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INTRODUCTION 
 

As demographic aging continues, the population 

structure is shifting to an uncharted phase in which the 

“super elderly” (80 years and older) outnumber the 

“elderly” (60 years and older). Older adults are at risk 

of developing age-associated diseases, so this transition 

heavily weighs on government finances. Thus, 

maintaining adult health while aging is important, both 

for individual quality of life as well as costs to 

healthcare systems [1]. 

 

With a graying population and increasing longevity, it 

is important to identify life transitions in later years 

and recognize heterogeneity among older people [2]. 

The term “late life” is broadly defined by 

encompassing a heterogeneous group of adults of 65 

years and older; hence, it is further classified into 

“young-old” and “old-old” groups [3, 4] in the hope of 

identifying the group with a distinct vulnerability to 

certain chronic diseases and mental illnesses. 

Supportively, several studies have discerned a 

comprehensive difference across physical, cognitive, 

and psychosocial domains between the young-old 

(aged 60 – 74 years) and old-old (aged 75 years and 

older) groups [2, 5, 6]. A similar distinction may exist 

for physiological and pathological domains, such as 

chronic illnesses (cardiovascular disease, cancer, 
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ABSTRACT 
 

With a graying population and increasing longevity, it is essential to identify life transition in later years and discern 
heterogeneity among older people. Subclassifying the elderly population to inspect the subdivisions for 
pathophysiological differences is particularly important for the investigation of age-related illnesses. For this 
purpose, using 24- and 28-month-old mice to represent the “young-old” and “old-old”, respectively, we compared 
their skeletal muscle transcriptomes and found each in a distinct stage: early/gradual (E-aging) and 
late/accelerated aging phase (L-aging). Principal component analysis showed that the old-old transcriptomes were 
largely disengaged from the forward transcriptomic trajectory generated in the younger-aged group, indicating a 
substantial change in gene expression profiles during L-aging. By calculating the transcriptomic distance, it was 
found that the 28-month group was closer to the two-month group than to the 24-month group. The divergence 
rate per month for the transcriptomes was the highest in L-aging, twice as fast as the rate in E-aging. Indeed, many 
of the L-aging genes were significantly altered in transcription, although the changes did not seem random but 
rather coordinated in a variety of functional gene sets. Of 2,707 genes transcriptionally altered during E-aging, two-
thirds were also significantly changed during L-aging, to either downturning or upturning way. The downturn genes 
were related to mitochondrial function and translational gene sets, while the upturn genes were linked to 
inflammation-associated gene sets. Our results provide a transcriptomic muscle signature that distinguishes old-old 
mice from young-old mice. This can help to methodically examine muscle disorders in the elderly. 
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chronic respiratory diseases, and diabetes, among 

others) and the deterioration of skeletal muscle and 

cognitive function [7]. In reality, these age-related 

illnesses vary markedly and can, with age, take the 

shape of a comorbidity, which is the co-existence of 

two or more diseases [8]. For instance, only 30% of 

adults aged 45 – 64 years have at least two chronic 

conditions, whereas 65% of those aged 65 – 84 years 

and approximately 80% of those aged 85 years and 

older have the same conditions [9]. Therefore, to 

investigate these age-associated diseases, it may be 

beneficial to divide the elderly into groups and  

inspect the resultant subgroups separately for 

pathophysiological differences, and other deteriorations 

or weaknesses.  

 

In the case of mice, those ranging from 18 to 24 

months-of-age, which is comparable to humans of 56 

– 69 years-of-age, fulfil the requirements of “young-

old” age, whereas mice aged 26 months and older can 

be considered as “old-old” [10]. It is notable that 22 – 

24 months of age is when morphological changes 

consistent with human sarcopenia [11] commence in 

mice and rats [12, 13]. This is the period skeletal 

muscle mass and grip strength decline progressively 

with age, exhibiting prominent changes at 24-28 

months of age, while whole–body mass and lean mass 

were relatively stable or only marginally declined 

[13]. Another significant distinction between the 

young-old and old-old groups is survivorship; 24- and 

28-month-old mice exhibit 85% and 50% survival 

rates, respectively [14, 15], or less depending on  

the strain and sex (Strain survival information, 

https://www.nia.nih.gov). Based on this rapid declines 

in muscle mass and survivorship with age, we 

assumed that aging accelerates in “late life” in a 

manner different from that in the slow aging mode 

before then. In addition to the increased morbidity and 

accelerated aging, we recently noticed that skeletal 

muscle in old-old mice, but not in young-old mice, 

underwent DNA demethylation particularly over 

genomic retroelements, and as a consequence, a large 

number of genomic retroelement copies acquire the 

competence for transcription [16]. Similarly, the 

existence of other unexplored molecular and 

physiological traits that distinguish old-old mice from 

young-old mice, is also conceivable.  

 

Recently, there were reports of bulk [17] and single-

cell RNA-seq analysis [18] on aging hallmarks across 

the organs and age in mice, but the global scale in 

these studies has benefit for understanding overall 

picture of aging but is not greatly helpful to study in 
detail aging events particularly in skeletal muscle and 

in “later life” if not thoroughly re-analyzed. We 

examined the transcriptomes of skeletal muscle 

sampled from 24- and 28-month-old mice as the 

young-old and old-old groups, respectively, along with 

2-, 10-, and 18-month-old mice representing young 

and midlife controls. By focusing on the genes that 

deviated from the normal expression profiles in the 

late aging phase, our study provided insight into the 

transcriptomic features of the skeletal muscle of old-

old mice compared to that of young-old mice. 

