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ABSTRACT

The clinical prognosis of breast cancer is closely related to its infiltrating immune status. The study sought to
explore tumor-infiltrating immune cells (TILs) and immune-associated genes in the tumor microenvironment of
breast invasive carcinoma (BRCA). The ESTIMATE algorithm was used to evaluate the microenvironment of
breast cancer patients in TCGA database. The tumor's matrix score and immune score were obtained. The
median was divided into two sub groups according to the median of the score, and the correlation between the
score and prognosis was also discussed. Differentially expressed genes were screened from two subgroups with
high and low score of breast cancer, and the differentially expressed genes were analyzed by GO and KEGG
enrichment to explore their possible molecular functions, biological processes, cellular components and signal
pathways involved in gene enrichment. It was found that there was a significant correlation between immune
score and five-year survival rate, and the high score group had a better prognosis. Macrophage M1 and T cell
CD8+ cells were positively related to 5-year overall survival in patients with breast invasive carcinoma.
However, Macrophage M2 was negatively related to 5-year overall survival. We also observed that the low
expression of four genes (CLEC3A, MCTS1, PDP1 and TCP1,) was related to favorable survival outcomes. High
expression of FOXP3, CXCL9, CCR5, CXCR3, and CD37 was related to a high overall survival rate in BRCA. We
identified a list of immune - related cells and genes that are useful for Prognostic evaluation and individualized
treatment of BRCA.

INTRODUCTION suppressed, even in the early stages of cancer

development. The microenvironment that inhibits the
Breast cancer has become the most common and most body’s immunity plays an important role in this process,
prevalent tumor among women worldwide. The which may be related to its effect on tumor antigen-
incidence rate of breast cancer is increasing, and the specific immune cells [4-6]. The design of therapeutic
incidence rate of death is decreasing. Although regimen against immunosuppressive microenvironment
oncologists have conducted extensive and in-depth is a new strategy for breast cancer immunotherapy.
studies on the causes of breast cancer, the exact However, the molecular mechanism of immune
pathogenesis is unclear, and targeted prevention and suppression in the microenvironment of breast cancer is
treatment are difficult [1-3]. The presence of tumor still unclear, which limits the development of specific
specific immune responses in breast cancer has been targeted therapy [7-10].
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Tumor microenvironment is a special
microenvironment for tumor cells to survive and
develop [11]. It is a complex whole composed of a
variety of cells and extracellular matrix that affect the
occurrence, development, invasion and metastasis of
tumor. These components are collectively referred to as
tumor microenvironment. In terms of its broad
components, tumor microenvironment includes
endothelial cells and their precursors, tumor associated
fibroblasts, T lymphocytes, B lymphocytes, natural
killer cells, antigen presenting cells (such as
macrophages, dendritic cells), tumor associated
macrophages, and extracellular matrix [12—14].

Tumor cell immune escape is one of the important
characteristics of tumor, and it is also the main reason for
the poor effect of conventional treatment. Human
immunity, especially cellular immunity, is closely related
to the occurrence and development of tumor. Tumor

TCGA-BRCA data

immune escape is a multi-link and multi-mechanism
process, such as the immune modification of tumor cells,
the immune tolerance of tumor patients and the decrease
of tumor microenvironment immune function. Tumor
microenvironment is a kind of microenvironment
composed of a variety of stromal cells and cytokines
around tumor cells, which is conducive to tumor growth.
It is the first place for tumor antigen to contact with the
body’s immune system, so it is of great significance in
tumor immunology [15-18].

