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INTRODUCTION 
 

Renal cancer is among the top ten most common 

cancers worldwide; it accounts for 5% of new cases 

each year. Approximately 45,520 people were 

diagnosed with renal cancer in the United States in 2020 

[1]. Clear cell renal cell carcinoma (ccRCC) is the most 

common subtype of renal cancer, accounting for about 

85% of the total cases, with a male-to-female ratio of 

1.7:1. Most patients are middle-aged and elderly, with 

an average age of 64 [2]. 

Surgery is the standard treatment for localized ccRCC; 

however, this cancer carries a high risk of metastasis, 

poor outcome and is insensitive to conventional 

chemotherapies and radiotherapies [3]. In the most recent 

decade, with the rapid development of molecular 

biological tools, drug treatment of ccRCC ranged from 

the initial non-specific immunotherapy to targeted 

therapy and then to the immune checkpoint inhibitors [4]. 

Among them, PD-1-based blocking therapy has become 

the first-line therapy for patients with advanced or 

platinum-intolerant ccRCC [5–7]. In the phase III trial 
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CheckMate 025, nivolumab was more effective than 

everolimus in treating patients with advanced ccRCC 

who had previously received treatment (the 5-year 

survival rate was about 26% vs. 18%). The (Food and 

Drug Administration) FDA approved Nivolumab for the 

treatment of ccRCC [8]. Although some of these drugs 

can improve outcomes, their effectiveness is limited [9]. 

Therefore, we need to explore the mechanisms of ccRCC 

occurrence and development and identify new 

biomarkers to predict related drug sensitivity. 

 

The tumor microenvironment of ccRCC is 

heterogeneous, and several studies showed that the 

degree of immune cell infiltration in the tumor 

microenvironment was related to outcomes. Studies 

showed that high levels of CD8+ T cell infiltration in 

ccRCC was associated with poor outcome. 

Macrophages were also an essential part of the tumor 

microenvironment; high degrees of infiltration of M2-

type macrophages are associated with tumor invasion 

and poor outcome of ccRCC [5]. Therefore, it is 

necessary to identify immune-related tumor prognostic 

markers. 

 

Long non-coding RNA (lncRNA) does not code for 

protein. The length is more than 200 bp. It was initially 

considered a by-product of RNA polymerase II 

transcription and did not have biological functions. 

Many studies showed that lncRNA has a conserved 

secondary structure that can interact with proteins, DNA 

and RNA, and participate in regulating various 

biological processes, especially in tumors. It plays 

critical regulatory roles in tumors, including chromatin 

modification, transcription activation and inhibition, 

post-transcriptional mediation, and miRNA-induced 

molecular interference with gene expression [6–8]. 

Many studies showed that changes in molecular biology 

are closely related to the occurrence and development of 

ccRCC. Transcriptome studies described the abnormal 

expression of specific long non-coding RNAs, and the 

occurrence and progression of ccRCC have a close 

relationship. The expression level of lncRNA 

HOTAIRM1 in ccRCC decreased and inhibited the 

hypoxic pathway of tumor development [10]. Another 

study showed that lncRNA URRCC and EGFL7/P-

AKT/FOXO3 signaling was related to poor outcomes 

and promoted the proliferation and invasion of ccRCC 

[11]. Another study showed that lncARSR transported 

by exosomes promoted the expression of AXL and  

c-MET in ccRCC cells by competitively binding miR-

34/miR-449, rendering ccRCC patients resistant to 

sunitinib [12]. The binding lncRNA-LET and miR-373-

3p induced the up-regulation of DKK1 and TIMP2 

levels and reduced the anti-tumor effect of lncRNA-

LET-mediated by ccRCC cells [13]. Other studies 

demonstrated that immune-related lncRNA has vital 

clinical significance in predicting outcomes in patients 

with ccRCC and as a target for targeted therapy  

[14–19]. Therefore, the present study aimed to construct 

an immune-related lncRNA risk coefficient model using 

a model algorithm, lncRNA pairing, and iteration to 

predict outcomes in patients with ccRCC, understanding 

the tumor immune cell infiltration and the sensitivity of 

targeted drugs. 

 

RESULTS 
 

The illustration of summary highlight was provided in 

Figure 1. 

 

Analysis of differential expression of immune-

related lncRNAs in ccRCC 

 

The transcriptome and immune gene-related data of 

ccRCC were obtained from The Cancer Genome 

Atlas (TCGA) database and The Immunology 

Database and Analysis Portal (ImmPort). The 

Ensembl database was used to annotate and 

distinguish transcriptome data. Using Pearson 

correlation analysis, with co-expression correlation 

coefficient >0.4 and P < 0.001 as the identifying 

criteria, 433 immune-related lncRNAs were 

identified. We used differential expression analysis, 

with |log Fold Change| >1.5 and false discovery rate 

(FDR) <0.05 as the identifying criteria. We obtained 

90 differentially expressed immune lncRNAs, and the 

gene heatmap (Figure 2A) was generated using R 

software. Sixteen lncRNAs expressions were 

downregulated, and 74 lncRNAs were upregulated in 

ccRCC (Figure 2B and Table 1). 