Furthermore, we investigated whether there are any 

genes in which the expression shifts are coordinately 

regulated in accordance with the transition in “late 

life”; thereby, providing a thorough impact assessment 

of the late aging phase. 

 

RESULTS 
 

Comprehensive gene expression changes during late 

phase of aging 

 

We obtained RNA sequencing data from the skeletal 

muscle of 2- (2m; n = 5), 24- (24m; n = 6), and 28-

month-old mice (28m; n = 4) to compare their 

transcriptomes. We regarded 24 and 28 months-of-age 

as young-old and old-old and provisionally designated 

the corresponding periods as the early aging (E-aging) 

and late aging phase (L-aging), respectively (Figure 1A 

and Introduction for the rationale). Principal component 

analysis (PCA) result showed that the transcriptomes of 

young, young-old, and old-old age groups clearly 

diverged from each other (Figure 1B). In total, 707 

differentially expressed genes (DEGs; fold-change > 2 

and P < 1 × 10–5; Supplementary File 1) were identified 

in the comparison of 28m and 24m samples. This DEG 

number was considerable for a short period of only four 

months, and comparable to the 1,394 DEGs detected in 

the 24m-versus-2m comparison (Figure 1C and 

Supplementary File 1). This indicated that global gene 

expression changes occur during L-aging. We 

confirmed differential expressions of the identified 

DEGs in the young-old and old-old muscle samples 

through a quantitative real-time PCR (Supplementary 

Figure 1).  

 

Some cellular processes were disturbed in a 

coordinated and L-aging-specific fashion 

 

We inspected the young-old and old-old muscle 

transcriptomes in detail, to discover genes whose 

expression was changed in a coordinated L-aging-

specific manner, thus revealing certain cellular events 

disturbed during L-aging. We performed gene set 

enrichment analysis (GSEA) on the “HALLMARK,” 

“KEGG_PATHWAY,” and “GO.BP” collections 

using the fast pre-ranked GSEA (fGSEA) package, to 

interpret coordinate changes in the transcriptomes of 

28m over 24m samples (Supplementary File 2). A 

https://www.nia.nih.gov/


www.aging-us.com 145 AGING 

number of gene sets were significantly enriched or 

depleted in the 28m transcriptomes (Figure 2A and 

Supplementary Figure 2). The significantly enriched 

genes were associated with cell adhesion, cell 

signaling pathways, and inflammation-related sets, 

whereas the significantly depleted ones were linked to 

oxidative phosphorylation and translation terms. 

Single-sample GSEA (ssGSEA) using gene set 

variation analysis (GSVA) was performed, which 

assesses separate enrichment scores (ESs) for each 

sample and gene set pairing, to determine the extent 

of coordinate gene set up- or downregulation within a 

sample group [19]. GSVA results demonstrated that 

the 28m samples were synchronized in expression 

levels for a variety of GO.BP gene sets (n = 384), 

showing a pattern opposite to that of the 24m samples 

(Padj < 1 × 10–5 and log2 fold-enrichment > 0.5; 

Figure 2B and Supplementary Figure 3). Notably, 

genes were overrepresented in the 28m samples in the 

majority of the selected terms (89.3%, 343/384 terms). 

Our results indicated that the old-old transcriptomes 

are distinguishable from the young-old ones and that 

the transcriptomic change in L-aging might not be 

totally fortuitous but predictable to some degree for 

certain gene sets. The same gene sets selected by the 

bulk GSEA (Figure 2A and Supplementary Figure 3) 

were reproducibly chosen from the GSVA.  

 

Transcriptomic distance among the young, young-

old, and old-old in skeletal muscle and blood cells 

 

For evenly spaced chronological transcriptomes, 

middle-aged samples were required. Therefore, we 

carried out RNA-sequencing of the skeletal muscle 

from 10- and 18-month-old mice (n = 6). In a PCA, 

using the sequencing data of all age groups, we 

discovered that the 24m transcriptomes slightly deviated 

from the forward trajectory and that the 28m 

transcriptomes swerved completely outward; thus, both 

these groups disengaged from the transcriptomic path of 

younger age groups (Figure 3A). We measured the 

transcriptomic distance between the age groups based 

on Euclidian distance [20]. The 24m group was the 

furthest cluster from the 2m group, whereas the 28m 

group was the nearest (Figure 3B). The 10m and 18m 

transcriptomes clustered close to those of the 24m on 

the PCA plot. Interestingly, the results indicated that 

the old-old transcriptomes clustered closer to the 

young ones than the young-old ones. The monthly 

divergence of the transcriptome with age, calculated 

by dividing the transcriptomic distance between the 

age groups by the age difference in months, 

decelerated until 18 months and then accelerated as the 

tissue entered into the E-aging and L-aging groups 

(Figure 3C). The divergence rate in the L-aging period 

was approximately twice as high as the rate in the E-

aging period (10.6 versus 4.8).  