This study included 968 patients with breast cancer
from the TCGA database. The ESTIMATE algorithm
was used to evaluate the tumor microenvironment, and
the matrix score and immune score of the tumor were
obtained. According to the median score, the tumor
was divided into two subgroups, high and low. The
differentially expressed genes were screened for two
subgroups related to the prognosis of patients, and go
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Figure 1. Flow chart of data processing in this study.
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and KEGG enrichment analysis were performed for the
obtained differentially expressed genes to explore their
possible molecular functions, biological processes,
cellular components of gene enrichment and signal
pathways involved. For each of the differentially
expressed genes, we drew the K-M survival curve, and
screened out the differentially expressed genes
significantly related to the five-year survival rate. In
order to further explore the core regulatory genes, we
constructed a protein interaction network for the
survival related differentially expressed genes screened
in the previous step, and carried out gene enrichment
analysis and module mining. Finally, we screened the
most significant prognostic related core differentially
expressed genes from the differentially expressed genes.

RESULTS

Workflow of TCGA- breast invasive carcinoma data
processing

968 cases of breast cancer data were downloaded from
TCGA-BRCA database, including mRNA sequencing
data and corresponding clinical information. The data
analysis scheme of this study is shown in Figure 1.

Low immune score is associated with poor prognosis
in Breast invasive carcinoma

Immune score (IS) and stromal score (SS) in each 968
BRCA patients with complete clinical data were
evaluated by ESTIMATE algorithm. BRCA patients
were assigned to the high and low ARE/SS group,
according to the median value of immune scores or
stromal scores respectively. Kaplan-Meier curves
showed that high immune score correlated with
improved overall survival (OS) for BRCA (Figure 2A),
while higher stromal score showed no significant
benefits in OS (Figure 2B). Therefore, we focus on the
genes associated with breast cancer prognosis and
immune score. In addition, the immune scores were
significantly associated with the subtype classification,
including estrogen receptor status (Figure 2C),
pathologic stage (Figure 2D), pathology M stage
(Figure 2E), radiation therapy (Figure 2F).

Composition of immune infiltration in breast invasive
carcinoma patients

To investigate the landscape of immune infiltration in
breast invasive carcinoma (BRCA), we estimated the
immune infiltration level of each immune cell. The
most important tumor-infiltrating lymphocytes (TIL) in
breast cancer is macrophages, Mast cells activated and
T lymphocytes. The higher proportion of B cell naive, B
cell plasma, Macrophage MO, Macrophage M2, Mast

cells activated infiltration were found in low immune
score group compared with the high immune score
group, whereas proportion of T cell CD8", T cell CD4*
memory resting, T cell follicular helper, Tregs, NK cell
activated, Macrophage M1 cell infiltration were
significantly higher in high immune score group
(Figure 3). In addition, the correlation of 23 different
TILs subsets was analyzed shown by the correlation
heatmap (Figure 4). The populations with a significantly
negative relation are Macrophage MO and T cell CD4
memory resting (—0.42), Macrophage M2 and T cell
CDS8 (-0.41), Macrophage MO and T cell CD4 (-0.4).
The populations with a significantly positive relation
were B cell naive and B cell naive-ABS (0.7); NK cells
activated and T cell CDS; B cell naive-ABS and B cell
memory (0.36). These results suggest that the survival
time of patients with high and low immune infiltration
is significantly different.

Identifying breast invasive carcinoma survival-
related immune cells

According to the data of CIBERSORTx 22 kinds of
immune cell infiltration degree, the samples were
divided into high infiltration and low infiltration
according to the median value of infiltration degree.
Combined with the survival time of the samples, the
survival analysis was carried out to find the immune
cells with significant effect on survival and survival.
Macrophage M1 and T cell CDS8 cells were positively
related to 5-year overall survival in patients with BRCA
(Figure 5A-5C). However, Macrophage M2 was
negatively related to S5-year overall survival (Figure
5B). There was no significant correlation between B
cell plasma, T cell CD4+ memory activated, T cell
follicular helper and the 5-year survival rate of breast
cancer (Figure SD-5F). It is worth noting that although
the remaining immune cells are not statistically
significant, there is a clear trend.

Differently expressed genes in high and low IS of
breast invasive carcinoma

Differential gene expression was screened between the
breast cancer high immune score group and the low
immune score group with a difference of 2 and a
significant threshold of P less than 0.05. A total of 959
differentially expressed genes were screened, including
659 up-regulated genes and 300 down regulated genes.
(Figure 6A). Similarly, 900 significant differentially
expressed genes were screened from breast cancer and
normal tissues, of which 600 were up-regulated and 300
were down regulated (Figure 6B).