 

Establishment of differentially expressed immune 

lncRNA pairs and risk coefficient scoring model 

 

By matching the 90 differentially expressed immune 

lncRNA pairs for multiple cycles, a total of 2663 

differentially expressed immune lncRNA pairs were 

obtained. Next, 27 immune lncRNA pairs were 

identified using least absolute shrinkage and selector 

operation (LASSO) regression analysis and Cox 

univariate regression analysis (Figure 3A). Then, a Cox 

multivariate regression analysis was performed based 

on these 27 immune lncRNA pairs, 16 of which can 

participate in constructing the risk coefficient scoring 

model (Figure 3B) and the risk coefficient of each 

immune lncRNA pair was obtained (Table 2). 

 

Evaluation of the prognostic predictive power of the 

risk model 

 

Above 27 prognostic-related immune lncRNA pairs 

were used to construct the 1-year, 3-year, and 5-year 
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receiver operator characteristic (ROC) curves of 

patients (Figure 4A), and the 1-year area under the 

curve (AUC) was calculated to be the largest AUC of 

0.867 (Figure 4B). In addition, the 3-year and 5-year 

AUC obtained were 0.832 and 0.838, respectively, 

which also had predictive power. Through the best fit, 

the cut-off value for distinguishing between high-and 

low-risk groups of ccRCC patients was 2.822. We 

included 190 patients in the low-risk group and 360 

patients in the high-risk group. 

 

Analysis of the correlation of clinical indicators by 

the risk model 

 

The relationship between the risk factor score and the risk 

subgroup patients ccRCC was analyzed via R language 

software (Figure 5A). According to the time process, the 

relationship between the patient’s survival status and the 

risk coefficient score were obtained (Figure 5B), and the 

Kaplan-Meier curve was constructed according to the 

survival status of the high- and low-risk groups (Figure 

5C). The result was that the survival rate of patients in 

the low-risk group was significantly higher than that in 

the high-risk group (P < 0.001). 

 

The heatmap in Figure 6A described the relationship 

between the level of risk scores and clinically relevant 

indicators. We found that the survival status of patients 

with ccRCC (P < 0.001), tumor grade (P < 0.001), 

tumor stage (P < 0.001), T stage (P < 0.001), M stage 

(P < 0.001), and N stage (P < 0.01) were related to risk 

coefficient score significantly. It can be seen from the 

box plot we constructed that ccRCC patients with a 

higher risk factor had a higher chance of death (Figure 

6B). Furthermore, tumor grade (Figure 6C), tumor 

clinical stage (Figure 6D), T stage (Figure 6E), N stage 

(Figure 6F), and M stage (Figure 6G) were also higher. 

 

A Cox univariate and a multivariate regression 

analysis were performed on the risk score and clinical 

correlation indicators. Then the R language 

software’s survival package was used to visualize the 

data, and forest maps were done (Figure 7A and 

Figure 7B). It was found that the tumor grade, tumor 

stage, TNM stage, and risk coefficient score were 

related to the outcome of the Cox univariate analysis, 

but in the Cox multivariate analysis, age, gender, and 

risk coefficient score were independent predictors of 

outcome. The ROC curve of clinical-related 

indicators and the 1-year risk coefficient score were 

compared in the same chart (Figure 7C). The result 

was that the patient’s risk coefficient score (AUC = 

0.867) and tumor stage (AUC = 0.868) had the 

highest predictive efficacy. 

 

 
 

Figure 1. Summary flowchart of this study. 
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Table 1. Immune-related lncRNAs of ccRCC obtained after differential expression analysis. 

