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INTRODUCTION 
 

Ovarian cancer is the fifth most lethal cancer type 

among women worldwide and is the leading cause of 

death from gynecologic malignancies [1]. A woman’s 

risk of developing ovarian cancer during her lifetime is 

approximately 1 in 78, and the risk of dying from 

ovarian cancer is approximately 1 in 108 [2]. It is 

believed that PARP inhibitors could be used to 

potentiate chemotherapy, and several PARP inhibitors 

are being evaluated for use in ovarian cancer. The 

multifunctional enzyme PARP plays an important role 

in DNA damage repair and genome stability, and in 

preclinical and clinical studies, PARP inhibitors have 

been found to restrain DNA repair pathways and induce 

the apoptosis of cancer cells with deficiencies in HR-

mediated DNA repair, such as those carrying BRCA 

mutations [3]. The effect of PARP inhibitors on BRCA1 

has been cited as a successful example of therapeutic 

‘synthetic lethality' [4]. However, homozygous 

mutations of the BRCA genes significantly influence 

the cell response to PARP inhibitors [5]. Thus, there is 

an urgent need for the development of novel successful 

strategies to improve PARP inhibitor efficiency and 

ovarian cancer patient outcomes. The PRIMA trial 

revealed that patients with and without BRCA 

mutations can benefit from PARP inhibitors [6]. 

However, the risk of disease progression or death of the 

patients with BRCA mutations reduced by PARP 

inhibitors was to a significantly greater extent than that 

of patients without BRCA mutations [7]. 

 

BRCA1 plays a critical role in the regulation of 

homologous recombination (HR)-mediated DNA double-
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ABSTRACT 
 

Ovarian cancer is one of the most lethal gynecologic malignancies. It has been shown that PARP inhibitors can 
selectively target BRCA-mutated ovarian cancer and exert some effects on ovarian cancer without BRCA 
mutations. However, the mechanism is still unclear. In this study, wild-type BRCA ovarian cancer cells (A2780 
and SKOV3) were used. Our results showed that using a PARP inhibitor (olaparib or AG14361) alone 
significantly inhibited the proliferation of A2780 cells but negligibly inhibited the proliferation of SKOV3 cells. 
We used RNA sequencing to explore differentially expressed genes and found that PARP inhibitors increased 
LDH-A in SKOV3 cells, which was confirmed by RT-PCR. Oxamate (a specific inhibitor of LDH-A) was used to 
investigate whether LDH-A inhibition enhances the suppressive effects of PARP inhibitors on ovarian cancer 
without BRCA mutations. CCK-8 assays, scratch assays and Transwell assays were used to determine cell 
proliferation, cell migration ability and invasion ability, respectively. Both olaparib and AG14361 significantly 
inhibited the proliferation/invasion ability of A2780 cells but not SKOV3 cells. Inhibition of LDH-A can 
remarkably promote the inhibitory effects of PARP inhibitors on both A2780 and SKOV3 cells. Thus, high 
expression level of LDH-A influenced the suppressive effects of PARP inhibitors on ovarian cancer with wild-
type BRCA, and LDH-A inhibition notably enhanced this effect. 
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strand break repair. PARP activity is important for the 

chromatin changes required for efficient DNA repair [8]. 

When both pathways are simultaneously dysregulated, 

cells are unable to maintain sufficient DNA integrity and 

undergo mitotic catastrophe [9]. Cancer cells harboring 

BRCA1/2 mutations are sensitive to PARP inhibitors 

[10]. Approximately one-half of ovarian cancers harbor 

homologous recombination deficiencies (HRDs), and 

BRCA1/2 mutations account for half of these 

deficiencies [11]. To date, three PARP inhibitor drugs 

have been approved by the FDA in the United States for 

treating ovarian cancer treatment, namely, olaparib, 

rucaparib, and niraparib. The PRIMA trial, the first phase 

III prospective randomized clinical trial of PARP 

inhibitor monotherapy for first-line maintenance 

treatment in the whole population, which confirmed the 

benefits of niraparib, showed that patients with or without 

BRCA mutations acquired progression-free survival 

(PFS) benefits [6, 12]. The risk of disease progression or 

death of patients without BRCA mutations was reduced 

by 42%, a value significantly lower than that of patients 

with BRCA mutations (73%). Therefore, enhancing the 

efficacy of PARP inhibitors in the population without 

BRCA mutations will provide great benefit by improving 

the prognoses of ovarian cancer patients [13, 14]. 

