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INTRODUCTION 
 

Primary liver cancer is one of the most frequently 

diagnosed malignant tumors and the third leading cause 

of cancer-related mortality worldwide, with an 

estimated 906,000 new cases and 830,000 deaths in 

2020 [1]. Hepatocellular carcinoma (HCC) is the most 

common form of primary liver cancer (accounting for 

75–85%) [1]. Due to the lack of understanding about the 

complex carcinogenic mechanisms and efficient 

therapeutic targets, the 5-year survival rate for HCC 

patients remains poor [2]. Thus, there is an urgent need 

to seek promising targets and elaborate on the 

underlying molecular mechanisms involved in HCC 

progression. 

 

The major public databases such as GEO 

(http://www.ncbi.nlm.nih.gov/geo/) and TCGA (https:// 

portal.gdc.cancer.gov/), containing gene expression 

profiles, provide an opportunity to screen the 

differentially expressed genes (DEGs) related to the 

carcinogenesis and development of HCC [3, 4]. The 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC) is the most common malignant liver tumor with high mortality and poor 
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expression of LCAT, ACSM3, IGF1, SRD5A2, THRSP and ACADS was associated with better prognoses in HCC 
patients. Among which, THRSP was selected for the next investigations. We found that THRSP mRNA expression 
was negatively correlated with its methylation and closely associated with clinical characteristics in HCC 
patients. Moreover, THRSP expression had a negative correlation with the infiltration levels of several immune 
cells (e.g., B cells and CD4+ T cells). qRT-PCR verified that THRSP was lower expressed in HCC tissues and cell 
lines compared with control. Silencing of THRSP promoted the migration, invasion, proliferation, and inhibited 
cell apoptosis of HCCLM and Huh7 cell lines. Decreased expression of THRSP promoted HCC progression by NF-
κB, ERK1/2, and p38 MAPK signaling pathways. In conclusion, THRSP might serve as a novel biomarker and 
therapeutic target of HCC. 
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cancer progression is regulated by the key modulators 

of gene-gene interaction networks, thus the Weighted 

Gene Co-expression Network Analysis (WGCNA) and 

protein-protein interaction (PPI) network analysis have 

been widely used to screen co-expressed genes that 

drive cancers [5, 6].  

 

In this study, we performed differential gene expression 

analysis, WGCNA, and PPI network analysis to screen 

crucial differential co-expression genes associated with 

hepatocarcinogenesis based on the GEO and TCGA 

databases. Via 5-year survival analysis, we found that 

six genes (LCAT, ACSM3, IGF1, SRD5A2, THRSP, 

and ACADS) were associated with the prognosis of 

HCC patients. THRSP (thyroid hormone-responsive, 

also known as Spot 14 or S14) was originally identified 

in 1982 owing to its significant and rapid induction by 

thyroid hormone and it had been reported to have great 

effects on the tissue-specific regulation of lipid 

metabolism [7, 8]. Some studies demonstrated that 

THRSP was relatively abundant in liver, white and 

brown adipose, and lactating mammary tissues and it 

was associated with nonalcoholic fatty liver disease [9, 

10]. THRSP was strongly expressed in most lipogenic 

breast cancers, and high expression of THRSP predicted 

a high recurrence rate of primary invasive breast 

cancers. THRSP mediated lipogenic effects of 

progestin, and THRSP knockdown disrupted lipid 

synthesis and induced apoptosis of breast cancer cells 

[11]. Another study reported that over-expression of 

THRSP increased medium-chain fatty acids synthesis 

and cell proliferation, but reduced tumor metastasis 

[12]. However, THRSP was found to be down-regulated 

in HCC tissues, and the decreased expression of THRSP 

was associated with worse prognosis in our study. To 

understand the roles of THRSP in HCC progression, we 

further analyzed the biological function and clinical 

implications of THRSP via integrated bioinformatics 

analysis. Moreover, we performed qPCR and 

immunohistochemical experiments to explore the 

mRNA and protein expression of THRSP in HCC 

tissues and cells. We also did Western blotting, CCK-8, 

Transwell, wound scratch and flow cytometry assays to 

investigate the function and molecular mechanism of 

THRSP in HCC. 