lncRNA Normal-mean Tumor-mean logFC P-value FDR 

AC104984.5 3.682574 0.462925451 −2.99186 3.54E-38 2.04E-36 

AC015911.3 0.100497 0.821778506 3.0316 7.92E-31 8.18E-30 

PTOV1-AS2 0.642868 2.771483237 2.108063 1.53E-18 5.01E-18 

AC003070.1 0.283999 1.390484124 2.291631 2.55E-23 1.27E-22 

AC020913.3 0.074073 0.617973411 3.060524 1.27E-13 2.62E-13 

AD001527.1 0.127594 0.576003883 2.174521 4.91E-13 9.69E-13 

AC004687.1 0.090107 0.986754328 3.452974 5.85E-29 5.24E-28 

AC007098.1 0.106151 0.572507398 2.431175 2.41E-28 1.87E-27 

AC093001.1 0.011144 0.965969528 6.437666 2.11E-10 3.40E-10 

AC103563.7 5.173696 0.597977578 −3.11303 1.51E-36 4.93E-35 

HOXB-AS3 5.586956 0.94096728 −2.56985 6.02E-36 1.62E-34 

AL021707.6 0.457954 1.920309814 2.068065 1.75E-18 5.68E-18 

AL590764.1 0.15393 0.753471696 2.291277 3.26E-31 3.46E-30 

SMIM25 0.25703 1.518804932 2.562927 6.13E-33 8.52E-32 

TRG-AS1 0.110214 0.712890989 2.69338 1.82E-35 4.08E-34 

PRDM16-DT 13.2686 0.316471521 −5.3898 2.97E-40 3.99E-38 

TRBV11-2 0.139708 0.8630982 2.627106 5.48E-19 1.87E-18 

AL049555.1 3.540425 0.370257526 −3.25732 5.29E-36 1.52E-34 

SEMA6A-AS1 0.144724 0.740373342 2.354945 1.72E-27 1.24E-26 

AC091185.1 0.171909 0.846735721 2.300265 7.20E-24 3.72E-23 

AL021707.7 0.12328 0.576657008 2.225772 5.35E-17 1.43E-16 

AL513327.1 0.253827 1.052985268 2.05257 1.35E-24 7.65E-24 

LINC00861 0.089858 0.728956024 3.02011 1.93E-31 2.18E-30 

AC079015.1 0.069813 0.732073012 3.390413 1.14E-33 1.77E-32 

AC084876.1 0.082949 0.572314341 2.78651 1.30E-24 7.46E-24 

AC127024.4 0.250425 1.055792994 2.075876 3.21E-17 8.87E-17 

AC010973.2 0.170749 0.775083366 2.182473 4.60E-24 2.44E-23 

AC023421.1 10.33512 0.109043989 −6.5665 2.25E-34 3.94E-33 

ARHGAP27P1-BPTFP1-

KPNA2P3 
0.317314 1.367695028 2.107763 9.89E-23 4.69E-22 

AL513218.1 0.142618 0.595938402 2.063012 4.51E-15 1.02E-14 

CR936218.1 0.259281 1.093931575 2.076936 9.57E-22 4.10E-21 

PCED1B-AS1 0.477539 3.126144012 2.710694 7.88E-36 1.92E-34 

FOXC2-AS1 0.099379 0.724179466 2.865338 9.22E-13 1.79E-12 

LINC00893 0.168803 0.800961054 2.246392 9.65E-17 2.51E-16 

LINC02084 0.147412 0.832738092 2.498013 9.70E-27 6.51E-26 

AC011462.4 0.384346 1.66693917 2.116724 2.50E-18 7.88E-18 

AL031710.1 10.23424 1.697657813 −2.59179 5.68E-33 8.17E-32 

AC004921.1 0.13765 0.704239881 2.355067 2.66E-34 4.28E-33 

AC008735.2 0.609316 3.237210057 2.409489 7.61E-20 2.71E-19 

MCF2L-AS1 2.411878 0.498237863 −2.27525 1.59E-36 4.93E-35 

AL662844.3 0.115057 0.989206462 3.103922 2.20E-28 1.74E-27 

IGFL2-AS1 0.021451 0.827439957 5.269534 2.01E-07 2.79E-07 

AC023669.2 0.277618 1.903775796 2.777691 0.000737 0.000869 

AL135999.1 0.211246 0.893068672 2.079847 7.64E-17 2.00E-16 

AP000757.1 8.871118 1.183177983 −2.90645 1.56E-36 4.93E-35 

AL022322.1 0.196393 1.37638469 2.809066 8.38E-24 4.28E-23 

AC104564.3 0.177313 0.780916828 2.138872 7.16E-18 2.15E-17 

AC004253.1 0.148081 0.831291733 2.488964 5.64E-22 2.47E-21 

USP30-AS1 0.394299 2.072622237 2.394094 1.15E-28 9.68E-28 

LINC01355 0.246017 1.126133673 2.19455 1.08E-20 4.17E-20 

AC004923.4 0.157851 0.649031036 2.039724 3.03E-22 1.41E-21 

AC019197.1 2.144548 0.331330829 −2.69433 2.06E-35 4.31E-34 

FAM13A-AS1 0.216505 1.241791946 2.519949 1.42E-29 1.33E-28 
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AC093788.1 0.138316 0.584969989 2.080399 3.62E-19 1.25E-18 

