CRC [84], highlighting the 

crucial role of CD4+ cells in regulating immune system 

to exert anti-neoplastic activity. In CRCs, elevated 

expression of Th1 transcripts is correlated with 

beneficial prognosis, whereas the elevated expression of 

Th17 transcripts is correlated with poor clinical outcome 

[85]. Additionally, effector and memory Th1 CD4+ T 

cells are pivotal in effective anti-tumor immunity and 

that CD4+ T cells induce more durable immune 

responses than CD8+ T cells [86]. DCs act a key role in 

presenting tumor antigens and eliciting tumoricidal 

processes of T cells [87], and activated DCs might 

potentiate immunotherapeutic efficacy in advanced 

CRCs [88]. On the contrary, inhibited functions of DCs 

in cancer patients lead to the suppression of protective 

immune responses and facilitating disease progression 

[89]. An increased intra-tumoral abundance of 

neutrophil has been shown in CRC [90], and elevated 

neutrophil/lymphocyte ratio (NLR) in peripheral blood 

of advanced CRCs is related to unfavorable prognostic 

aspects [91]. By frequently colocalizing with CD8+ T 

cells, neutrophils could also irritate CD8+ T cell response 

to T cell receptor priming, thus reflecting that 

neutrophils might have notably anti-oncogenic efficacy 

[92]. Thus far, the roles of neutrophils and other immune 

cells in CRC progression have not been fully elucidated. 

The investigation in-depth, presented herein, opens new 

avenues for understanding the relationship between 

immune cells and the progression of CRC. 

 

Among the seven IRGs in the classifier, NRG1 was 

considered as a protective factor for CRCs while 

FABP4, AMH, GRP, INHBB, UCN and MC1R were 

risk factors for CRCs. These IRGs have been previously 

reported to be involved in tumorigenesis. The growth 

factor neuregulin 1 (NRG1) comprises of an epidermal 

growth factor (EGF)-like domain that binds to human 

tyrosine kinases of the ErbB/HER receptor family, 

contributing to heterodimerization and activation of the 

ErbB-mediated downstream signaling pathways [93]. 

CRC is an NRG1 fusion-positive tumor [94, 95], in 

which the expression of NRG1 III is significantly 

upregulated and negatively correlated with lymph node 

metastasis [96], implying a satisfactory prognosis. 

Primarily expressed in the adipocytes and macrophages 

[97], fatty acid binding protein 4 (FABP4) is involved in 

lipid transfer between adipocytes and tumor cells, 

provoking the fatty acid oxidation to induce tumor 

growth [98, 99]. The elevated expression of FABP4 was 

confirmed as a robust risk factor for the progression of 

CRC in a Chinese cohort [100], while an in-silico study 

also uncovered that FABP4 imposed conceivably poor 

prognosis on CRCs [25]. Herein, FABP4 harbored 

detrimental effects on CRCs and the strong interaction 

between the FABP4 expression and macrophages was 

also manifested in our study, supporting FABP4’s 

crosstalk with macrophages in the TIME. As a 

corticotropin-releasing factor-related peptide, urocortin 

(UCN) participated in gastrointestinal motor and visceral 

pain during stress response [101]. In the current study, 

UCN was correlated with poor CRC prognosis, in 

tandem with anteriorly proposed CRC signature [25, 

102, 103]. The melanocortin-1 receptor (MC1R) has 

been regarded as an adverse parameter for survival in 

CRC [102]. Nevertheless, the specific implication of 

MC1R in CRC is rarely known. Patients carrying the 

MC1R variants are presented with elevated melanoma 

risk, and MC1R had been a therapeutic target for 

melanoma [104, 105]. Consequently, preclinical studies 
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on the importance of MC1R in the development of CRC 

are needed. Anti-Müllerian hormone (AMH) is a 

member of the TGFβ family that engages in cell 

proliferation, differentiation, and apoptosis in normal 

tissues [106]. AMH was positively related to the risk of 

breast cancer [107], and the downregulation of AMH 

lower the risk of CRC was forecasted in two 

bioinformatic analyses [108, 109]. The inhibin subunit 

beta B (INHBB) is a subunit of the activin B, a 

functional cytokine of the TGFβ superfamily [110, 111]. 