We identified 372 commonly differently expressed genes
from the immune score and tumor groups (Figure 6C).
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Figure 2. Immune conditions are associated with BRCA overall survival and clinical features. (A) Prognostic analysis of patients
with differences in immune scores. (B) Prognostic analysis of patients with differences in stromal scores. (C) Correlation analysis between
immune score and ER status of breast cancer. (D) The correlation between immune score and pathological stage of breast cancer was
analyzed. (E) The correlation between immune score and M stage of breast cancer was analyzed. (F) The immune score was correlated with
radiotherapy for breast cancer.
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Figure 3. The proportions of TIICs between high immune score group and low immune score group. Difference of immune cell
concentration between low-risk group and high-risk group. Red represents high-risk group while blue represents low-risk group.
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Enrichment analysis of immune-related genes

Subsequently, GO and KEGG enrichment analysis
was performed on 372 differentially expressed genes.
GO pathway enrichment showed those genes mainly
enriched on immune response, adaptive immune
response, innate immune response, B cell receptor
signaling  pathway, leukocyte migration, and
inflammatory response (Figure 7A). We performed
KEGG pathway enrichment and interrelation analysis.
As shown in Figure 7B, enrichment of DEGs was
mainly observed for the Cytokine-cytokine receptor
interaction, Cell adhesion molecules, Staphylococcus
aureus infection, Chemokine signaling pathway, Viral
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protein interaction with cytokine and cytokine
receptor, Rheumatoid arthritis, Hematopoietic cell
lineage.

Protein-protein interaction (PPI) network construction
and GSEA enrichment of hub genes

In order to further explore the interaction relationship of
significant difference genes, the protein interaction
network was constructed by using Cytoscape software.
The protein interaction network of immune related
differentially expressed genes is shown in Figure 8,
which contains 75 nodes and 579 edges. The biological
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expressed genes were analyzed by GSEA. The results
immune

showed that

related core differentially

expressed genes were involved in response PD 1
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System and other biological processes.
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the overall survival of BRCA. Nine genes including
CLEC3A, MCTS1, FOXP3, PDP1, TCP1, CXCL9, CCRS,
CXCR3 and CD37 were closely related to the overall
survival of BRCA. We also observed that the low expression
of four genes (CLEC3A, MCTS1, PDP1 and TCP1,) was
related to favorable survival outcomes. High expression of
FOXP3, CXCL9, CCR5, CXCR3, and CD37 was related
to a high overall survival rate in BRCA (Figure 9).

The high expression of PDP1 in breast invasive
carcinoma and correlation with clinical stage

To investigate the discrimination of PDP1 expression in
breast invasive carcinoma tissues, the expression of
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higher in BRCA tissues (Figure 10A and 10B)
compared to non-cancerous tissues. We analyzed the
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by bioinformatics, and the result of bioinformatics
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Figure 6. Screening of differently expressed genes. (A) Heatmap of DEGs for the high/low immune score groups. (B) Heatmap of
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of BRCA patients (Figure 10D). It was found that the
high expression of PDP1 was negatively correlated with
the invasion of CDST cells in breast cancer (Figure
10E).

DISCUSSION

Tumor immune microenvironment, including anti-
tumor immune effecter cells and molecules and
immunosuppressive cells and molecules, plays an
important role in the occurrence, development and
clinical outcome of tumor [19-21]. In the process of
tumorigenesis and development, the immune system
mainly goes through the following three processes:
immune surveillance, immune balance and immune
destruction [9, 22-24]. Immune cells not only play a
natural anti-tumor role at the beginning of tumor
invasion, but also become a tumor promoting phenotype