 

We examined peripheral blood mononuclear cells 

(PBMCs) to test the generality of our findings with 

skeletal muscle. In the PCA results, using RNA-seq data 

of PBMCs obtained from the same mice as that used for 

muscle tissue collection, the transcriptomes of different 

age groups demonstrated a boomerang-shaped shift with 

age (Figure 3D). As for transcriptomic distance, relative 

to the 2m group in the PBMCs, the 28m group was the 

nearest (Figure 3E), and the monthly divergence rate 

was the highest for L-aging, similar to that in the 

skeletal muscle (Figure 3F). Collectively, our results 

indicated that the transcriptomes are markedly altered 

during L-aging, with the trajectory steeply disengaged 

from the initial forward path. With regards to the gene 

 

 
 

Figure 1. Comparison of skeletal muscle transcriptomes of 2-, 24-, and 28-month-old mice. (A) Representative age ranges for 
mature life history stages in C57BL/6J mice are shown, together with human age equivalents: 10 to 14 months-of-age as middle age and 18 – 
24 months as early phase of aging (E-aging) [10]. We added the life phase of 25 – 28 months or older as late phase of aging (L-aging); note 
that we substituted the “old” definition in the online article [10] with E-aging. We named 24 and 28 months-of-age as “young-old” and “old-
old”. Aging phases are shaded in different colors. (B) Principal component analysis (PCA). Transcriptomes of different age groups are marked 
as dots and lines with different colors. 2m, 24m, and 28m stand for 2-, 24-, and 28-month-old mice, respectively. (C) Volcano plots for 
comparison of gene expression between 2m versus 28m (left), 2m versus 24m (middle), and 24m versus 28m (right). Differentially expressed 
genes (log2 (fold change > 1.0 and p < 1 × 10–5) are colored. 
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expression profile, the old-old group clustered closer to 

the young one than the young-old group in both the 

skeletal muscle and PBMCs.  

 

Transcriptomic muscle signature discriminates the 

old-old from the young-old 

 

To specify the genes that underwent transcriptional 

alterations during E-aging and L-aging, we classified 

them based on expression pattern into three types: E-aging, 

L-aging, or EL-aging genes. Expression levels of the first 

two types were significantly altered (Padj < 0.001) in each 

designated period only but not in the other period (Padj > 

0.1; Supplementary File 2). In contrast, EL-aging genes 

showed significant changes in both the E-aging and L-

aging periods in a row (Figure 4A). In total, 1,676 EL-

aging genes were identified that accounted for 9.5% of all 

genes. Most of the EL-aging genes (except for seven and 

15 genes continuously increasingly and decreasingly 

expressed, respectively (see [21] for the case of rat limb 

muscle) showed fluctuations in their expression levels, 

either an up-and-down (downturn; 785 genes) or a down-

and-up (upturn; 869 genes) pattern at 24 and 28 months, 

starting at two months (Figure 4B and Supplementary  

File 2). Gene ontology (GO) analysis using the downturn 

genes, revealed that the terms were primarily related to 

mitochondrial function and translation involving 

“mitochondrial ATP coupled electron transport (GO:0 

042775; Padj = 8.7 × 10-48),” “translation (GO:0006412; 

Padj = 2.3 × 10-31),” and “mitochondrial transport 

(GO:0006839; Padj = 7.8 × 10-22),” among others  

(Figure 4C and Supplementary File 2). GO analysis using 

the upturn EL-aging genes yielded terms that are related 

to immune reaction and cell signaling, including 

“neutrophil-mediated immunity (GO:0002446; Padj = 3.9 

× 10-21),” “extracellular matrix organization (GO:0030198; 

Padj = 1.1 x 10-11),” and “platelet degranulation 

(GO:0002576; Padj = 6.6 × 10-11),” to name but a few. 

 

In total, there were 1,031 E-aging genes of which half 

(n = 502) was underrepresented in expression, and the 

other half (529) was overrepresented. Their GO 

analysis results are shown in Supplementary File 2. 

The GO output was small in number and with less 

 

 
 

Figure 2. Gene set enrichment analysis (GSEA) using RNA-sequencing data from the skeletal muscle of 24- and 28-month-old 
mice. (A) The GSEA mountain plots representatively show significant enrichment (left) or depletion (right) of genes, for the indicated gene 
sets and collections. The thick blue and red lines indicate the running enrichment scores across the fold change-ranked genes (Rank), in 
comparison to the RNA-seq gene-level expression at 28 over 24 months. Black vertical tick marks below or above the curve indicate the 
location of individual target genes within the fold change-ranked gene list. Adjusted P-values (Padj, Benjamin and Hochberg-corrected 
enrichment statistics) are indicated. (B) Single-sample GSEA with gene sets showing differential enrichment in the skeletal muscle of 24- and 
28-month-old mice. Using GSVA, single-sample GSEA was performed on GO.BP collection from MSigDB (v7.0; see Supplementary Figure 1 for 
other collections). The volcano plot shows the distribution and the number of gene sets with differential enrichment (DE; FDR < 1 × 10–5, log2 
fold-enrichment > 0.5) between the 24 and 28 months; each dot indicates a gene set in GO.BP MSigDB collection and blue and red dots for 
depleted and enriched in the 28 months, respectively. The numbers in red and blue indicate the gene set numbers enriched and depleted in 
28m samples, respectively. Heatmaps show differential enrichments among individual 24m and 28m samples. Samples were hierarchically 
clustered on the x-axis (28m, red; 24m, blue) in an unsupervised manner, and significant DE gene sets are shown on the y-axis. Black bars on 
the left represent the gene sets shown in Figure 4C, and the names of the gene sets are denoted on the right. Colors in the GSVA score bar 
indicate enrichment scores in individual samples. 
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significant terms (Padj < 0.01) than the output from the 

EL-aging genes. For the L-aging genes, only a 

relatively small number (n = 276) were detected. GO 

analysis of the L-aging genes yielded no significant 

gene sets, even at Padj < 0.05, on the three collections. 