 

RESULTS 
 

Identification of crucial modules by WGCNA 

 

The “WGCNA” package was used to group genes into 

modules by the average linkage hierarchical 

clustering. In this study, the soft powers β = 3 and 5 

were selected as the soft-thresholding to ensure scale-

free networks (Figure 1A, 1B), and 11 modules in the 

TCGA-LIHC (Figure 1C) and 8 modules in the GEO 

datasets (Figure 1D) were generated. The heatmaps 

(Figure 1E, 1F) of module-trait relationships were 

plotted to identify modules most significantly 

correlated with clinical features (normal and tumor). 

We found the brown modules in the TCGA-LIHC 

(containing 2057 co-expression genes) and GEO 

datasets (containing 2145 co-expression genes) had 

the highest association with tumor tissues (brown 

module in TCGA-LIHC: r = 0.69, p = 7e-60; brown 

module in GEO datasets: r = 0.86, p = 4e-56), which 

were selected as modules of interest for the 

subsequent analysis. 

 

Identification of DEGs and differentially co-

expressed genes 

 

After normalization of the microarrays, 2705 

differentially expressed genes (DEGs) between the 

HCC and normal tissues from the TCGA dataset 

(TCGA_diff) and 567 DEGs from the GEO datasets 

(GEO_diff) were screened by the “limma” package in 

R. Then, a Venn diagram was performed to examine the 

intersection among the DEGs and co-expressed genes of 

key modules. As shown in Figure 2A, 60 differentially 

co-expressed genes were finally obtained. 

 

PPI network and hub genes 

 

The PPI network of the 60 differentially co-expressed 

genes was constructed in the STRING database (Figure 

2B). As showed in Figure 2C, the core genes were 

extracted from the PPI network by the MCC algorithms 

via the CytoHubba plug-in. Meanwhile, the significant 

modules of the 60 differential co-expression genes were 

established using the MCODE plug‐in in Cytoscape 

(Figure 2D). Combining the above two algorithms, 

AFP, IGF1, BCHE, ACSM3, LCAT, ACSL4, ACADS, 

ENO3, CYP1A2, THRSP, GSTZ1, and SRD5A2 were 

finally selected as hub genes. Among them, AFP and 

ACSL4 were up-regulated and the other 10 hub genes 

were down-regulated in HCC tissues (Figure 3). To 

evaluate the prognostic values of the hub genes in HCC 

patients, a 5-year survival analysis was performed by 

Kaplan-Meier plotter. As shown in Figure 4, higher 

expression of LCAT, ACSM3, IGF1, SRD5A2, 

THRSP, and ACADS was associated with a better 5-

year overall survival (p<0.05).  

 

THRSP was down-regulated in HCC tissues and cell 

lines 

 

To verify the expression of THRSP in HCC tissues and 

cell lines, the quantitative real-time PCR (qRT-PCR) and 
immunohistochemistry (IHC) assays were performed in 

this study. The results of qRT-PCR verified that THRSP 

mRNA expression was remarkably lower in HCC tissues 
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Figure 1. Identification of co-expression modules associated with the clinical traits in the TCGA-LIHC dataset and two GEO 
datasets. (A, B) Analysis of the scale-free fit index for various soft-thresholding powers (β). (C, D) Dendrogram of all genes in the TCGA-LIHC 

dataset or GEO datasets clustered based on the 1-TOM matrix. (E, F) Correlation between modules and clinical traits (normal and tumor). 
Each cell contains the corresponding correlation coefficient (the upper number) and the P-value (the lower number). 
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Figure 2. Identification of hub genes. (A) The Venn diagram for selection of the differential co-expression genes among DEG lists and co-

expression modules. (B) PPI network of the intersection genes between DEG lists and co-expression modules. Each blue node represents a 
gene. Edges among nodes indicate interaction associations between genes. (C) Identification of the core genes from the PPI network by MCC 
algorithm. Darker colors refer to higher MCC sores. (D) The top three significant modules of the PPI network were evaluated in MOCDE. Pink 
nodes represent genes in corresponding modules. 
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Figure 3. Validation of expression levels of the 12 hub genes in HCC and normal tissues using GEPIA. *P<0.01 is considered 

statistically significant. Tumor tissues are shown in red, and normal liver tissues are shown in blue. 
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as well as in HCCLM3 and Huh-7 cell lines compared 

with normal groups (Figure 5A, 5B). The results of IHC 

indicated that THRSP was down-regulated in most of 

HCC samples (8/10) (Figure 5C). 