 

Lactate dehydrogenase-A (LDH-A) has been shown to 

act as the key enzyme in the glycolytic pathway by 

catalyzing the interconversion of pyruvate and lactate 

and plays a critical role in tumor maintenance. 

Enhanced expression of LDH-A has been found to be 

associated with the evolution of aggressive and 

metastatic tumor types [15]. In line with these 

observations, our previous study suggested that the 

expression of LDH is significantly increased in ovarian 

cancer [16]. The main function of LDH-A is the 

conversion of pyruvate to lactate, which plays a key role 

not only in the energy metabolism pathway but also in 

DNA repair [17, 18]. LDH-A is a vital metabolic 

enzyme that is associated with cancer development, 

invasion, and metastasis. Researchers have shown that 

inhibition of LDH-A can enhance the sensitivity of 

drug-resistant cancers to other chemical drug treatments 

[19]. In our previous study, we observed that serum 

LDH was upregulated in ovarian cancer and was 

associated with aggressive tumor behavior. High LDH 

expression was statistically and positively correlated 

with the stage, pathological grade, and lymphatic 

metastasis of ovarian cancer patients [20]. Therefore, 

we hypothesize that LDH, especially LDH-A may affect 

the suppressive effect of PARP inhibitors on ovarian 

cancer cell lines without BRCA mutations. 

 

In this study, we found that some kinds of ovarian 

cancer cells were insensitive to PARP inhibitors and 

further explored the specific mechanisms. We show, for 

the first time, that inhibition of LDH-A can notably 

enhance the inhibitory effects of PARP inhibitors on 

ovarian cancer with wild-type BRCA, which could be 

considered as a novel treatment. 

 

RESULTS 
 

The ovarian cancer cell line, SKOV3, was not 

sensitive to PARP inhibitors 
 

A2780 and SKOV3 cells are wild-type BRCA cancer 

cells, while UWB1.289 and SNU-251 cells have 

deleterious BRCA1 mutations. To verify these 

characteristics, we tested BRCA1 protein levels in these 

ovarian cancer cell lines. Western blotting assays 

confirmed that UWB1.289 and SNU-251 cells were 

BRCA1-mutated cells (Figure 1A). A2780 and SKOV3 

cells expressed similar equal amounts of BRCA1 

protein (Figure 1B). To test the sensitivity of ovarian 

cancer cells to PARP inhibitors, we treated these cells 

with different doses of PARP inhibitors (olaparib and 

AG14361). UWB1.289 and SNU-251 cells showed 

greater sensitivity to PARP inhibitors than compared to 

A2780 and SKOV3 cells, whereas SKOV3 cells showed 

the lowest sensitivity to both olaparib and AG14361 

(Figure 1C, 1D). These results indicated that PARP 

inhibitor sensitivity is related not only to BRCA1 

mutation but also to other latent factors. 

 

PARP inhibitor treatment increased LDH-A levels in 

SKOV3 cells 
 

To explore the potential reason for insensitivity to PARP 

inhibitors, we compared differentially expressed genes in 

A2780 and SKOV3 cells after olaparib or AG14361 

treatment for 24 hours. The heatmap presents the 

dysregulated genes in the RNA sequencing data (Figure 

2A, 2B). The Venn diagram shows that there was only 

one gene, LDH-A, existed at the intersection of the 

olaparib-treated group and the AG14361-treated group 

(Figure 2C). To verify these results, we tested LDH-A 

levels in A2780 and SKOV3 cells by RT-PCR after 

olaparib or AG14361 treatment for 24 hours. As shown, 

PARP inhibitor treatment increased LDH-A levels in 

SKOV3 cells (Figure 2D, 2E), while LDH-A levels did 

not significantly change with PARP inhibitors treatment 

in A2780 (Figure 2F, 2G). These results indicated that 

PARP inhibitors increased LDH-A levels in SKOV3 

cells but not in A2780 cells, suggesting that LDH-A is a 

potential factor in reducing PARP inhibitor sensitivity. 