INHBB is upregulated and exerts tumorigenic activity in 

a variety of malignant tumors ranging from oral cancer 

[112] to endometrial cancer [113], prostate cancer [114], 

and thyroid cancer [115]. In our model, elevated INHBB 

expression predicted an adverse outcome. Analogously, 

Yuan et al. indicated that the expression of INHBB was 

enhanced in CRC tissue, bringing about worse OS and 

disease-free survival (DFS) [116]. As a subtribe of the 

bombesin (BN)-like peptide family, gastrin-releasing 

peptide (GRP) is principally served as gastrointestinal 

hormone and neurotransmitter [117, 118]. GRP 

modulates the growth and differentiation of numerous 

human tumors including CRC [119, 120]. The GRP 

receptor (GRPR) has been shown to be overexpressed in 

human CRCs, when compared to normal colonic 

epithelial cells [121, 122]. Moreover, GRP and the co-

expression of GRPR acted in differentiation, with the 

highest levels observed in well-differentiated CRC cells 

[123]. BN/GRP antagonists, such as RC-3095 and RC-

3940-II, have been reported to exert anti-tumor activities 

in in-vitro and in-vivo mouse xenografts [124, 125]. RC-

3940-II also exerted potent anti-neoplastic activity on the 

human CRC cell lines both in vitro and in vivo [126]. Li 

et al. pointed out that GRP could predict the prognosis of 

DFS in CRC [127], uncovering its involvement in the 

prognosis and survival of CRC. Bedke et al. 

demonstrated that GRP and GRPR were mainly 

expressed by TAMs in renal cell carcinomas (RCC) 

[128], accordantly, the current study indicated that the 

expression of GRP was positively correlated with the 

degree of macrophage infiltration. Briefly, these 

compelling evidences for the significance of GRP show 

great potential at unmasking the malignancy-associated 

roles of TAMs in CRC. 

 

Three drugs, including AZD4547, Cytochalasin B, and 

S-crizotinib, harbored more notable anti-neoplastic 

activity in the immune risk score-high group. 

Intriguingly, high-risk specific agents are all anti-tumor 

targeted compounds, and a striking consistency was 

shown between the mechanism of action (MOA) of 

these chemical entities and enriched signatures obtained 

from GSEA. As prominent segment in the TME 

composed of cancer cells and stromal or immune cells, 

CAFs crosstalk with tumor cells contributes to the 

progression of tumor [129]. Overexpression of the 

fibroblast growth factor receptor-1 (FGFR-1) has been 

correlated with liver metastasis in CRC [130]. The 

fibroblast growth factor 1 (FGF1)/FGFR-3 signaling 

mediates migration and invasion in CRC, and activated 

fibroblasts upregulate the expression of FGF1 [131]. 

AZD4547 is an orally potent and highly selective 

tyrosine kinase inhibitor (TKI) targeted FGFR 1-3 [132]. 

Preclinical data recapitulates that AZD4547 possesses 

anti-oncogenic activity against various tumors, such as 

gastric [133], lung [134], and pancreatic [135] cancers. 

Yao et al. reported that AZD4547 delayed CRC tumor 

growth in vitro, and its activity was in close interaction 

with the expression level of FGFR [136]. In our study, 

the infiltration of fibroblasts was apparently higher in 

high-risk score CRCs, compellingly argue for clinical 

investigations of AZD4547 for treating high-risk specific 

CRCs. Cytochalasin B is a common microfilament-

disrupting compound that impacts various cellular 

physiological processes mediated by F-actin, 

encompassing cell motility, endocytosis and adherence 

[137–139]. Treating human CRC SW480 cells with 

cytochalasin B attenuated the downregulation of E-

cadherin expression [140]. Indeed, the loss or 

dysregulation of E-cadherin expression expedites the 

growth, invasion, and drug resistance in CRC cells [141, 

142]. EMT, a morphogenetic process whereby epithelial 

cells transform to the mesenchymal phenotype, critically 

engaged in tumorigenesis and cancer progression [143]. 

In tumor, the expression of epithelial markers, E-

cadherin particularly, is downregulated during the 

process of EMT, ultimately destroying cell adhesion, 

promoting cell motility and stages of cancer [144, 145]. 