 

The correlation between THRSP expression and 

clinical characteristics 

 

Based on data from Illumina HumanMethylation 450 

platform, we found a significant negative correlation (r 

= −0.81, p <0.001) between THRSP mRNA expression 

and methylation (Supplementary Figure 1A). Four 

THRSP promoter CpG sites were shown in 

Supplementary Figure 1B. The Spearman correlation 

analysis demonstrated that CpG sites were negatively 

correlated with the expression of THRSP 

(Supplementary Figure 1C–1F). Wilcox test was used to 

compare the difference in THRSP expression or 

methylation in groups divided by age, family history of 

cancer, gender, grade, Ishak fibrosis score and race. The 

details were shown in Supplementary Figures 2, 3. Then, 

the HCC patients were dichotomized into two groups 

(“low” or “high”) based on their THRSP expression 

levels or THRSP methylation levels using the median 

values as the cutoff point. The chi-square test was used 

to evaluate the correlation of THRSP expression or 

THRSP methylation with clinical characteristics. As 

listed in Table 1, THRSP mRNA expression or 

methylation was closely associated with the clinical 

indicators including age, family history of cancer, Ishak 

fibrosis score and gender et al.  

 

Relationship of THRSP with immune infiltration 

based on TIMER 2.0  

 

As illustrated in the scatter plots (Supplementary Figure 

4), THRSP expression was negatively correlated with 

infiltrating levels of B cells, CD4+ T cells, dendritic 

cells, and positively correlated with CD8+ T cells, but 

was not correlated with macrophages or neutrophils. In 

addition, we investigated the correlations of THRSP 

expression with the gene markers of various immune 

immune-infiltrating cells (including T cell, B cell, 

monocyte, neutrophil, dendritic cell, tumor-associated 

 

 
 

Figure 4. Overall survival (OS) Kaplan-Meier curves of the 12 hub genes in HCC patients. (A) AFP, p = 0.780. (B) IGF1, p = 0.008. (C) 
BCHE, p = 0.108. (D) ACSM3, p = 0.003. (E) LCAT, p <0.001. (F) ACSL4, p = 0.709. (G) ACADS, p = 0.045. (H) ENO3, p = 0.156. (I) CYP1A2, p = 
0.353. (J) THRSP, p = 0.013. (K) GSTZ1, p = 0.089. (L) SRD5A2, p = 0.016. 
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macrophage and different types of functional  

T cells) in HCC with the TIMER 2.0 database. As 

listed in Supplementary Table 1, THRSP expression 

was negatively associated with most of the gene 

markers.  

 

Silencing of THRSP promoted HCC progression 

 

To explore the functional roles of THRSP in HCC, 

three candidate siRNAs of THRSP (THRSP-siRNAs) 

were transfected into HCCLM3 and Huh-7 cells. qRT-

PCR was performed to evaluate the inhibition 

efficiency of the three THRSP-siRNAs. Three 

THRSP-siRNAs significantly inhibited THRSP 

expression compared with the negative control (Figure 

6A). The si-THRSP-3 was selected for the following 

experiments due to its robust silencing efficiency. The 

CCK-8 assays indicated that silencing of THRSP 

could promote proliferation of HCCLM3 and Huh7 

cells (Figure 6B, 6C). The flow cytometry assays 

indicated that the si-THRSP group presented a 

significantly higher percentage of HCCLM3 cells in 

the S phase and the G2/M phase, but a lower 

percentage of cells in the G0/G1 phase compared with 

the control group (Figure 6D–6F). Transwell and 

wound scratch assays indicated that silencing of 

THRSP also promoted migration and invasion of HCC 

cells (Figure 7A–7C). 