Therefore, judging from the high statistical 

significance with which the gene sets were identified, 

the up- or downturn expression shifts in these  

EL-aging genes, along with the accompanying  

up-and-down functions in the corresponding gene sets, 

might be of no random pattern but have yet to be 

explored as consequences of the progression of aging.  

Through hierarchical clustering, we examined changes 

in the expression levels of EL-aging genes in the 

identified gene sets. As shown in the heatmaps of the 

four representative gene sets (Figure 4C), the down- or 

upturn pattern of age-associated changes was clearly 

shown by supervised clustering (Figure 5A). In the 

period spanning the middle age and E-aging (10 to 24 

months), the genes either maintained their expression 

levels relatively constant (“mitochondrial ATP coupled 

electron transport” and “translation” sets) or showed a 

gradual decline (“neutrophil-mediated immunity” and 

“extracellular matrix organization” sets); however, no 

abrupt change in expression was found among the EL-

aging genes in this period. Unsupervised clustering data 

showed that the 28m samples were closely associated 

with the 2m samples in all the gene sets (Figure 5B). 

From the analysis of public mouse muscle 

transcriptome data [22], we confirmed a similar 

downturn change in expression levels of “mitochondrial 

ATP coupled electron transport” gene set with age 

(Supplementary Figure 4). Since these public 

transcriptome data came from male mice, we assume no 

difference in the age-linked expression pattern of EL-

aging genes between the sexes. To see if there was an 

age-related change in the mitochondrial copy number in 

the skeletal muscle, we determined the copy number ratio 

of the mitochondrial 16S gene sequence relative to a 

nucleus-encoded, single-copy gene sequence (HK2) [23] 

in the tissue DNAs from 2, 10, 18, 24, and 28 month old 

mice that were the same batches of muscle tissues that 

were used for the transcriptome analysis above. The 

result indicated that the copy number of mitochondria in 

 

 
 

Figure 3. A steep change in the transcriptome of skeletal muscle during the late phase of aging. (A, D) Principal component 

analysis of the skeletal muscle (A) and peripheral blood mononuclear cell (PBMC); (D) RNA-seq data from 2-, 10-, 18-, 24-, and 28-month-old 
mice. Transcriptomes of different age groups are marked by different colors. The curved orange arrow connects the group mean 
transcriptome of each age group to show an age-associated change in the gene expression profile of the skeletal muscle. Box plots show the 
distribution of normalized counts. (B, E) Measurement of the group mean transcriptomic distance / variance of each age group, relative to 
the 2-month group (numbers in black) or among the age groups (numbers in blue). (C, F) Per-month differentiation of transcriptomes 
between the age groups, which divides the transcriptomic distance by the age (month) difference. 
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the skeletal muscle showed a downturn pattern of change 

with age (Supplementary Figure 5), and that the number 

of mitochondria strongly correlated with the mean 

expression levels (r = 0.892; Pearson correlation) of 

“mitochondrial ATP coupled electron transport” genes. 

Meanwhile, an assimilation was demonstrated in the 

PCA plots for the EL-aging genes of the 28m group 

expression profiles, relative to those of the 2m group. For 

the 1,031 E-aging genes, the 28m samples overlapped 

with the 24m samples, whereas they overlapped with the 

2m samples for the 785 downturn and 869 upturn EL-

aging genes (Figure 5C). This indicated that the 

transcriptional similarity of old-old muscles with that of 

young muscles is not restricted to certain gene sets but 

appears across all the EL-aging genes. 

 

DISCUSSION 
 

In summary, we observed a comprehensive change in 

the transcriptome of skeletal muscle during L-aging. 

The transcriptomes of old-old samples were markedly 

altered, exhibiting a drastic change in the forward path 

manifested by the transcriptomes of the younger age 

groups. Many genes were significantly changed, and of 

them, the EL-aging genes demonstrated fluctuation in 

their expression levels with a successive change during 

the E-aging and L-aging period. However, these 

changes among old-old samples did not seem to be 

random but rather synchronic in a variety of gene sets. 

For example, increasingly expressed EL-aging genes in 

the L-aging group were significantly enriched in the 

immunity- and inflammation-related gene sets, whereas 

decreasingly expressed genes were depleted in the 

mitochondrial function and translation terms.  

 

We assume that during the E-aging, the EL-aging genes 

are either in highly expressed or tightly repressed states 

and multi-layered regulatory systems struggle for 

transcriptional homeostasis at the expense of cellular 

energy. During the L-aging, as cellular energy and 

resources become limited, cells and their transcriptional 

regulatory systems give way to being decompensated 

throughout the genome, as evidenced by the upturn and 

downturn shifts of expression. As such dysregulations 

over the genome continue unchecked and wide-spread, 

it eventually results in systemic aging. Likewise, the 

tension-releasing shift can passively occur in aged, 

decompensated cells, or there may exist an unknown 

factor that triggers such changes yet to be identified. At 

the molecular level, within a cell, genetic and epigenetic 

regulatory devices that act on the gene sets (Figure 4C) 

involving EL-aging genes have hitherto managed to 

homeostatically control the transcriptional milieu over 

the genes. These devices may break down by increasing 

stress and tension elicited with aging, leading to the 

awry expression of genes. Some early EL-aging genes, 

when altered in expression levels, may accelerate cells 

to transit to the late phase of aging and further 

transcriptionally alter the other downstream EL-aging 

genes. If we could identify these leading EL-aging 

genes and determine how to keep them safe and 

unharmed from causes and results of aging, we could 

 