HCG27 0.202245 1.578450713 2.964331 3.72E-32 4.68E-31 

AC016773.2 0.107834 0.677946827 2.652365 1.23E-20 4.70E-20 

AC092119.2 0.153225 0.65949918 2.105717 8.33E-15 1.86E-14 

AC148477.4 5.974009 0.803677607 −2.89401 2.37E-34 3.98E-33 

AC005785.1 0.121053 0.610457023 2.334251 9.01E-29 7.89E-28 

AC027796.4 0.224249 1.066627441 2.24988 1.74E-17 4.93E-17 

AC245884.8 0.222197 1.305749985 2.554966 1.03E-21 4.38E-21 

AC005104.1 0.290904 1.230954211 2.081162 1.63E-19 5.75E-19 

AC009549.1 0.273816 1.404515616 2.358792 1.63E-31 1.99E-30 

AP006621.2 0.441335 1.854161375 2.07082 3.74E-14 8.01E-14 

AC100830.2 0.236398 0.996619494 2.075825 1.22E-17 3.56E-17 

LINC01612 3.150561 0.338202929 −3.21965 2.61E-46 1.05E-43 

AL353152.1 2.991248 0.17047375 −4.13313 2.50E-39 1.75E-37 

AL035661.1 29.66428 2.555782522 −3.53689 1.54E-36 4.93E-35 

AC012615.6 0.180508 0.82261601 2.188153 7.62E-23 3.65E-22 

MALAT1 15.83501 71.62380448 2.177322 3.77E-10 5.96E-10 

AL031123.1 10.58834 0.906174056 −3.54654 1.09E-39 1.09E-37 

AC135050.3 0.160602 1.482246649 3.206223 1.68E-30 1.65E-29 

AC006435.2 0.201304 0.937788214 2.219884 2.41E-15 5.55E-15 

LINC01094 0.27725 1.963631257 2.824262 6.62E-37 2.96E-35 

AC008870.2 0.140459 0.60869582 2.11557 5.25E-22 2.33E-21 

AC009704.2 0.150205 0.940764575 2.646897 1.69E-20 6.36E-20 

AC243960.1 0.190792 0.90584361 2.24726 2.19E-28 1.74E-27 

AC008105.3 0.051766 0.825717921 3.995577 4.20E-33 6.28E-32 

AC130469.1 0.057492 0.584918994 3.346804 2.14E-19 7.51E-19 

AC116914.2 0.23694 1.374503075 2.536315 1.69E-22 7.93E-22 

AL031714.1 0.188508 0.798453427 2.082584 1.83E-24 1.03E-23 

AC020907.4 0.134378 1.094545179 3.025967 1.54E-25 1.00E-24 

MMP25-AS1 0.315379 1.680744965 2.41394 8.09E-36 1.92E-34 

AC063965.2 0.111037 0.705899432 2.668423 2.30E-17 6.49E-17 

AL157392.4 0.134044 0.566137711 2.078443 1.63E-15 3.77E-15 

ITGB2-AS1 0.223036 1.665270736 2.900407 2.01E-29 1.84E-28 

AC015819.2 0.090653 0.645324543 2.831606 8.37E-26 5.53E-25 

LINC00342 0.591509 3.152218235 2.413896 6.71E-27 4.58E-26 

AC004585.1 0.089846 0.922131089 3.359442 2.00E-31 2.18E-30 

MIR200CHG 2.760587 0.476473591 −2.53451 1.27E-41 2.56E-39 

Abbreviations: logFC: log fold change; FDR: false discovery rate. 

 

Correlation analysis between risk coefficient model 

and immune cell infiltration 

 

XCELL, TIMER, QUANTISEQ, MCPCOUNTER, 

EPIC, CIBERSORT-ABS, and CIBERSORT were 

used to estimate the proportion of immune cells in 

these samples of ccRCC patients based on marker gene 

and deconvolution algorithm. Pearson correlation test 

was used to analyze the correlation between the risk 

coefficient model and tumor immune infiltrating cells 

with screening criteria P < 0.05, and R language 

software was used for data visualization (Figure 8). 

We found that the samples of the high-risk group were 

positively correlated with the infiltration of NK cells, 

regulatory T cells, and M1 macrophages in ccRCC and 

negatively correlated with the infiltration of 

neutrophils in ccRCC. 

Correlation analysis of risk coefficient model with 

genes 

 

Immune-targeted therapy is one of the most popular 

drugs for the treatment of renal clear cell carcinoma. 

We further explored the relationship between the risk 

coefficient model and genes, and found that among the 

high-risk patients, the expression levels of CTLA4 (P < 

0.001; Figure 9A), LAG3 (P < 0.001; Figure 9B), 

PDCD1 (P < 0.001; Figure 9C), GAL9 (P < 0.001; 

Figure 9D), and TIGIT (P < 0.001; Figure 9E) 

increased. The expression level of PDCD1LG2 

increased but not significantly (P > 0.05; Figure 9F). 