 

Oxamate suppressed the proliferation, migration, 

and invasion of both A2780 and SKOV3 cells 
 

To confirm the efficiency of the specific LDH-A 

inhibitor, we tested the LDH-A levels in A2780 and 
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SKOV3 cells after oxamate treatment for 24 hours. The 

results showed that LDH-A levels were significantly 

decreased in both A2780 and SKOV3 cells (Figure 3A, 

3B). To verify the effect of oxamate on ovarian cancer 

progression, we tested the proliferation, migration, and 

invasion ability of A2780 and SKOV3 cells. CCK-8 

assays showed that oxamate reduced the proliferation 

rates of both A2780 and SKOV3 cells (Figure 3C, 3D). 

Regarding migration ability, scratch assays indicated 

that oxamate markedly reduced the migration ability of 

A2780 and SKOV3 cells (Figure 3E, 3F). We also 

tested the invasion ability of the SKOV3 and A2780 

cells by Transwell assays. We captured metastatic 

tumor cells and counted them under a microscope. The 

results showed that oxamate effectively blocked the 

invasion ability of A2780 and SKOV3 cells (Figure 

3G–3J). These results indicated that the proliferation, 

migration, and invasion of both A2780 and SKOV3 

cells can be inhibited by the specific LDH-A inhibitor 

oxamate. 

 

 
 

Figure 1. Sensitivity of ovarian cancer cell lines to PARP inhibitors. (A) Western blotting images of BRCA1 protein levels in UWB1.289 
and SNU-251 cells. (B) BRCA1 protein levels in A2780 and SKOV3 cells were tested by western blotting assays. (C, D) Sensitivity of olaparib 
and AG14361 to ovarian cancer cell lines were represented by the IC50 values. 
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Oxamate enhanced the tumor suppression effect of 

PARP inhibitors on ovarian cancer cells 

 

Based on our previous findings, we next aimed to 

investigate whether a combination treatment including 

PARP inhibition and LDH-A inhibition showed 

synergistic effects in vivo. We treated SKOV3 and 

A2780 cells with oxamate and/or a PARP inhibitor 

(olaparib or AG14361) respectively and recorded 

tumor progression. Analysis of the volumes of 

xenograft tumors showed that the PARP inhibitors 

had obvious effects on A2780-derived xenograft 

tumors, but the effects on SKOV3-derived xenograft 

tumors were not significant. For the combination of 

oxamate and PARP inhibitor treatment, there was a 

synergistic anticancer effect on both SKOV3-derived 

xenograft tumors and A2780-derived xenograft 

tumors (Figure 4A–4D). The prognoses of xenograft 

tumor models were recorded, and the results showed 

that although the PARP inhibitors (olaparib and 

AG14361) did not significantly prolong the survival 

times of the animals with SKOV3-derived xenograft 

tumors, oxamate compensated for this shortcoming 

(Figure 4E, 4F). For the animals with A2780-derived 

xenograft tumors, combination treatment achieved the 

best effect (Figure 4G, 4H). These results indicated 

that even when the effects of PARP inhibitors are  

not ideal, the combined application of oxamate can 

effectively inhibit tumor progression and improve 

tumor prognosis. 

 

 
 

Figure 2. LDH-A were increased in SKOV3 with PARP inhibitors treatment. (A, B) Heat map demonstrated the differential genes in 
the RNA sequencing after PARP inhibitors treated for 24 hours. (C) Venn digram showed the intersection of differential genes in olaparib and 
AG14361 treated cells. (D–G) LDH-A levels in A2780 and SKOV3 were tested by RT-PCR after olaparib or AG14361 treated for 24 hours. Mean 
± SEM, ****P < 0.001, ns: no significance. 
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Figure 3. Oxamate suppressed the proliferation, migration, and invasion ability of both A2780 and SKOV3 cells. (A, B) 

Expression of LDH-A in A2780 and SKOV3 cells after oxamate treated for 24 hours. (C, D) Proliferation rates of A2780 and SKOV3 cells were 
evaluated by CCK-8 assays. (E, F) Scratch assays were used to test migration ability of A2780 and SKOV3 cells after oxamate treated for 48 
hours. (G, H) Images of metastatic tumor cells were recorded by microscope. (I, J) Number of invaded cells were counted under the 
microscope. Mean ± SEM, **P < 0.01, *** P < 0.005. 
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Figure 4. Oxamate enhanced the tumor suppression effect of PARP inhibitors on ovarian cancer cells. (A–D) Tumor volumes of 

xenograft tumor with oxamate and/or PARP inhibitors (olaparib or AG14361) treatment. (E–H) Survival time of xenograft tumor models with 
oxamate and/or PARP inhibitors (olaparib or AG14361) treatment were recorded. Mean ± SEM, *P < 0.05, **P < 0.01, ns: no significance. 