 
 

Figure 4. Classification of genes by age-associated expression pattern. (A) Gene categories of E-aging genes, L-aging genes, or EL-
aging genes that show significant changes in expression levels during E-aging or L-aging, or in both phases (EL-aging), respectively. The thick 
arrow in the illustration indicates a significant change (Padj < 0.001) among the age groups, whereas the thin arrow indicates no significance 
(Padj > 0.1). (B) Further classification of the EL-aging genes by the pattern (dotted arrows in blue) of change in expression level with age. The 
number of genes in each category is indicated on the graph. (C) Gene ontology result using 785 downturn (top) and 869 upturn EL-aging 
genes (bottom). The fractional numbers indicate the number of EL-aging genes over the whole genes in the corresponding gene set. 
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delay the oncoming L-aging and prolong the slow E-

aging. This can undoubtedly be the genuine way for 

healthy aging.  

 

There was a substantial change in the gene expression 

profile of skeletal muscle during L-aging, as visualized 

by the large swerving trajectory of old-old 

transcriptomes in the PCA results (Figure 3A). The EL-

aging genes might play an important part in this process, 

considering the expression profile of these genes in old-

old samples that largely overlapped with those in young 

samples (Figure 5C). This “reversion-toward-the-young” 

event is distinguished from the “regression-toward-the-

mean” case often manifested in transcriptomic analysis 

of aging samples, in that, the latter illustrates 

antithetical directions of changes occurring between 

high and low transcribed genes, which results in 

reducing the gene-to-gene disparities in transcription 

with age [24]. Regarding an analytical method, whereas 

the “regression-toward-the-mean” event is obtained 

from a simple two-point comparison of individual genes 

with resultant fold-change swaying on the reference 

time point used, the “reversion-toward-the-young” 

event could be acquired from a chronological tracing of 

gene expression levels at multiple time points, thus 

unwavering and more faithful. In terms of the fraction 

of (EL-aging) genes showing the “reversion-toward-the-

young” change, 1,676 genes were output after the Padj = 

0.001 cut-off. When the cut-off was lowered to Padj = 

0.05, the number increased to 3,996, which is 22.6% of 

all the genes, a large fraction enough to call the 

movement a global pattern. We previously observed this 

“reversion-toward-the-young” pattern of expression 

change, among genomic retroelements in mouse 

skeletal muscle [16]. Most subfamilies of LINE1s and 

LTRs showed an upturn change in expression levels 

(apart from the statistical significance of the changes); 

their initial high-level expression at two months was 

diminished at 20 months and then increased again at 28 

months. Given the scattered presence of retroelement 

sequences over whole chromosomes and the large 

fraction of EL-aging genes, we suggest that the age-

linked up- and downturn changes in expression are 

genome-wide trends in aged cells and tissues. 

 

Of course the expression “the reversion-toward-the-

young” does not mean the physical rejuvenation of 

skeletal muscles; it just portrays the assimilation of 28m 

 

 
 

Figure 5. Assimilation of the EL-aging gene expression profiles of the skeletal muscle in super elderly mice with those in the 
young mice. (A, B) Heatmaps of EL-aging genes for expression levels of individual muscle samples relative to the mean level of the 2-month 

group. Age-associated expression changes in four representative gene sets are shown by unsupervised (A) or supervised hierarchical 
clustering (B) Red line below the heatmap in B indicates the cluster of 2m and 28m samples. (C) Comparison of transcriptomes of E-aging (top) 
and EL-aging genes (bottom) among the age groups. A close similarity is shown in the 24m (dark green) and 28 samples (black) for the E-aging 
gene group, whereas it was in the 2m (light green) and 28m samples for the EL-aging gene group and their down- and upturn subsets. 
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muscle to 2m muscle regarding gene expression profile, 

which we believe is important in that the expressions of 

certain sets of genes with specific cellular functions are 

not individually randomly changed but appear to be 

coordinately regulated during the late phase of aging. 

There might be an argument that since mature adult 

mice are usually defined as 3–6 months old, any 

differences between 2 months and older time points are 

confounded by these maturational changes and cannot 

be ascribed solely to aging. Our result indeed showed a 

big shift in the expression levels of ‘Oxidative 

phosphorylation’ and ‘Translation’ set genes between 

2m and 10m muscles (Figure 5A), favoring the notion 

of muscle immaturity in 2m samples. It thus 

recommends to be careful of choosing sample age for 

comparison of skeletal muscle and to re-consider the 

use of muscle sample from immature, or mature but still 

young, mice as a reference. As we made the point clear 

above, however, we focused on aging events during the 

late phase of aging and were particularly interested in 

changes between young-old and old-old. We first found 

abrupt changes in gene expression levels during the L-

aging, and next observed the resulting profiles of the 

changes overall resembling those of 2m muscle samples. 

Hence, our results put no interpretative confusion or 

ambiguous boundary between aging and maturation 

changes of sample tissues.  

 

Most age-related diseases are very complex and their 

etiologies cannot simply be assigned to specific genes; 

hence, it is hard to match the transcriptional changes of 

EL-aging genes with certain disorders in the elderly. 