Down Gene Sig Top25 GO

A

in the process of tumor progression, assisting tumor
immune escape and distant metastasis. At present,
tumor microenvironment immune characteristics have
been listed as one of the top ten characteristics of tumor;
On the other hand, it may play a role in predicting the
efficacy of chemoradiotherapy [25-27]. Therefore, it is
of great clinical significance to analyze the types and
distribution of immune cells in tumor microenvironment
and establish an effective immune evaluation system.
Stromal cells and immune cells in tumor tissue
constitute the main components of the dynamic network
of tumor microenvironment [28-30]. This paper focuses
on the analysis of the state of tumor microenvironment
of breast cancer, and explores new ideas for prognosis
evaluation and treatment strategies of breast cancer.
ESTIMATE (estimation of stromal and immune cells in
malignant tumor tissues using expression data)
algorithm is an important tool to predict the purity of
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tumor and the proportion of stromal/immune cells
infiltrated in tumor tissues [31-33]. It is mainly based
on the gene expression profile data of tumor tissues
from TCGA database.

The infiltration of different types of immune cells in the
microenvironment of breast cancer and its role in
prognosis prediction are not yet clear. We used the
CIBERSORT algorithm to analyze the gene expression
of breast cancer tissue and analyzed the correlation
between the different types of immune cell infiltration
and the overall survival of breast cancer patients. We
demonstrated that Macrophage M1 and T cell CDS cells
were positively related to 5-year overall survival in
patients with BRCA. However, Macrophage M2 was
negatively related to 5-year overall survival. There was
no significant correlation between B cell plasma, T cell
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CD4+ memory activated, T cell follicular helper and the
S-year survival rate of breast cancer.
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contact with invasive cancer cells, while the latter is

—\

W
i

LAY
N !

“

REACTOME_PD_1_SIGNALING

NES = 2.390 0.6
p.adj = 0.008

FDR = 0.005

NES =2.263
p.adj = 0.008
FDR =0.005
0.4+

0.2+

Enrichment Score

0.0

2
1
0+

-1

Ranked list metric

T T T
250 500 750

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATIOM
NES = 2.211 04
pag=0008 | o
o FOR=0005 | ©
S 044 S
o v 031
% g
2 02- E 0241
S 2
E S 01
0.0
0.0
B4 E 1
o o
E 0 g o
c s -1
-1 g

T T T ¥
250 500 750 250

Rank in Ordered Dataset

T T
500 750 Rank in Ordered Dataset

Rank in Ordered Dataset

Figure 8. PPI network of DEGs and GSEA enrichment of hub genes (A) The protein interaction network of immune related differentially
expressed genes in breast cancer. (B) GSEA enrichment analysis of breast cancer immune related core genes.

WwWw.aging-us.com

1382

AGING



intraepithelial or intratumoral infiltrating cells in direct
contact with cancer cells.

Furthermore, we analyzed the relationship between the
breast cancer microenvironment and the prognosis of
breast cancer patients. We found that the patients with
high immune scores in the tumor microenvironment had
a better prognosis than those with immune score. By
analyzing and comparing the gene expression profiles
of two groups with high and low score of breast cancer,

Among them, 401 differentially expressed genes were
significantly correlated with the prognosis of breast
cancer patients. By constructing the protein interaction
network and mining its core modules, we finally
obtained 79 core differentially expressed genes
associated with prognosis, and further verified 9 core
prognostic differentially expressed genes (CLEC3A,
MCTS1, FOXP3, PDP1, TCPl, CXCL9, CCRS,
CXCR3 and CD37). The results showed that the low
expression of four genes (CLEC3A, MCTSI1, PDP1 and

we screened 1367 differentially expressed genes. TCP1,) was related to favorable survival outcomes.
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Figure 9. Kaplan-Meier survival curves with the log-rank test were performed for the hub genes.
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Figure 10. PDP1 was up-regulated in breast invasive carcinoma. (A) The level of PDP1 in normal tissues (n = 20) and (B) breast
invasive carcinoma tissues (n = 70) was evaluated by immunohistochemical staining. The magnification is 100x. (C) The expression of PDP1
in BRCA tissues and normal tissues was analyzed by the cancer genome atlas (TCGA)-BRCA database. (D) The relationship between PDP1
expression and clinical N stage of breast cancer. (E) The relationship between PDP1 expression and breast cancer immune cell infiltration.