 

 
 

Figure 5. The expression of THRSP at mRNA and protein levels. (A, B) The mRNA expression of THRSP in HCC tissues and cells 

compared with control examined by RT-qPCR. (C) The protein expression of THRSP in HCC tissues and the adjacent normal tissues examined 
by immunohistochemical (200×). 
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Table 1. Correlations between THRSP expression/methylation and clinical features. 

Clinical features 
THRSP expression 

P value 
THRSP methylation 

P value 
Low (%) High (%) Low (%) High (%) 

Age 
<=65 128(68.45) 107(57.53) 0.0378 108(57.75) 127(68.28) 0.0457 

>65 59(31.55) 79(42.47)  79(42.25) 59(31.72)  

Cancer Status 
Tumor-free 79(55.24) 83(58.04) 0.7204 85(59.44) 77(53.85) 0.4036 

With tumor 64(44.76) 60(41.96)  58(40.56) 66(46.15)  

Grade 

G1 16(8.65) 39(21.2) 6.00E-04 39(21.08) 16(8.7) 3.00E-04 

G2 86(46.49) 92(50)  94(50.81) 84(45.65)  

G3 74(40) 50(27.17)  49(26.49) 75(40.76)  

G4 9(4.86) 3(1.63)  3(1.62) 9(4.89)  

Stage 

Stage I 78(44.57) 95(54.29) 0.1955 94(53.71) 79(45.14) 0.2653 

Stage II 48(27.43) 39(22.29)  41(23.43) 46(26.29)  

Stage III 45(25.71) 40(22.86)  39(22.29) 46(26.29)  

Stage IV 4(2.29) 1(0.57)  1(0.57) 4(2.29)  

Family history of  NO 114(70.81%) 96(59.63%) 0.0467 96(59.63) 114(70.81) 0.0467 

cancer YES 47(29.19%) 65(40.37%)  65(40.37) 47(29.19)  

Living status 
Alive 117(62.57) 126(67.74) 0.3472 128(68.45) 115(61.83) 0.2175 

Dead 70(37.43) 60(32.26)  59(31.55) 71(38.17)  

Ishak fibrosis score 

0 28(25.93) 47(43.93) 0.0421 48(44.44) 27(25.23) 0.058 

1,2 18(16.67) 13(12.15)  14(12.96) 17(15.89)  

3,4 17(15.74) 11(10.28)  12(11.11) 16(14.95)  

5,6 45(41.67%) 36(33.64%)  34(31.48%) 47(43.93%)  

Gender 
Female 71(37.97) 50(26.74) 0.0271 48(25.67) 73(39.04) 0.008 

Male 116(62.03) 137(73.26)  139(74.33) 114(60.96)  

Race 

Asian 96(53.04) 64(35.36) 9.00E-04 64(35.36) 96(53.04) 9.00E-04 

Black 4(2.21) 13(7.18)  13(7.18) 4(2.21)  

White 81(44.75) 104(57.46)  104(57.46) 81(44.75)  

expression Low - - - 26(13.9%) 161(86.1%) < 0.001  

expression High - -  161(86.1%) 26(13.9%)  

methylation Low 26(13.9%) 161(86.1%) < 0.001  - - - 

methylation High 161(86.1%) 26(13.9%)  - -  

 

Silencing of THRSP inhibited apoptosis of HCC cells 

 

In this study, cells were strained with Annexin V/PI and 

subjected to flow cytometry to determine the apoptotic 

cells. The results indicated that silencing of THRSP 

could inhibit HCC cell apoptosis (Figure 8A, 8B). qRT-

PCR and Western blotting assays were performed to 

detect the cell apoptosis-related molecules, including 

bax, bcl-2 and caspase 3. The results indicated that 

silencing of THRSP significantly reduced the 

expression of bax and caspase 3, while enhanced the 

expression of bcl-2 (Figure 8C, 8D). 

 

THRSP regulated HCC cell progression by 

modulating MAPK/NF-κB signaling pathway 

 

To further understand the molecular mechanism by 

which si-THRSP promoted the migration and invasion 

of HCC cells, we explored the potential signaling 

pathways including the NF-κB and MAPK signaling 

pathways by Transwell and wound healing assays. As 

shown in Figure 8H–8J, compared with negative 

control, the migration and invasion of HCC cells 

transfected with si-THRSP or si-NC were inhibited 

after being treated with BAY-11-7082 (NF-κB 

inhibitor), AG-126 (ERK1/2 inhibitor), SB203580 

(p38 MAPK inhibitor) and SP600125 (JNK inhibitor). 