Nevertheless, the decreasing mitochondrial function and 

translation (related to the downturn genes) and the 

increasing inflammation (related to the upturn genes) in 

the old-old muscle samples accord with the causes of 

sarcopenia [11]. Sarcopenia is a progressive skeletal 

muscle disorder involving the accelerated loss of 

muscle mass and function and occurs commonly as an 

age-related process in older people, influenced not only 

by contemporaneous risk factors, but also by genetic 

and lifestyle factors operating across the life course 

[25]. In attempt to search for genes associated with 

sarcopenia and to understand the underlying mechanism 

driving sarcopenia, several studies investigated changes 

in muscle gene expression with age. Kang et al. recently 

identified 15 DEGs from skeletal muscle of sarcopenia 

patients [26] and, surprisingly, the majority (10/15) of 

them corresponded with our mouse DEGs (28m vs. 

24m; Padj <0.05): five DEGs overrepresented (Runx1, 
Bcl3, Acsl5, Ngfr, and Chi3l1) and five 

underrepresented (Ndufb5, Tcap, Slc253a, Cyc1, and 

Acat1) in old-old samples. It indicates that the muscle 
biomarkers identified from human sarcopenia patients 

are similarly significantly altered in mouse skeletal 

muscle during L-aging, suggesting that both species 

share DEGs to a degree in skeletal muscle aging. In 

addition, from analysis of skeletal muscle 

transcriptomes, Mahmassani et al. identified 30 DEGs 

altered by bed rest in old subjects that correlated with 

change in leg lean mass [27]. Of the 22 DEGs (eight 

genes were missed in our transcriptome data), 12 genes 

were also significantly changed in this study during L-

aging (Arsb, Kctd10, Coq10a, Sort1, Fam96a, Gas1, 

Thbs4, Avpr1a, Col22a1, Retsat, Ankrd50, and Xpc; Padj 

<0.02). This comparative study supports the notion that 

those genes we identified as DEGs from the comparison 

of young-old and old-old samples are implicated  

in muscle weakening and, possibly, the associated 

disorders in humans. Meanwhile, sarcopenia is 

associated with type 2 diabetes in the elderly [28] and, 

in a re-analysis of public microarray data from human 

skeletal muscle biopsies, Su et al. found that three age-

related genes were associated with type 2 diabetes [29]; 

two of them, Cd163 and Gadd45a (the remained Znf415 

was missed in our study) were classified as the L-aging 

(Padj = 1.0 x 10-5) and E-aging genes (8.8 x 10-11), 

respectively. In conclusion, what the exact 

consequences of altered expressions of all these DEGs 

that were shared in humans and mice are currently 

unknown. Nonetheless, our transcriptomic signature for 

the old-old muscle and those failure-prone gene sets 

acquired by the impact assessment of the late aging 

phase can be regarded as molecular and physiological 

traits by which the old-old are distinguishable from the 

young-old. Therefore, we hope that the ‘old-old’ muscle 

transcriptome may serve as a point of reference for 

some predisposed disorders in the super-elderly. 
 

Previous studies showed different rate of muscle loss 

between sexes during aging. They recognized 

malnutrition in females and higher serum myostatin in 

males as different risk factors for sex-specific difference 

of muscle aging in humans [30, 31]. We here examined 

muscle aging in female mice only. So, we cannot 

exclude the possibility that the males may differ from 

the females in late phase of aging. Although the analysis 

of public muscle transcriptome data from male mice 

suggested no sexual difference in the expression pattern 

of “mitochondrial ATP coupled electron transport” gene 

set in life (Supplementary Figure 4), it should be noted 

that mice (and rat also) have a different survival rate 

depending on sex and strains (up to four-month 

difference at 50% survival age; Strain Survival 

Information, https://www.nia.nih.gov), which suggests a 

caution in simple comparison by age between sexes and 

requires an additional correction for the large gender 

gap in survival.  
 

In conclusion, we examined the transcriptomes of 

skeletal muscle obtained from 24- and 28-month-old 

mice as the young-old and old-old groups, respectively, 

https://www.nia.nih.gov/


www.aging-us.com 151 AGING 

along with 2-, 10-, and 18-month-old mice representing 

young and midlife controls. Through the sub-

classification of the old into the young-old and the old-

old, we were able to observe a global change in the 

muscle transcriptome during the late phase of aging, 

and the changes among the old-old appeared rather 

synchronic in a variety of functional gene sets. Our 

results provide a transcriptomic muscle signature that 

distinguishes old-old mice from young-old mice, which 

we hope would help to understand skeletal muscle aging 

in late life and to methodically examine muscle 

disorders in the elderly with the impact assessment of 

the late aging phase provided in this study. 

 

MATERIALS AND METHODS 
 

Ethics statement 

 

This study was carried out in strict accordance with the 

recommendations in the Guide for the Care and Use of 

Laboratory Animals of the National Livestock Research 

Institute of Korea. The protocol was approved by the 

Committee on the Ethics of Animal Experiments of  

the Korea Research Institute of Bioscience and 

Biotechnology.  

 

Isolation of skeletal muscle and peripheral blood 

mononuclear cells (PBMCs)  

 

C57BL/6J female mice at 2, 10, 18, 24, and 28 months 

of age (four to six in number for each age group) were 

purchased from LARC (KRIBB) immediately before 

sacrifice. During organ harvest surgery, neither signs of 

cachexia nor tumors were found in older mice as well 

as in younger mice. To obtain skeletal muscle, mice 

were sacrificed and skeletal muscle in hind limbs were 

surgically removed and minced. The whole lot of 

minced tissues were quickly frozen in liquid nitrogen, 

ground to powder using a mortar and a pestle, and 

stored in small volumes in -80° C for later use. The 

powdered tissues were further homogenized using a 

Biomasher II (DWK Life Sciences) in tissue lysis 

buffer (ATL buffer; Qiagen) as described before [24]. 