The expression levels of CD274 (P < 0.01; Figure 9G), 

HAVCR2 (P < 0.01; Figure 9H) decreased in this 

model. These genes are the potential therapeutic targets 

for ccRCC. 
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Table 2. Analysis of regression coefficients of 27 pairs of immune-related lncRNA to Cox related to outcome. 

lncRNA pairs Coefficient HR HR.95L HR.95H P-value 

AC003070.1|LINC01355 −0.3288 0.719785 0.500928 1.034261 0.075434 

AC007098.1|AL513218.1 −0.30849 0.734555 0.492259 1.09611 0.13089 

AC007098.1|AC093788.1 −0.52659 0.590616 0.391629 0.890708 0.012002 

AC093001.1|MCF2L-AS1 0.677176 1.968312 1.404197 2.759052 8.49E-05 

AC103563.7|AL031123.1 0.339006 1.403552 1.021037 1.929371 0.03678 

HOXB-AS3|AC027796.4 −0.47882 0.619511 0.382477 1.003444 0.051656 

SMIM25|AC008105.3 −0.47275 0.623284 0.40096 0.968881 0.035692 

SEMA6A-AS1|AC084876.1 0.406183 1.501078 0.987318 2.282178 0.0574 

SEMA6A-AS1|CR936218.1 −0.41778 0.658509 0.425095 1.020089 0.06136 

SEMA6A-AS1|AC104564.3 −0.38017 0.683744 0.464403 1.006684 0.054078 

LINC00861|AC084876.1 −0.31441 0.730217 0.488926 1.090588 0.124475 

AC079015.1|AC093788.1 −0.42386 0.654517 0.451517 0.948784 0.025254 

AC084876.1|AC100830.2 0.575764 1.778489 1.161522 2.723171 0.008078 

AC084876.1|AC009704.2 0.67463 1.963306 1.390942 2.771194 0.000125 

ARHGAP27P1-BPTFP1-
KPNA2P3|AC116914.2 

−0.41481 0.660465 0.474051 0.920182 0.014223 

LINC00893|AC027796.4 −0.3658 0.693642 0.450763 1.06739 0.096231 

AC011462.4|MMP25-AS1 0.320517 1.37784 0.975717 1.945689 0.068706 

AL031710.1|MCF2L-AS1 −0.36667 0.693035 0.496767 0.966848 0.030895 

AL662844.3|LINC01094 0.53578 1.70878 1.055544 2.766279 0.029265 

AL662844.3|ITGB2-AS1 −1.04623 0.351258 0.21793 0.566157 1.74E-05 

AC023669.2|AC063965.2 −0.31732 0.728096 0.516044 1.027285 0.070809 

AL022322.1|AC020907.4 −0.30121 0.739923 0.531166 1.030724 0.074908 

AC005785.1|AC063965.2 0.581787 1.789233 1.194042 2.681107 0.004812 

AC005785.1|AC004585.1 0.656907 1.928817 1.309024 2.842067 0.000895 

AC005104.1|AL031714.1 0.567601 1.76403 1.081279 2.877891 0.023033 

AC100830.2|AC006435.2 1.167458 3.213814 2.075641 4.976102 1.66E-07 

AC012615.6|AC008870.2 −0.56878 0.566217 0.383901 0.835116 0.004121 

Abbreviations: HR: hazard ratio; HR.95L: 95% CI lower limit; HR.95H: 95% CI upper limit. 

 

 
 

Figure 2. Heatmap and differential expression analysis of immune-related lncRNA in ccRCC. (A) Heatmap of immune-related 

lncRNA genes between clear cell renal cell carcinoma and normal tissues. Red indicates upregulated, and blue indicates downregulated. (B) 
Volcano map of immune-related lncRNA between clear cell renal cell carcinoma and normal tissues. Red dots: upregulation with significant 
differential expression, green dots: downregulation with significant differential expression, black dots indicate no significant difference. 
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Correlation analysis between risk coefficient model 

and targeted therapy drugs 

 

Targeted therapy drugs are the first-line therapy for 

patients with advanced ccRCC. We also analyzed the 

relationship between the risk coefficient scoring model 

and the sensitivity of targeted therapy drugs. The IC50 

was used to evaluate the efficacy of drugs. Lower IC50 

suggests higher sensitivity. We found that the high-risk 

group was associated with higher sensitivity of sunitinib  

 

 
 

Figure 3. Cox regression analysis was performed on 27 immune lncRNA pairs related to clear cell renal cell carcinoma 
outcome. (A) Cox univariate regression analysis forest plot of 27 immune lncRNA pairs related to the outcome of clear cell renal cell 

carcinoma. (B) Cox multivariate regression analysis forest plot of 27 immune lncRNA pairs related to clear cell renal cell carcinoma 
outcome. Red indicates risk factors, and green indicates protective factors. 
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Figure 4. The ROC curves by establishing the risk coefficient model through the immune lncRNA pairs of ccRCC. (A) The 1, 3, and 5-

year ROC curves were obtained using model construction. The AUC values were all higher than 0.83. (B) One-year ROC curve with maximum AUC 
value obtained by the model. (C) The cut-off value of 2.822 that distinguishes between high- and low-risk patients was obtained using the best fit. 