And there was no difference between the si-THRSP 

group and the si-NC group when the cells were treated 

with BAY-11-7082, AG-126 and SB203580, 

indicating that the cell migration and invasion caused 

by the siRNA-induced silencing of THRSP might 

depend on the NF-κB, ERK1/2 and p38 MAPK 

signaling pathways. qRT-PCR and Western blotting 

assays were performed to assess the expression of 

MAPK/NF-κB pathway-related molecules (p65, p-p65, 
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p38, p-p38, erk1/2 and p-erk1/2). The results showed 

that the silencing of THRSP increased the 

phosphorylation of ERK1/2, p38 MAPK and p65, and 

enhanced the expression of p65, p38, and erk1/2 

(Figure 8E, 8F). Each of the protein bands were 

showed in Figure 8G. 

DISCUSSION 
 

HCC is highly malignant with a poor prognosis [13]. 

Despite advances in radiotherapy, chemotherapy, and 

surgical resection over the past decades, the 5-year 

survival rate of HCC remains frustrating [14]. There is 

 

 
 

Figure 6. The effect of THRSP expression on proliferation and cell cycle of HCC cells. (A) The efficiency of the THRSP silencing 
determined by qRT-PCR. (B, C) The proliferation of HCCLM3 and Huh-7 cells examined by CCK-8. (D–F) The cell cycle assay detected by flow 
cytometry. NC group: black bars; si-THRSP group: grey bars. *p<0.05, **p<0.01, ***p<0.001. 
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an urgent need to identify effective molecular targets to 

improve diagnostic and therapeutic approaches for 

HCC. Herein, integrated bioinformatic analysis was 

performed to identify effective molecular targets on two 

GEO datasets and the TCGA database. Six genes 

(namely LCAT, ACSM3, IGF1, SRD5A2, THRSP, and 

ACADS) were finally defined as survival-related hub 

genes. The roles of THRSP in HCC progression have 

rarely been reported. Here, we aimed to investigate 

biological functions and underlying mechanisms of 

THRSP in regulating HCC. 

 

In this study, we systematically analyzed the mRNA 

expression, epigenetic modifications, immune 

significance, and clinical value of THRSP in HCC by 

bioinformatics analysis. The results indicated that the 

expression of THRSP was negatively correlated with its 

methylation and closely correlated with several clinical 

characteristics in HCC patients. The HCC patients with 

higher expression of THRSP have better 5-year 

survival. In addition, THRSP expression was negatively 

correlated with most of the immune cells, and it might 

play an important role in the tumor microenvironment 

of HCC. The further function experiments implicated 

that silencing of THRSP could promote cell 

proliferation, migration, invasion and cell division, and 

inhibited apoptosis of HCC cells. NF-κB, ERK1/ERK2, 

and p38 MAPK signaling pathways were vital for 

THRSP- mediated HCC progression. Eventually, we 

concluded that THRSP may be a promising therapeutic 

target for HCC.  

 

For the other hub genes related to the prognosis of 

HCC, LCAT (Lecithin-cholesterol acyltransferase) is a 

plasma enzyme involved in reverse cholesterol transport 

(RCT) and high-density lipoprotein (HDL) metabolism 

and has been reported to play an important role in many 

other cancers, such as breast cancer [15], Hodgkin 

 

 
 