For collection of PBMCs, the same mice as that used 

for muscle tissue collection were used. Whole blood 

was drawn from mouse heart using one ml syringe and 

immediately mixed with 2 mg EDTA (pH 7.4) per ml 

of blood to prevent coagulation [32]. The EDTA-

treated whole blood was incubated with ten times 

volume of ACK Lysing Buffer (Thermo) at RT for 10 

min to remove red blood cells. The mixture was 

centrifuged and supernatants were removed. The pellet 

was resuspended in 5 ml ACK Lysing Buffer to 

completely remove the residual red blood cells, and 

PMBCs were collected by additional centrifugation. 

PBMCs were washed with 1 ml phosphate-buffered 

saline (PBS) and aliquoted in 1.5 ml tubes to be stored 

in -80° C.  

 

RNA-seq library construction 

 

Total RNA was extracted from 30 mg of the muscle 

powder lysed in 200 μl of TRIzol Reagent (Thermo). 

Poly-A tailed RNAs were isolated from 1 μg of total 

RNA using Dynabeads mRNA DIRECT kit (Thermo) 

according to the manufacture’s recommendation. The 

purified Poly-A tailed mRNAs were treated with DNase 

I (Sigma) for complete elimination of residual genomic 

DNAs (gDNA) for 30 min at 37° C prior to RNA-seq 

library generation. Next, RNA-seq libraries were 

generated by NEBNext Ultra RNA Library Prep Kit for 

Illumina (NEB) as described in the provider’s protocol. 

Briefly, the gDNA-free mRNAs were incubated at  

94° C for 15 min for fragmentation. First strand cDNA 

was synthesized with fragmented RNAs using 

ProtoScript II Reverse Transcriptase and their second 

strands were synthesized using Second Strand Synthesis 

Enzyme Mix in the kit before purification. After the end 

repair of the double-stranded DNAs using NEBNext 

End Prep Enzyme Mix in the condition of 20° C for 30 

min and 65° C for 30 min, the products were incubated 

with NEBNext Adaptor and Blunt/TA Ligase Master 

Mix (NEB) at 20° C for 15 min. The resulting ligates 

were enriched by 12 - 15 cycles of PCR by universal 

and index primers using 2 x Phusion High-Fidelity PCR 

Master Mix with HF Buffer (Thermo). Enriched RNA-

seq libraries were quantified using NEBNext Library 

Quant Kit for Illumina (NEB), pooled them together by 

their quantities, and then sequenced by Illumina 

HiSeqX system (2 x 100bp). 

 

RNA-seq data analysis 

 

Raw sequencing reads were preprocessed to remove 

adapter sequences and low quality bases using 

‘Trim_galore v0.6.0’ (https://www.bioinformatics.babr 

aham.ac.uk/projects/trim_galore/). Next, the reads were 

aligned on the reference genome (mm10) using ‘STAR 

v2.7.0’ [33], and the resulting SAM files were 

converted to sorted BAM files using ‘samtools v1.9’ 

[34] with ‘-q 1’. Raw gene expression levels were 

computed by ‘htseq-count v0.11.1’ [35], and an 

expression matrix combined all sample data was 

generated by a home-brew bash script.  
 

The raw expression dataset was normalized using 

‘DESeq2 v1.30.0’ [36], and gene expression levels 

between age groups were calculated to identify 

differentially expressed genes (DEGs, fold-change > 2, 
adjusted P value < 0.001 if not indicated otherwise). For 

principal component analysis (PCA), the expression 

dataset was normalized by variance stabilizing 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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transformation, and samples were plotted on a 2D PC 

plain (PC1 x PC2) by ‘pcaplot’ function (ntop = 5,000) 

in DESeq2 for visualization. Transcriptomic divergence 

or distance between age groups, which is based on 

Euclidean distance, was computed by ‘dist’ function 

using whole genes in R. All plots were generated using 

‘ggplot2’ and ‘heatmap2’ functions in R or MS 

EXCEL. R codes for DESeq2 analysis are available  

in <LINK>. 

 

Differential expression analysis and GSEA analysis 

 
For gene set enrichment analysis (GSEA), gene 

collections for ‘HALLMARK’, ‘KEGG pathways’, 

and ‘GO Biological Process’ from MSigDB v7.0 [37, 

38] were obtained, and gene sets enriched in either 24- 

or 28-months-of-age group were identified using 

fGSEA [39]. In addition to the fGSEA that was 

generated based on group means, single-sample GSEA 

(ssGSEA) was performed using gene set variation 

analysis (GSVA) [40], a R package for gene set 

variation analysis among individual samples. First, the 

normalized count data from ‘DESeq2’ were converted 

to an input matrix for ‘GSVA’ by a home-brew R 

code, and enrichment scores (ES) for individual 

samples were calculated by the ‘gsva’ function with 

‘method=gsva’. Then, using ‘limma’ [41], a R package 

for differential expression analysis, gene sets with 

significantly altered activations (FDR < 1 x 10-5) were 

identified, and the results were visualized on volcano 

plots and heatmaps in R [42].  