 

 
 

Figure 5. The risk coefficient model of ccRCC predicted outcome. (A) The risk score was divided into high- and low-risk groups. (B) 
Scatter plot of risk score and outcome for each patient. (C) A Kaplan-Meier curve was constructed based on the survival status of the high- 
and low-risk groups. 
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(Figure 10A), which was statistically significant (P = 3 

e-08); axitinib (Figure 10B), bevacizumab (Figure 10C), 

pazopanib (Figure 10D), and sorafenib (Figure 10E) 

were not significantly different in the high- and low-risk 

groups. 

 

DISCUSSION 
 

Many studies found that transcriptome RNA expression 

levels are related to the outcomes of malignant tumors 

[20–22]. Recent research on the role of non-coding 

RNA in ccRCC is also a focus of research [10, 11, 13, 

23]. In previous studies, lncRNA-related models of 

ccRCC were constructed based on the expression level 

of transcriptome data [14, 16, 24]. In the present study, 

we used immune-related lncRNAs pairs to construct 

risk coefficient models to assess the outcome of patients 

with ccRCC, not based on expression levels of lncRNA. 

We first used TCGA and ImmPort to obtain the 

lncRNA and immune-related gene data of patients with 

ccRCC and then used R software to identify immune-

related lncRNAs. Then, the differential expression of 

 

 
 

Figure 6. ccRCC risk coefficient model for clinical correlation analysis. The clinical correlation heatmap (A) illustrating that survival 
(B), tumor grade (C), tumor clinical stage (D), T stage (E), N stage (F), and M stage (G) were closely related to risk factor scores.  
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ccRCC and normal samples adjacent to the cancer were 

analyzed, and immune-related lncRNA pairs were 

obtained. We obtained the risk coefficient of each 

sample of ccRCC patients and established a risk 

coefficient model using Cox univariate factors, 

multivariate regression analysis, and LASSO regression 

analysis. By generating ROC curves, we found that the 

AUC for one-year outcome was the largest, and the 

Akaike information criterion (AIC) optimal fitting was 

used to obtain the critical value for distinguishing high 

from low-risk groups. The survival analysis of the high- 

and low-risk groups showed that the survival rate of 

patients in the low-risk group was significantly higher 

than that of the high-risk group (P < 0.001). 

 

We also calculated the correlation between the risk 

coefficient score of each ccRCC sample and various 

clinical indicators. We found that age, gender, and risk 

coefficient score were independent predictors of 

outcome through Cox multivariate regression analysis. 

We also constructed the ROC curve of clinical-related 

indicators, which compared the ROC curve of the 1-

year risk coefficient score in the same chart. We found 

that the one-year outcome risk coefficient score and 

tumor stage were the best predictors of ccRCC 

outcome, suggesting the reliability of the risk 

coefficient model. 

 

To analyze the relationship between risk factor score 

and immune cell infiltration, the immune cell 

infiltration data of patients with ccRCC, we used 

XCELL, TIMER, QUANTISEQ, MCPCOUNTER, 

EPIC, CIBERSORT-ABS, and CIBERSORT and 

correlation analysis. We found that the level of 

infiltration of NK cells, regulatory T cells, and M1 

macrophages in the high-risk group was high. 

 

Sierra et al. found that tumor-infiltrating PD-L1+ NK 

cells were highly expressed in renal clear cell carcinoma 

patients. In in vitro experiments, NK cells inhibited the 

proliferation of CD8+ T cells, suggesting that NK 

tumors infiltrating cells weakened immune regulatory 

 

 
 

Figure 7. Cox regression analysis of clinical correlation indicators and integrated ROC curves. (A) Clinical-related indicators Cox 

univariate regression analysis showing that tumor grade, clinical stage, TMN stage, and risk score were related to outcome. (B) Cox 
multivariate analysis showing that risk scores are independent predictors of outcome. (C) The comparison of risk coefficient score and 
clinical-related indicators showing that risk coefficient score (AUC = 0.867) and tumor stage (AUC = 0.868) had the highest predictive 
efficacy. 
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functions [25]. A study showed that high levels of 

infiltration of dendritic cell quiescence, dendritic cell 

activation, mast cell quiescence, mast cell activation, 

and eosinophils were associated with a good outcome in 

ccRCC patients, while B cell memory, T cell follicular 

helper cells, and T cell regulation associated with poor 

outcome in ccRCC [26]. Xu et al. found that HK3 

promoted the infiltration of monocytes and 

macrophages that present cell surface antigens and 

regulated the critical genes PD-1 and CTLA-4 of 

debilitating T cells, thereby affecting the immune 

escape process [27]. 