Figure 7. Transwell and wound healing assays. (A, B) The migration and invasion of HCCLM3 and Huh-7 cells detected by Transwell 
assays (magnification: 200×). (C) The migration ability of HCCLM3 and Huh-7 cells examined by wound healing assays (magnification: 40×). 
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lymphoma [16], and ovarian cancer [17]. The previous 

studies had reported the significantly low expression and 

high DNA methylation of LCAT in HCC patients  

[18–20]. Besides, LCAT plays a crucial role in the 

conversion of liver cirrhosis into HCC [21]. ACSM3, as 

one member of the acyl-CoA synthetase medium-chain 

family, was found to be frequently down-regulated in 

HCC patients exhibiting high AFP levels, high ALT 

levels, large tumors, and multiple nodules. On the 

contrary, higher ACSM3 expression was always 

associated with a better prognosis and may hinder 

metastasis of HCC by downregulating phosphorylation of 

WNK1 and AKT [22]. IGF-1 (growth factor-1) has been 

widely reported that its expression decreased sharply in 

patients with chronic liver disease such as steatosis, 

nonalcoholic steatohepatitis, chronic hepatitis C, cirrhosis, 

and HCC [23–29]. The reason may be that most of the 

circulating levels of IGF-1 were synthesized by the liver 

[30, 31]. IGF1 synthesis decreases when hepatitis or liver 

necrosis occurs. In addition, a prospective cohort study 

demonstrated that IGF-1 can be an independent predictor 

of survival or recurrence in early HCC [32]. IGF1 was 

also demonstrated to play an important role in the cellular 

function aspects of hepatocarcinogenesis and could be a 

therapeutic target against HCC [33–35]. For instance, 

Sorafenib could inhibit macrophage-induced growth of 

hepatoma cells by disrupting IGF1 secretion [34]. 

SRD5A2, also known as steroid 5-alpha-reductase 2, 

encodes a microsomal protein. As a membrane-associated 

enzyme, it catalyzes the transformation of testosterone to 

dihydrotestosterone (DHT). SRD5A2 is highly expressed 

in androgen-sensitive tissues such as the prostate and the 

expression of SRD5A2 is associated with the progression 

of prostate cancer [36–39]. To date, some reports revealed 

that SRD5A2 polymorphism may be associated with liver 

cancer, and it might serve as a robust diagnosis or 

 

 
 

Figure 8. The effect of THRSP expression on cell apoptosis and channel regulation in HCC. (A, B) The apoptosis of HCCLM3 cells 

detected by flow cytometry. (C–F) The expression of apoptosis-related molecules (bax, bcl-2 and caspase 3) and MAPK/NF-κB pathway-
related molecules (erk, p-erk, p38, p-p38, p65 and p-p65) examined by qRT-PCR or Western blotting assays. (G) Each of the protein bands. 
The dividing lines (dashed lines) indicated that the grouping of images were from different parts of the same gel. (H–J) Invasion and migration 
rates were analyzed when treated with AG-126, SB203580, SP600125 and BAY-11-7082 inhibitors. 
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prognosis marker for the diagnosis of HCC [40–42]. 

ACADS, namely acyl-CoA dehydrogenase short-chain, 

encodes a tetrameric mitochondrial flavoprotein and 

catalyzes the initial step of the mitochondrial fatty acid 

beta-oxidation pathway. It was identified as a potential 

biomarker in colon adenocarcinoma and bladder cancer 

[43, 44]. A previous study demonstrated that ACADS 

was significantly down-regulated in HCC tissues and 

was regulated by DNA methylation, which played a key 

role in promoting the proliferation and metastasis of 

HCC [45]. 
 

In summary, by a series of comprehensive bio-

informatics analyses, our study screened six significant 

survival-related hub genes. Among them, we found a 

novel biomarker (THRSP) associated with HCC 

development. The experimental results showed that 

lower expression of THRSP can promote the 

progression of HCC cells. Therefore, THRSP has the 

potential to be a valuable therapeutic target for HCC. 

 

MATERIALS AND METHODS 
 

Datasets preprocessing 
 

Two gene expression profiles GSE84005 and GSE121248 

were obtained from the GEO database. The GSE84005 

dataset, including 38 tumor tissues and paired 38 normal 

tissues from HCC patients, was based on the GPL5175 

platform (Affymetrix Human Exon 1.0 ST Array). The 

GSE121248 dataset, including 70 HCC tissue samples 

and 37 adjacent non-tumor tissue samples, was based on 

the GPL570 platform (Affymetrix Human Genome U133 

Plus 2.0 Array). Two datasets were merged by Perl 5.3 

(available online: http://www.perl.org/) to increase the 

sample size. The merged dataset was batch-normalized by 

“limma” and “sva” packages in R 3.6.3 (https://www.r-

project.org/) to remove batch effects. 
 