 

www.aging-us.com 25926 AGING 

DISCUSSION 
 

The emergence of PARP inhibitors brought new hope, 

but only 10-20% of patients with ovarian cancer carry 

BRCA1/2 mutations, and the need for a first-line 

maintenance treatment has not been met [21]. 

Therefore, methods to enhance the therapeutic efficacy 

of PARP inhibitors for patients without BRCA 

mutations are very urgently needed. In the current 

study, we first found that the two wild-type BRCA cell 

lines (SKOV3 and A2780) have very different 

responses to PARP inhibitors. Researchers have 

confirmed that the two cell lines do not have BRCA 

mutations and pointed out but they are the most 

frequently used and together account for 60% of 

publications on human ovarian serous cystadeno-

carcinoma cell line panels [22]. Our results showed that 

using olaparib or AG14361 alone significantly inhibited 

the proliferation of A2780 cells but negligibly inhibited 

the proliferation of SKOV3 cells. Neither cell line 

carries a BRCA mutation, but the therapeutic effects of 

PARP inhibitors were extremely different. To explore 

the potential reason, we compared differential genes in 

A2780 and SKOV3 after olaparib or AG14361 treated, 

and find only LDH-A existed in the intersection of the 

two groups. The results demonstrated that PARP 

inhibitors significantly increased LDH-A level in 

SKOV3 but not in A2780. It prompted that LDH-A  

was a potential factor in reducing PARP inhibitors 

sensitivity. 

 

Numerous studies have demonstrated that LDH-A has 

aberrantly high expression in multiple cancers and is 

associated with malignant progression [23, 24]. 

Researchers have also revealed that LDH-A activation 

confers preinvasion, anti-anoikis and premetastatic 

advantages to cancer cells [25]. Consistent with these 

findings, our previous study revealed that LDH was 

significantly upregulated in ovarian cancer and was 

positively associated with the stage, pathological grade, 

and lymphatic metastasis [16, 20]. Therefore, LDH 

inhibitors are actively searched to be tested as potential 

anticancer agents [26]. Despite the discovery of LDH 

inhibitors with drug-like properties seems a hardly 

resolvable challenge, LDH inhibitors still show broad 

application prospects in clinic. In a recent published 

paper, lactate was found to affect the membrane 

potential of neurons and oxamate was found to suppress 

seizures in two animal models of epilepsy [27]. 

Researchers also found LDH inhibitors could alleviate 

the symptoms of the disease in animal models of 

autoimmune and allergic conditions [28]. Another 

recent study showed that LDH inhibition by oxamate 

caused a remarkable reduction of virus yield relevant 

for human pathology, without significant toxicity in 

host cells [29]. These data encouraged pharmaceutical 

industries and academic institutions in the search of 

small-molecule inhibitors of LDH. 

 

In line with previous studies, the current research 

showed that using oxamate to inhibit LDH-A can 

significantly inhibited the proliferation, migration, and 

invasion of the two ovarian cancer cell lines expressing 

wild-type BRCA [30]. Some researchers have shown 

that inhibition of LDH-A can enhance the sensitivity of 

drug-resistant cancers to other chemical drug treatments 

[31, 32]. We further found that when LDH-A was 

inhibited, the proliferation of both SKOV3 and A2780 

cells was markedly restrained by olaparib. The 

suppressive effect of PARP inhibitors on ovarian cancer 

cells without BRCA mutations were indeed enhanced 

by LDH-A inhibition. Combined with the results in 
vivo, these results indicated that additional mechanisms 

other than LDH-A-related mechanisms are associated 

with the effects of PARP inhibitor treatment. Our study 

suggested that for some patients, PARP inhibitors had 

poor efficacy in improving the prognosis even though 

tumors were slowly restricted. 