 

We also performed correlation analysis on the risk 

model for immune checkpoint genes and targeted 

therapy drugs and found that expression levels of 

CTLA4, LAG3, PDCD1, GAL9, and TIGIT increased, 

while expression levels of CD274 and HAVCR2 

decreased in samples from patients in the high-risk 

group; these can be used as immune targeted therapy 

with potential therapeutic targets. 

ccRCC discovered early and mid-term can be removed 

surgically, while patients with advanced ccRCC experience 

poor outcomes because of metastasis and missing the 

optimal time for surgery. Immune-targeted drug therapy 

has become the first-line treatment for patients with 

advanced ccRCC. Of these, vascular endothelial growth 

factor monoclonal antibody and tyrosine kinase inhibitors 

are the primary drugs used for anti-tumor angiogenesis 

therapy [28–30]. However, changes in the tumor 

microenvironment may be associated with the emergence 

of resistance of ccRCC to immune-targeted drugs. 

Therefore, identifying sensitive drugs may reduce treatment 

costs and reduce the side effects of immune-related drugs. 

In the risk coefficient model, we included sunitinib, 

axitinib, bevacizumab, pazopanib, and sorafenib and found 

that patients with ccRCC in the high-risk group were more 

sensitive to sunitinib than the low-risk group. 

 

This study has some limitations, although we adopted 

rigorous methods and algorithms to build the model. It 

is necessary to validate the reliability of our risk 

 

 
 

Figure 8. Correlation analysis of immune infiltrating cells in ccRCC. 
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Figure 9. Correlation analysis of genes in patients with ccRCC. In the high-risk group, the expression levels of CTLA4 (A), LAG3 (B), 
PDCD1 (C), GAL9 (D), and TIGIT (E) increased. Although the expression level of PDCD1LG2 (F) increased, it was not statistically significant. 
CD274 (G) The expression level of HAVCR2 (H) decreased. 

 

 
 

Figure 10. Correlation analysis of immune-targeted drugs in patients with ccRCC. The risk factor score was used as a potential predictor. 

Compared with the low-risk group, the sunitinib IC50 value of high-risk patients was lower (A), which was statistically significant (P = 3e-08). Axitinib 
(B), bevacizumab (C), and pazopanib (D), and sorafenib (E) were not significantly different between the high- and low-risk groups. 
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coefficient model using external data. In a future study, 

we will collect more clinical data and expand the 

sample size. 

 

Outcome-related novel ccRCC markers and risk 

coefficient model were obtained by constructing 

immune-related lncRNA pairs, which can predict 

outcomes of ccRCC and help distinguish those who can 

benefit from sunitinib. 
 

MATERIALS AND METHODS 
 

Data acquirement 
 

The GDC Data Transfer Tool was used to download 

open transcriptome data from TCGA 

(https://cancergenome.nih.gov/) [31] of ccRCC and 

normal tissues adjacent to the cancer, which included 

539 cases of ccRCC samples and 72 cases of normal 

tissue samples adjacent to cancer. Then gene transfer 

format (GTF) files were downloaded using Ensembl 

(http://asia.ensembl.org) [32] to annotate and 

distinguish the mRNA and lncRNA of the transcriptome 

data. Immune-related genes were obtained from 

ImmPort (http://www.immport.org). 
 

Differential expression analysis of immune-related 

lncRNAs 
 

Immune-related lncRNAs were identified based on the 

co-expression strategy and Pearson correlation analysis 

according to the co-expression correlation coefficient > 

0.4 and P < 0.001. DEirlncRNA was selected using the 

limma package of R language software [33] with |log 

Fold Change|>1.5 and FDR < 0.05. Obtained lncRNAs 

were visualized using the heatmap package. 

 

Construction of immune-related lncRNA pairs 
 

DEirlncRNAs were identified using multiple rounds of 

pairing. Parameter values of 0 or 1 were used for 

definition, and α was defined as the parameter value. If 

the expression of lncRNA A was greater than that of 

lncRNA B in an immune-related lncRNA pair in a 

sample, then the α value of the lncRNA pair was 1; 

otherwise, the value of α was 0. If the ratio of the α 

value (either 0 or 1) of the immune-related lncRNA pair 

in all samples is less than 80%, it means that the 

immune-related lncRNA pair was an effective match; 

otherwise, it needs to be re-paired. 