Besides, the RNA-sequencing (RNA-seq) data of 373 

HCC and 49 normal samples and the corresponding 

clinical information was downloaded from the TCGA 

database. As recommended by the package “edgeR” in 

R, genes with low read counts (count per million (cpm) 

≤ 1) were omitted. Gene expression was calculated and 

normalized to RPKM (reads per kilobase per million) 

values using function “rpkm” in the “edgeR” package. 

Moreover, DNA promoter methylation data 

(Methylation 450k, including 430 samples) was 

downloaded from the TCGA database via the UCSC 

Xena browser (https://xenabrowser.net/). 

 

WGCNA analysis 
 

The “WGCNA” package in R was applied to construct 

co-expression networks and to explore the key 

modules of highly relevant genes by cluster analysis 

for relating modules to sample traits. In this study, the 

gene expression profiles of TCGA-LIHC and the 

merged dataset of GSE84005 and GSE121248 were 

respectively used to construct WGCNA. Briefly: an 

adjacency matrix was created by Pearson’s 

correlations between each of the gene pairs. Next, the 

adjacency matrix was utilized to erect a scale-free co-

expression network based on the soft threshold power 

β which was selected using the pickSoftThreshold 

function [46]. Subsequently, the adjacency matrix was 

converted into a topological overlap matrix (TOM) as 

well as the corresponding dissimilarity (1-TOM). 

Then, module identification was conducted using the 

dynamic tree Cut approach by average linkage 

hierarchical clustering based on the TOM-based 

dissimilarity measure with the parameters of 

minModuleSize of 50, deepSplit value of 2, and 

mergeCutHeight of 0.25 for the genes dendrogram. 

Afterward, the correlation between module 

eigengenes (MEs) and the clinical trait information 

was calculated by the module-trait relationship 

analysis of WGCNA to identify the clinically 

significant modules in a co-expression network. 

Finally, modules with a high correlation coefficient 

were selected for further analysis. 

 

Identification of differentially co-expressed genes 

 

The “limma” package in R was used to filter the 

DEGs between the HCC and normal samples in the 

TCGA-LIHC and the merged dataset of GSE84005 

and GSE121248. The adjusted P-value (adj. P) < 0.05 

and |log2foldchange (FC)| >1 was set as the criteria of 

DEGs. Then, the overlapping genes between DEG 

lists and co-expression genes from significant 

modules were screened out using the “VennDiagram” 

package in R. 

 

Identification of hub genes 

 

The PPI network was constructed in the STRING 

(http://string-db.org) and visualized by the Cytoscape 

software (Cytoscape_v3.8.0, https://cytoscape.org/) 

[47]. The maximal clique centrality (MCC) analysis 

was performed to extract the candidate hub genes with 

the top20 MCC values in the PPI network using the 

cytoHubba plug-in [48]. Meanwhile, the Molecular 

Complex Detection (MCODE) [49] plug-in of 

Cytoscape was implemented to find significant PPI 

modules with degree cut-off ≥2, node score  

cut-off ≥0.2, K-core ≥2, and max. depth =100. 

Finally, the overlapping genes obtained from the 

MCC analysis and MCODE analysis were regarded as 

hub genes.  

http://www.perl.org/
https://www.r-project.org/
https://www.r-project.org/
https://xenabrowser.net/
http://string-db.org/
https://cytoscape.org/
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The gene expression and prognostic analysis of the 

hub genes 

 

The differential expression analysis of the hub genes 

between HCC and normal tissues was performed 

based on the GEPIA2 database. The 5-year overall 

survival (OS) analysis of these hub genes was 

performed using the “survival” and “survminer” 

packages in R [50].  

 

The correlation between gene expression and clinical 

features 

 

According to the median value of gene expression or 

methylation, the HCC patients were divided into the 

low- or high- group. The chi-square test was utilized to 

investigate the correlation of gene expression as well 

as methylation with clinical characteristics. The 

correlation between DNA methylation and gene 

expression in HCC samples from the TCGA database 

was examined using the Spearman correlation 

coefficient and visualized by “ggplot2” and “ggpubr” 

packages in R. 