Conversely, inhibited EMT as evidenced by the elevated 

expression of E-cadherin exerts suppressive effects on 

the growth and invasion of human CRC via the Wnt/β-

catenin signaling [146, 147]. c-MET/RON activation 

initiates many facets of cellular responses covering 

motility, proliferation, EMT, and angiogenesis [148, 

149]. Typically, c-Met and RON signaling irritate 

angiogenesis through the interplay with vascular 

endothelial growth factor (VEGF) stimulated by 

hypoxia-inducible factor 1-alpha (HIF-1α). Crizotinib is 

an extensively functioning, small-molecule TKI 

clinically approved for treating non-small-cell lung 

cancer (NSCLC) patients [150]. In a three-dimensional 

CRC culture system, Li et al. found that crizotinib 

restored cetuximab sensitivity in the HCA-7 CRC cell 

line [151]. By inhibiting c-MET/RON/ALK/MTH1, S-

crizotinib is an optical isomer of a clinical anticancer 

compound, R-crizotinib, with inhibited efficacy in 

suppressing MTH1 compared to S-crizotinib [152, 153]. 

Previous evidence suggests that MTH1 inhibition via S-

crizotinib induced an increase in DNA single strand 

breaks as well as activated DNA repair in SW480 cells 

[153]. In human cells, acute MTH1 inhibition enables 

p53-dependent cellular senescence upon hyperoxia 
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[154]. Moreover, MTH1 is pivotal in RAS-driven 

oncogenesis and its overexpression accelerates the 

spectrum of RAS-driven carcinogenic transformation 

[155]. Notably, elevated expression of MTH1 enhances 

the transformation of immortalized cells through RAS 

and maintains pro-oncogenic phenotype, EMT [156, 

157]. Collectively, we postulate that AZD4547, 

Cytochalasin B and S-crizotinib are attractive 

compounds for further pre-clinical investigations and 

could be promising novel anti-cancer agents for IRGs 

risk score-high CRCs. 

 

Immunotherapy, with special regard to ICIs, has 

attracted great interest in oncotherapy and has been 

applied in clinical practice for a variety of malignancies. 

Pembrolizumab and nivolumab that inhibited PD-1 and 

ipilimumab targeted CTLA-4 have been approved by the 

United States Food and Drug Administration (FDA) as 

second-line treatment in MSI-high and dMMR advanced 

CRCs. Focused on the findings from KEYNOTE  

028 [13] and CheckMate 142 [11], solely a modest 

percentage of advanced CRCs harbored a persistent and 

stable response during the ICI therapy, with response rate 

at 30-55%. Therefore, it is of great clinical significance to 

develop a biomarker for predicting immunotherapeutic 

efficacy. In this study, we confirmed that CRCs with a 

low-risk immune signature were markedly related with 

enhanced response to ICIs targeted PD-1, PD-L1 and 

CTLA-4, while the immune score-high CRCs exhibited 

nonresponse to PD-1 inhibitor and MAGE-A3 based 

immunotherapy. These findings illustrated that the IRGs-

based risk score could be served as a practical tool for 

assessing immunotherapeutic efficacy in CRC, in 

accordance with a recent study on the immune signature 

score for colon cancer [24]. Compared to the immune 

high-risk subclass, the low-risk subclass exhibited 

significantly higher infiltration of anti-tumor immune 

cells and expression of immune checkpoint genes, which 

may account for diverse responses between the two 

subclasses. Furthermore, the GSEA of hallmark gene sets 

indicated that the upregulated genes in the high-risk 

subgroup were enriched in Wnt/β-catenin signaling, 

consistent with previous findings that the activation of 

tumor-intrinsic β-catenin pathway could induce T-cell 

exclusion, thereby causing resistance to PD-L1 or CTLA-

4 blockade immunotherapy [158]. Thus, altered Wnt/β-

catenin signaling activation may be associated with 

immunotherapeutic resistance in CRC. 

 

However, there are still some limitations in this study. 

Firstly, we attempted to obtain abundant CRC cohorts 

to achieve more reliable results with sufficient sample 

size. But the intra-tumor or intra-patient heterogeneity 

of the TIME in CRCs was not fully considered,  

which impacted the effect of chemotherapy and 

immunotherapy. Secondly, the median cutoff of IRGs 

risk score was utilized to stratify the CRC samples into 

high-risk subtype and low-risk subtype, and the optimal 

cutoff of the risk score is needed to best classify the 

CRCs. Thirdly, all the conclusions in this study were 

inferred from in-silico analyses, and further in-vitro or 

in-vivo experiments and clinical validations are needed 

to promote the clinical application of our findings. 