 

RT-PCR and calculation of mitochondrial DNA copy 

number 

 

Total RNAs were separately extracted from limb 

muscle tissues of 24-month- (n=6) and 28-month-old 

(n=4) mice as described above and pooled by age group. 

Reverse transcription was performed by incubating 1 μg 

of DNase I-pretreated RNA with Superscript III enzyme 

(Invitrogen), 20 μM oligo dT primers (Invitrogen), and 

50 ng random hexamers (Invitrogen) at 50° C for 1 h. 

Ten ng of the synthesized cDNA was used for a real-

time quantitative PCR (QuantStudio3 Real-Time PCR 

system, ABI) with the specific primers for individual 

retroelement subfamilies (Supplementary Figure 6). 

PCR was performed with a following program; 10 

minutes of pre-denaturation at 95° C followed by 40 

cycles of 95° C / 15 sec and 60° C / 1 min. Finally, 

relative expression level of each gene to Gapdh was 

calculated using QuantStudio Design and Analysis 

Software (Thermo). 

 

For estimating the ratio of mitochondrial DNA relative 

to nuclear DNA, mitochondrial 16S rRNA gene and 

nuclear-encoded hexokinase 2 (HK2) gene were 

selected [23]. Using mouse skeletal muscle genomic 

DNA at different months of age as template and 2X 

Power SYBR Green PCR Master Mix (ABI), a 

quantitative real-time PCR was performed in 

QuantStudio 3 Real-Time PCR System (ABI). Primers 

used were 5’-CCGCAAGGGAAAGATGAAAGAC-3’ 

and 5’-TCGTTTGGTTTCGGGGTTTC-3’ for 16S 

rRNA gene sequence, and 5’-GCCAGCCTCTC 

CTGATTTTAGTGT-3’ and 5’-GGGAACACAAAA 

GACCTCTTCTGG-3’ for HK2 gene sequence [23]. 

PCR condition was set as 45 cycles of 95° C / 10 sec, 

60° C / 10 sec, and 72° C / 20 sec. The ratio of 

mitochondrial DNA relative to nuclear DNA was 

calculated by the classical ΔΔCT method used for qPCR 

analysis. 

 

Data availability statement 

 

The data that support the findings of this study are 

openly available in Gene Expression Omnibus (GEO) 

with accession number of GSE. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Quantitative real-time- PCR for validation of differential expression of genes between the young-
old (24m) and old-old (28m) muscle samples. Asterisks indicate significant different in expression levels. Error bars, standard 
deviations. Gapdh transcript level was used as an internal control. 
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Supplementary Figure 2. Fast pre-ranked gene set enrichment analysis (fG5EA) result on GO. BP (Gene ontology-Biological 
process; (A), KEGG_pathway (B), and Hallmark (C) collections using RNA-seq data obtained from the mouse skeletal muscle at 24 and 28 
months of age. Left panel in (A–C) shows a tabulated result using plotGseaTable function in R, and right panel the GSEA mountain plot which 
representatively showing a significant enrichment (left) or depletion (right) of genes for indicated gene sets and collections. Thick blue and 
red lines indicate the running enrichment scores across the fold change-ranked genes (Rank) in comparison between the RNA-seq gene-level 
expression of 28 months over 24 months. Black vertical tick marks below or above the curve indicate the location of individual target genes 
within the fold change-ranked gene list. NES, normalized enrichment score. 
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Supplementary Figure 3. Single sample GSEA with gene sets showing differential enrichments in the skeletal muscle of 24- and 
28-month-old mice. Using GSVA, single sample GSEA was performed on Hallmark (left) and KEGG_pathway (right) collection. Volcano plot 

shows the distribution and the number of gene sets with differential enrichments (DE; FDR < 1 x 10-5) between the 24 months and 28 months; 
each dot indicates a gene set in each collection, blue and red dots for depleted and enriched in the 28 months, respectively. Heatmaps show the 
differential enrichments among individual 24m and 28m samples. Samples are hierarchically clustered on x-axis (28m, red; 24m, blue) in a 
unsupervised way, and significant DE gene sets are shown on y-axis. Black bars on the left represent the gene sets shown in Figure 4C, and the 
names of the gene sets are denoted on the right. Colors in GSVA score bar indicate enrichment scores in individual samples. 
 

 
 

Supplementary Figure 4. Expression patterns of "mitochondrial ATP coupled electron transport" genes with age in skeletal 
muscle. Gene expression patterns in the public mouse RNA-seq data (GSE132040, A) obtained from male limbs were compared with those in 
our RNA-seq data (B; female). Black line indicates the mean expression level of the genes and the dotted blue line a reference point (z-score 
of 3m (A) or 2m (B) samples). 
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Supplementary Figure 5. Mitochondrial DNA (mtDNA) copy number was determined in skeletal muscle at different ages (A) and its age-
linked change was compared with the change of expression levels of "mitochondrial ATP coupled electron transport" genes (B). The mtDNA 
coy number per nuclear DNA copy number was calculated using quantitative real-time PCR for the 16S mitochondrial gene and hexokinase-2 
(HK2) nuclear encoded gene. Error bar indicates standard deviation. 
 

 
 

Supplementary Figure 6. Primer sequence information used in quantitative real-time PCR. 
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SUPPLEMENTARY FILES 
 

Please browse Full Text version to see the data of Supplementary Files 1, 2. 

 

Supplementary File 1. Differentially expressed genes among the age groups. 

 

Supplementary File 2. Lists of E-aging, L-aging, and EL-aging genes and their GO results. 