High expression of FOXP3, CXCL9, CCRS5, CXCR3,
and CD37 was related to a high overall survival rate in
BRCA.

In conclusion, this study used bioinformatics methods to
screen and analyze differentially expressed genes that
might be related to the immune microenvironment and
prognosis of breast cancer, to identify potential
regulatory mechanisms, and to predict potential
therapeutic agents, so as to provide effective support for
the prognosis evaluation and individualized treatment
strategies of breast cancer.

MATERIALS AND METHODS
TCGA-BRCA data downloading and processing
The raw data and clinical information were downloaded

from the TCGA-BRCA project (https://cancergenome.
nih.gov/). After removing the samples that had suffered

from other malignant tumors and survived for more than
10 years, the final samples used in this study were
tumor 968 cases and normal 106 cases.

Immune score and stromal score analysis

The immune infiltration status of each BRCA patient
were determined by applying the R package
ESTIMATE algorithm. Briefly, the estimate algorithm
is a tool to predict the proportion of stromal cells and
immune cells in tumor tissue by using gene expression
characteristics.

Identification of differential expressed genes with
immune scores

BRCA patients were divided into high- and low
immune score groups according to their median of
immune score. Briefly, Deseq2 was applied to identify
DEGs by comparing high/low IS or BRCA and normal
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samples. The Benjamini-Hochberg method was used to
adjust the p-value. A gene with false discovery rate
(FDR) adjusted p-value <0.05 and |log2FCJ]>1 is
identified as DEG.

GO and KEGG enrichment analysis

To explore the function of DEGs regulated by
methylation in the carcinogenesis and development of
colon cancer, GO enrichment analysis was performed
using DAVID database (https://david.nciferf.gov/) and
three categories: cellular component (CC), molecular
function (MF), and biological process (BP) were
analyzed. In addition, KEGG pathways were analyzed
using KEGG Orthology-Based Annotation System 3.0.

Survival-related immune cells identification

Immune infiltration of each patient was calculated by
R package CIBERSORT. CIBERSORT algorithm was
used to analysis 22 types of immune cells. Correlation
between immune cell abundance was processed using
Pearson’s correlation coefficient. Correlation between
gene and immune cells abundance was also estimated
by Pearson’s correlation coefficient.

Analysis of the expression level of PDP1 in BRCA
and normal tissues

The Oncomine database was used to identify the
expression level of PDP1 in various types of tumor
tissues. Screening conditions: P < 0.05, multiple of
difference >1.5, the top 10% of genes are ranked, and
the data type is mRNA. The expression level of PDP1
in BRCA and normal tissues in the TCGA database
was compare and analyze.

PDP1 immunohistochemical staining

Tissue microarray containing 70 cases of breast cancer
and 20 tissues was purchased from Shanghai OUTDO
BIOTECH Company. After dewaxing and hydration,
the tissue sections were sealed with goat serum at
room temperature for 2 hours. Tissues section were
followed by incubation with primary antibody against
PDP1 (21176-1-AP, 1:100, Proteintech) for 12 h at
4°C. Thereafter, the sections were incubated with
biotin labeled Goat anti rabbit IgG polymer and
horseradish enzyme labeled Streptomyces ovalbumin
working solution for 1 h. After that, the slides were
then stained by 3, 3’-Diaminobenzidine (DAB)
solution (Sigma-Aldrich) and subsequently
counterstained with hematoxylin (Sigma-Aldrich).
Finally, of immunohistochemical staining were
obtained using Aperio Scanscope slide scanner (Leica,
GT450).

Statistical analysis

Data were analyzed using R package. Data were
represented as mean + standard deviation (S.D.). All
tests were two sided, and P < 0.05 was considered
statistically significant.
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