Finally, due to the paucity of CRC cohorts treated with 

immunotherapy, more prospective clinical studies are 

required to further verify this novel IRGs-based 

signature in CRCs. 

 

CONCLUSIONS 
 

The IRGs signature is valuable for its correlation with 

immune infiltration, and the association between the 

risk score and OS in the integrated analysis of CRC 

cohorts suggests that it is a robust prognostic 

biomarker for CRC. This IRGs model harbors crucial 

clinical practicality in both high- and low- risk CRCs 

who had failed first-line treatment or progressed. For 

immune low-risk score patients, clinicians could adopt 

ICIs targeted PD-1, PD-L1 and CTLA-4 as well  

as MAGE-A3 immunotherapy strategies to avoid 

excessive treatment, so these CRCs could acquire  

a better quality of life with a favorable prognosis.  

For immune high-risk score patients, AZD4547, 

Cytochalasin B and S-crizotinib might be used in cases 

of immunotherapeutic resistance. Generally, our 

finding provides new insights into determining the 

prognosis of CRCs, and sheds new light on tailoring 

CRCs with precise treatment. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Construction of the IRGs-based risk score model through TCGA training cohort. (A, B) Differentially 
expressed genes in CRC. (C, D) Differentially expressed IRGs in CRC. (E) Forest plot of PRIRGs via univariate Cox regression analysis. (F) lasso 
coefficient profiles of 11 PRIRGs. (G) Partial likelihood deviance of variables estimated by the lasso regression algorithm. CRC, colorectal 
cancer; IRGs, immune-related genes; PRIRGs, prognosis-related IRGs.  
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Supplementary Figure 2. Exploration of the predictive power and clinical characteristics of seven IRGs signature in the 
validation cohort. (A) Distribution of risk score, survival status, and the expression of seven IRGs of CRCs. (B) Kaplan-Meier survival curve of 
the high- and low- risk subgroups. (C) ROC curve analysis of IRGs in the validation cohort. (D) Univariate Cox analysis of prognostic factors and 
OS of CRCs. (E) Alluvial diagram for the two subtypes versus different immune subtypes and CMS. (F) Violin plot illustrated the correlation 
between risk score and immune subtypes, and (G) CMS. AUC, area under the curve; OS, overall survival; CRC, colorectal cancer; IRGs, 
immune-related genes; ROC, receiver operating characteristic; CMS, consensus molecular subtypes.  
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Supplementary Figure 3. Evaluation of the role of the risk score in the validation cohort. (A) Results of GSEA of the high-risk group 

(red) compared with the low-risk group (blue). Color toward gray represents no statistical significance. (B) Heatmap and violin plots of the 
ESTIMATE score, immune score, stromal score, tumor purity between high- and low- risk subtypes. (C) Violin plot of the CYT score between 
high- and low- risk subtypes. (D) Violin plot of fibroblasts between two subtypes, and the association between risk score and the NES of 
fibroblasts. Statistical significance at the level of ns ≥ 0.05, * < 0.05, ** < 0.01 and *** < 0.001. GSEA, gene set enrichment analysis; CYT, 
cytolytic activity; NES, normalized enrichment score.  
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Supplementary Figure 4. (A) The differential expression levels of immune checkpoint molecules within distinctive subgroups in the TCGA 

CRCs. (B) The differential expression level of immune checkpoint molecules between two subclasses with statistical significance in the 
validation cohort. (C) Violin plots of the CD4, CD8A, CD47, CTLA4, LAG3, MAGE-A3, PD-1 and PD-L1 expression levels for two subtypes in the 
validation cohort.  
 

 
 

Supplementary Figure 5. (A) Immune infiltration between high- and low- risk subtypes with statistical significance in the validation cohort. 

(B) Correlation analysis between the expression of seven IRGs and the infiltration of immune cells in the validation cohort. (C) Heatmap and 
violin plots of the NES of 10 oncogenic pathways between two subtypes in the validation cohort. Statistical significance at the level of ns ≥ 
0.05, * < 0.05, ** < 0.01 and *** < 0.001.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 5, 6. 

 

Supplementary Table 1. IRGs retrieved from the ImmPort database.  

 

Supplementary Table 2. Eight PRIRGs 
filtered out by lasso regression.  