 

Our results revealed that the two ovarian cancer cell 

lines harboring wild-type BRCA had very different 

responses to PARP inhibitors. The most important 

discovery of the current research was that the 

abrogation of LDH-A resulted in enhanced sensitivity 

to PARP inhibitors. To the best of our knowledge, this 

is the first discussion on enhancing the suppressive 

effects of PARP inhibitors on ovarian cancer without 

BRCA mutation. 

 

CONCLUSIONS 
 

In this study, we found that the high expression level 

of LDH-A can significantly attenuate the inhibitory 

effects of PARP inhibitors on ovarian cancer without 

BRCA mutations. Combined treatment with LDH-A 

and PARP inhibitors represents a promising 

therapeutic approach for the treatment of ovarian 

cancer. Our valuable results may provide a new 

therapeutic strategy to treat patients without BRCA 

mutations. 

 

MATERIALS AND METHODS 
 

Cell lines and drugs 

 

The human ovarian serous cystadenocarcinoma cell 

lines UWB1.289, SNU-251, A2780 and SKOV3 were 

purchased from the American Type Culture Collection 

(ATCC; Manassas, VA, USA) and maintained in 

RPMI-1640 medium supplemented with 10% fetal 

bovine serum (FBS), 100 U/ml penicillin, and 100 

μg/ml streptomycin (all from Invitrogen; Thermo 
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Fisher Scientific, Inc., Waltham, MA, USA) in a 

humidified incubator with 5% CO2 at 37° C. Oxamate 

(a specific LDH-A inhibitor), AG14361 (a specific 

PARP1 inhibitor) and olaparib (a PARP1/2 inhibitor) 

were obtained from Selleck Chemicals (Houston, TX, 

USA). The study was reviewed and approved by the 

Institutional Review Board and the Research Ethics 

Committee of Shanghai General Hospital. 

 

RNA preparation and RT-qPCR 

 

Total RNA was isolated using TRI Reagent® (Sigma-

Aldrich; Merck KGaA) according to the manufacturer's 

instructions. A RevertAidTM H Minus First Strand 

cDNA Synthesis Kit (Thermo Fisher Scientific, Inc.) 

was used to reverse transcribe 1 μg of total RNA with 

random hexamer primers. For quantitative PCR, a 

LightCycler® 2.0 (Roche Diagnostics GmbH, 

Mannheim, Germany) and AbsoluteTM qPCR SYBR®-

Green Capillary Mix (Thermo Fisher Scientific, Inc.) 

were used. The primers are listed in Table 1. The 

cycling conditions consisted of a denaturation step at 

95° C for 10 min; 40 cycles of 95° C for 15 sec and 

annealing at 60° C for 45 sec; 95° C for 15 sec; and  

60° C for 1 min. Gene expression was quantified based 

on the ΔΔCq method, with β-actin as the reference 

housekeeping gene. The primers were produced by 

Shanghai Sangon Biological Engineering Technology 

and Services Company (Shanghai, China). 

 

Cell proliferation assay 

 

Cell proliferation was evaluated using a Cell Counting 

Kit-8 (CCK-8) (Promega, Madison, WI, USA). SKOV3 

cells and A2780 cells were seeded in a 96-well culture 

plates at a density of 2×105 cells/well and incubated 

with different concentrations of the drugs (oxamate, 

AG14361 and olaparib) for different times. Cells treated 

in the absence of a test compound were the negative 

controls. Detection reagent was added to the cells, and 

the luminescence signals were determined with an 

EnVision™ 2100 Multilabel Reader (PerkinElmer, 

Santa Clara, CA, USA). 

 

Cell migration ability determined by scratch assay 

 

SKOV3 cells (5×105 per well) and A2780 (5×105 per 

well) cells were inoculated in 6-well plates for 12 hours. 

Then, the medium was replaced with fresh medium 

without FBS, and the cells were incubated overnight. A 

scratch was made on the cell monolayer using sterile 

pipette tips, and phosphate-buffered saline (PBS) was 

used to wash away the floating cells, and then the 

medium was replaced with fresh medium. Oxamate (50 

mM) was added, and initial photographs were taken for 

the first time. Then, the cells were incubated for 48 

hours, and photographs were taken for a second time. 