 

Acquisition of clinical data and establishment of 

model 
 

First, clinical data related to ccRCC were downloaded 

from TCGA. Then, the limma package of R software 

was used to match the immune-related lncRNA pairs in 

the previous step. We then took the intersection and 

deleted the repeated clinical data with no follow-up 

time. A single factor regression analysis was performed 

on the immune-related lncRNA pairs initially obtained, 

and the immune-related lncRNA pairs related to the 

survival status were found. The significance screening 

criterion was P < 0.01. 

 

To prevent over-fitting, the glmnet package of R 

language was used to perform LASSO regression 

analysis [34] on the obtained immune lncRNA pairs, 

run 1000-repeated random cycles, and immune lncRNA 

pairs with a matching frequency of more than 100 times 

identified those with P < 0.05 after the second cross-

validation. The best pairing combination was selected to 

obtain immune lncRNA pairs that can participate in 

constructing the Cox risk coefficient model. By 

constructing Cox univariate and multivariate analysis 

models, the risk coefficient of each immune lncRNA 

pair related to the outcome was obtained, and the risk 

score of each patient’s tumor sample was determined. 

The total risk score of each ccRCC patient sample was 

equal to the sum of the expression amount of each 

immune lncRNA pair in the sample multiply risk 

coefficient. The formula is following: 

 

1
coefficie eRisk Score Risk IrlncRNA Expr ssin ont

n

iii
  

 

The Cox analysis results were visualized using the 

survminer and survival packages of R software. 

 

Construction of the ROC curve with risk coefficient 

model 

 
ROC curves were constructed using the survivalROC 

package of the R software, which included ROC for 1-, 

3-, and 5- years and the AUC values were calculated to 

determine the value predicted by the model. We found 

that the 1-year ROC curve had the largest AUC value. 

According to the AIC best fit [35], it was possible to 

distinguish low-risk with high-risk patients by finding a 

critical value with the largest sum of specificity and 

sensitivity. 

 

Clinical correlation analysis with risk coefficient 

model 

 
Survival and survminer packages of the R language 

software were used to compare the survival differences 

between the high- and low-risk groups. P < 0.001 

indicated a significant difference. A Kaplan-Meier 

curve was constructed to visualize the data. The 

relationships between the risk score and the previously 

obtained clinical indicators (survival status, age, gender, 

https://cancergenome.nih.gov/
http://asia.ensembl.org/
http://www.immport.org/


 

www.aging-us.com 26059 AGING 

tumor grade, tumor stage, and T, N, and M stages) were 

analyzed using the chi-square test. The relationships 

between the risk score and the different subgroups of 

clinical indicators were analyzed using the Wilcoxon 

rank-sum test. The limma package and ggpubr package 

of the R language software were used to visualize the 

data. To determine whether the risk score can be used as 

an independent predictor related to the outcome of 

patients with ccRCC, we performed Cox univariate and 

multivariate regression analysis on the risk score and 

clinical correlation indicators, which used the hazard 

ratio to evaluate. P < 0.05 was the identification 

criterion, and the survival package of R software was 

used to visualize the data. To compare the accuracy of 

the risk score and clinically relevant indicators in 

predicting survival and outcome, we compared the ROC 

curves obtained for the 1-year follow-up with the ROC 

curve of clinically relevant indicators in the same graph. 

 

Correlation analysis of immune cells 

 

To analyze the relationship between risk factor score 

and immune cell infiltration, the immune cell 

infiltration data of patients with ccRCC in TCGA was 

calculated based on CIBERSORT 

(http://cibersort.stanford.edu/) [36], TIMER (version 

2.0; http://timer.cistrome.org/) [37], QUANTISEQ 

(http://icbi.at/quantiseq) [38], Microenvironment Cell 

Populations-counter [39], EPIC 

(http://epic.gfellerlab.org) [40], and XCELL 

(http://xCell.ucsf.edu/) [41]. The correlation between 

immune cell infiltration data and risk coefficient score 

was analyzed using the limma, scales, ggplot2, and 

ggtext packages of R software, which can be visualized 

to obtain a bubble chart according to P < 0.05 as the 

identifying criterion. 

 

Gene correlation analysis 

 

We found that CD274, CTLA4, HAVCR2, LAG3, 

LGALS9, PDCD1, PDCD1LG2, and TIGIT were 

abundantly expressed in ccRCC samples. To determine 

whether these genes differed between the high- and 

low-risk groups of the risk model, the limma and 

ggpubr packages of the R language software were used 

to analyze and visualize the data using violin charts. 

 

Correlation analysis of targeted drugs 

 

To determine whether there was a difference in patients’ 

response in the high- and low-risk groups of ccRCC 

patients to targeted drugs, the half-inhibition rate (IC50) 

of the drug was used as an index to measure drug 

sensitivity. The data were analyzed and visualized using 

the limma package, ggpubr, ggplot, and pRRophetic 

package in R software. 
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