IRGs Coefficient 

FABP4 0.0813685612698171 

AMH 0.131513420971701 

GRP 0.146281413219288 

INHBB 0.160968056160568 

NRG1 -0.582958093399237 

UCN 0.213129186143968 

MC1R 0.335915826080654 

PTH1R 0.363374360149091 

 

Supplementary Table 3. Overall information of seven IRGs in the signature.  

Ensembl ID IRGs Coefficient HR (95% CI) P-value 

ENSG00000170323 FABP4 0.139 1.15 (1.021-1.294) 0.021 

ENSG00000104899 AMH 0.176 1.193 (0.962-1.479) 0.109 

ENSG00000134443 GRP 0.207 1.229 (1.014-1.491) 0.036 

ENSG00000163083 INHBB 0.211 1.235 (1.064-1.433) 0.006 

ENSG00000157168 NRG1 -0.691 0.501 (0.216-1.164) 0.108 

ENSG00000163794 UCN 0.274 1.315 (0.929-1.863) 0.122 

ENSG00000258839 MC1R 0.366 1.442 (0.952-2.183) 0.084 
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Supplementary Table 4. Clinical characteristics of the TCGA cohort and the GSE39582 cohort.  

TCGA cohort  GSE39582 cohort 

Variable Low (n = 208) High (n = 229) Overall (n = 437)  Variable Low (n = 220) High (n = 222) Overall (n = 442) 

Gender     Gender    

Male 113 (54.3%) 119 (52.0%) 232 (53.1%)  Male 122 (55.5%) 117 (52.7%) 239 (54.1%) 

Female 95 (45.7%) 110 (48.0%) 205 (46.9%)  Female 98 (44.5%) 105 (47.3%) 203 (45.9%) 

Race     Age    

White 107 (51.4%) 124 (54.1%) 231 (52.9%)  >= 65 135 (61.4%) 147 (66.2%) 282 (63.8%) 

Black or african 

american 
25 (12.0%) 30 (13.1%) 55 (12.6%)  <65 85 (38.6%) 75 (33.8%) 160 (36.2%) 

Others 76 (36.5%) 75 (32.8%) 151 (34.6%)  Tumor location    

Age     Proximal 83 (37.7%) 96 (43.2%) 179 (40.5%) 

>= 65 107 (51.4%) 139 (60.7%) 246 (56.3%)  Distal 137 (62.3%) 126 (56.8%) 263 (59.5%) 

<65 101 (48.6%) 90 (39.3%) 191 (43.7%)  Tumor stage    

History of colon polyps    I 14 (6.4%) 14 (6.3%) 28 (6.3%) 

No 133 (63.9%) 134 (58.5%) 267 (61.1%)  II 113 (51.4%) 104 (46.8%) 217 (49.1%) 

Yes 48 (23.1%) 54 (23.6%) 102 (23.3%)  III 73 (33.2%) 76 (34.2%) 149 (33.7%) 

NA 27 (13.0%) 41 (17.9%) 68 (15.6%)  IV 20 (9.1%) 28 (12.6%) 48 (10.9%) 

Tumor site     MMR status    

Left 130 (62.5%) 117 (51.1%) 247 (56.5%)  pMMR 168 (76.4%) 168 (75.7%) 336 (76.0%) 

Right 78 (37.5%) 112 (48.9%) 190 (43.5%)  dMMR 34 (15.5%) 27 (12.2%) 61 (13.8%) 

Tumor stage     NA 18 (8.2%) 27 (12.2%) 45 (10.2%) 

I 48 (23.1%) 29 (12.7%) 77 (17.6%)  TP53 mutation    

II 79 (38.0%) 79 (34.5%) 158 (36.2%)  Mutant 68 (30.9%) 70 (31.5%) 138 (31.2%) 

III 59 (28.4%) 73 (31.9%) 132 (30.2%)  Wildtype 69 (31.4%) 55 (24.8%) 124 (28.1%) 

IV 22 (10.6%) 48 (21.0%) 70 (16.0%)  NA 83 (37.7%) 97 (43.7%) 180 (40.7%) 

MSI status     KRAS mutation    

MSI-H 33 (15.9%) 24 (10.5%) 57 (13.0%)  Mutant 86 (39.1%) 90 (40.5%) 176 (39.8%) 