The mean distance was obtained based on the cell 

migration distance measured by Image-Pro Plus 

Analysis software. 

 

Cell invasion ability determined by transwell assay 

 

A total of 40 μl of Matrigel gel was dissolved at 4° C in 

a Transwell chamber, which had been precooled and 

placed in an incubator for 1 h for gelling. A cell 

suspension was prepared, and the cells were seeded into 

the upper Transwell chamber (BD Biosciences 

Company, USA) in a 24-well plate (2×104/well for the 

SKOV3 and A2780 cells). The cells were incubated for 

12 h. Then, the medium was replaced with fresh 

medium without FBS, and the cells were incubated 

overnight. Oxamate (50 mM) was then added. Fresh 

medium containing 20% FBS was added to the bottom 

of each well, and the cells were incubated for 48 h. At 

the end of the incubation period, the Transwell 

chambers were removed from the 24-well plates, fixed 

with methanol for 5 min and stained with crystal violet 

for 5 min. Non-invading cells on the top of the 

Transwell chamber were scraped off on the top of the 

Transwell chamber with a cotton swab. After washing 

with PBS, the cells were viewed under a high-power 

microscope (Olympus, Japan). Five visual fields were 

chosen, the cells that had passed through the membrane 

were counted, and the mean calculated. 

 

Western blotting 

 

Protein was extracted from SKOV3 and A2780 cells 

and quantified with a Bradford assay (Bio-Rad 

Laboratories, Inc., Hercules, CA, USA), and 50 μg of 

the cleared lysates was separated on a 12% SDS-

PAGE gel and electrotransferred onto PVDF 

membranes (EMD Millipore, Billerica, MA, USA). 

Actin was used as an equal loading control. The PVDF 

membranes were blocked in Tris-buffered saline 

containing 0.1% Tween-20 (TBST) with 5% nonfat 

dry milk for 2 h. The primary antibodies used were 

anti-BRCA1 (1:1000, Cell Signaling Technology, 

Danvers, MA, USA), anti-Cyclin B1 (1:1000, Cell 

Signaling Technology, Danvers, MA USA) and anti-β-

actin (1:1000, Absin Bioscience Inc., China). The 

membranes were then washed 3 times with PBST for 5 

min each time and incubated with goat anti-rabbit IgG 

H&L (HRP) (1:200; cat. no. ab205718; Abcam) in 

PBST for 1 h. Following 3 washes with PBST, the 

bands were visualized using an enhanced 

chemiluminescence (ECL) detection system (Pierce 

Biotech Inc.; Thermo Fisher Scientific, Inc.) according 

to the manufacturer's instructions. The software that was 

used for densitometry was Image-Pro Plus (version 6.0; 

Media Cybernetics, Rockville, MD, USA). 
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Table 1. Primer sequences of LDH-A and GAPDH. 

Gene name Size (bp) Primer sequences 

LDH-A (NM_002301.4) 191 
F: 5' AGAACATGGTGATTCTAGTGTGC 3' 

R: 5' ACAGTCCAATAGCCCAAGAGG 3' 

GAPDH (NM_001256799.1) 110 
F: 5' CACCCACTCCTCCACCTTTG 3' 

R: 5' CCACCACCCTGTTGCTGTAG 3' 

F, forward; R, reverse. 

 

Tumor model 

 

All experimental procedures and animal care were 

approved by Shanghai General Hospital. Eight-week-

old female NMRI nude mice (Shanghai Model 

Organisms Center, Shanghai, China) were used to 

generate an A2780 xenograft model and SKOV3 

xenograft model. In the animal facility, all mice were 

acclimatized for one week before injection of tumor 

cells. For establishment of xenograft tumors, 107 cells 

were diluted in 100 μL Matrixgel™ Basement 

Membrane Matrix (BD Biosciences, San Jose, CA, 

USA) and then injected into the left flank. The tumor 

volumes were measured every week and survival time 

was recorded. 

 

Statistical analysis 

 

All experiments were performed in triplicate. All 

statistical analyses were performed using SPSS version 

22.0 software (IBM Corp., Armonk, NY, USA). T-test 

and one-way analysis of variance (ANOVA) were used to 

analyze the data between two independent groups or 

among three or four groups, respectively. P<0.05 was 

considered to indicate a statistically significant difference. 
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