MSI-L 31 (14.9%) 42 (18.3%) 73 (16.7%)  Wildtype 134 (60.9%) 132 (59.5%) 266 (60.2%) 

MSS 144 (69.2%) 163 (71.2%) 307 (70.3%)  BRAF mutation    

MMR status     Mutant 19 (8.6%) 23 (10.4%) 42 (9.5%) 

pMMR 133 (63.9%) 140 (61.1%) 273 (62.5%)  Wildtype 201 (91.4%) 199 (89.6%) 400 (90.5%) 

dMMR 25 (12.0%) 29 (12.7%) 54 (12.4%)  CIMP    

NA 50 (24.0%) 60 (26.2%) 110 (25.2%)  Negative 176 (80.0%) 188 (84.7%) 364 (82.4%) 

TP53 mutation     Positive 44 (20.0%) 34 (15.3%) 78 (17.6%) 

Mutant 126 (60.6%) 143 (62.4%) 269 (61.6%)  CIN    

Wildtype 82 (39.4%) 86 (37.6%) 168 (38.4%)  Negative 57 (25.9%) 45 (20.3%) 102 (23.1%) 

KRAS mutation     Positive 163 (74.1%) 177 (79.7%) 340 (76.9%) 

Mutant 82 (39.4%) 110 (48.0%) 192 (43.9%)      

Wildtype 126 (60.6%) 119 (52.0%) 245 (56.1%)      

BRAF mutation         

Mutant 24 (11.5%) 25 (10.9%) 49 (11.2%)      

Wildtype 184 (88.5%) 204 (89.1%) 388 (88.8%)      

EGFR mutation         

Mutant 1 (0.5%) 8 (3.5%) 9 (2.1%)      

Wildtype 207 (99.5%) 221 (96.5%) 428 (97.9%)      

NRAS mutation         

Mutant 8 (3.8%) 18 (7.9%) 26 (5.9%)      

Wildtype 200 (96.2%) 211 (92.1%) 411 (94.1%)      

APC mutation         

Mutant 169 (81.2%) 177 (77.3%) 346 (79.2%)      

Wildtype 39 (18.8%) 52 (22.7%) 91 (20.8%)      
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Supplementary Table 5. Correlation analysis between the expression of seven IRGs and the infiltration of 
immune cells. 

 

Supplementary Table 6. Lists of drugs in CTRP and PRISM. 

 

Supplementary Table 7. List of potential therapeutic agents for CRC patients with IRGs signature high-risk score.  

Name Source MOA Target Evidence for CRC treatment 

AT7867 CTRP Akt inhibitors Akt  PMID: 28081222 

AZD4547 CTRP FGFR inhibitors FGFR PMID: 25691251 

BRD-K16147474 CTRP NA NA NA 

cytochalasin B CTRP excitatory proteins inhibitors cytoskeleton/endocytosis PMID: 16287074 

PLX-4032 CTRP B-rafV600E inhibitors B-raf PMID: 29326440 

SGX-523 CTRP Met kinase inhibitors c-Met NA 

PLX-4720 CTRP B-rafV600E inhibitors B-raf PMID: 25381152/26351322 

TG-101348 CTRP JAK2 inhibitors JAK2/STAT3/PIM1 pathway PMID: 32346607 

lovastatin CTRP HMG-CoA reductase inhibitors HMG-CoA reductase PMID: 24945998 

BRD-K37390332 CTRP NA NA NA 

AMG458 PRISM MET/RON inhibitors MET/RON NA 

LE135 PRISM RARβ antagonist RARβ NA 

mevastatin PRISM HMG-CoA reductase inhibitors HMG-CoA reductase PMID: 11408350 

creatine PRISM NA NA NA 

S-crizotinib PRISM ALK/RON/c-MET, MTH1 inhibitors ALK/RON/c-MET, MTH1 PMID: 24695225/28320945 

colforsin daproate PRISM adenylate cyclase agonist adenylate cyclase NA 

erythritol PRISM NA cytidylyltransferase NA 

CHIR-98014 PRISM GSK3 inhibitors GSK-3α and GSK-3β NA 

epinephrine PRISM adrenergic receptor agonist adrenergic receptor NA 

tandutinib PRISM FLT3 inhibitors Akt/mTOR pathway PMID: 23427297 

MOA, mechanism of action. 