 

Immune infiltrate analysis 

 

The online tool TIMER 2.0 (https://cistrome. 

shinyapps.io/timer/) was used for immune infiltrate 

analysis [51]. The abundance of six types of immune 

cells (including CD8+ T cells, CD4+ T cells, B cells, 

neutrophils, macrophages, and dendritic cells) were 

computed by TIMER algorithm. In addition, we 

exploited the correlation between gene expression and 

the gene markers of different kinds of immune cells. 

The immune gene markers of interest used in this study 

were referred to the previous studies [52–56]. 

 

Cell culture  

 

The human normal liver cell line (LO2) and the 

human hepatoma cell lines (HCCLM3 and HUH-7) 

were purchased from Procell Life Science and 

Technology Co., Ltd. (Wuhan, China). The cells were 

cultured in DMEM (Servicebio Technology Co., Ltd, 

Wuhan, China) supplemented with 10% Fetal Bovine 

Serum (FBS, G-CLONE, Beijing, China) and 

maintained in a incubator with 5% CO2‐humidified 

atmosphere at 37° C.  

 

Total RNA extraction and qPCR 

 

The quantitative real-time polymerase chain reaction 

(qRT-PCR) was employed to detect the expressions of 
THRSP. GAPDH was served as a reference gene. Total 

RNA was extracted from tissues and cells by the TRIzol 

reagent (G-CLONE, Beijing, China). The expression of 

THRSP was determined by the SweScript RT I First 

Strand cDNA Synthesis Kit with gDNA Remover and 

the SYBR Green qPCR Master Mix (High ROX) 

(Servicebio Technology Co., Wuhan, China) according 

to the manufacturer’s protocol. The qRT-PCR was 

performed on the StepOne Plus Real-Time PCR 

Systems. The primers used in this study were as 

follows: THRSP forward: 5’-CAGGTGCTAACCAAG 

CGTTAC-3’, THRSP reverse: 5’-CAGAAGGCTGGG 

GATCATCA-3’; GAPDH forward: 5’-GGACCTGACC 

TGCCGTCTAG-3’, GAPDH reverse: 5’-GTAGCCCA 

GGATGCCCTTGA-3’. 

 

IHC analysis  

 

10 pairs of HCC tissues and paracancerous tissues were 

fixed in formalin, dehydrated, and embedded in 

paraffin. The paraffin sections were deparaffinized for 

antigen retrieval and treated with 3% hydrogen peroxide 

for blocking peroxidase activity, with 3% bovine serum 

albumin (BSA) for serum sealing. Afterward, the 

paraffin sections were incubated with primary THRSP 

antibody (Guangzhou Alexan Biotech Co., Ltd., China) 

overnight at 4° C, and then with HRP-conjugated 

secondary antibody for 50 min at room temperature. 

3,3′-Diaminobenzidine (DAB) liquid substrate was used 

for staining and the hematoxylin solution was used for 

nucleus counterstaining. Finally, after dehydration and 

mounting, a microscope was used to acquire images of 

the staining of tissues. 

 

Transfection of small interfering RNA 

 

Three short interfering RNAs (siRNAs) of THRSP (T1: 

5’-ACACCTACTTCACCATGCT-3’; T2: 5’-CCAGGA 

AATGACGGGACAA-3’; T3: 5’-CATGCACCTCACCG 

AGAAA-3’) and negative control siRNA (si-NC) were 

purchased from RiboBio Co., Ltd. (Guangzhou, China). 

HCCLM3 and Huh-7 cells (2×105 per well) were 

inoculated on 24-well plates for 24h and then transfected 

with 25pmol of the RNA duplex according to the 

manufacturer’s protocol of Lipofectamine 2000 

(Invitrogen, Grand Island, NY, USA). After 24h, the 

transfected cells were harvested for the following 

experiments. 

 

CCK-8 assay  

 

The transfected HCCLM3 and Huh-7 cells were 

seeded into 96-well plates (3×103 cells/well) and 

incubated for 24h, 48h and 72h. At each time point, 

10μl of CCK-8 reagent (Guangzhou Alexan Biotech 

Co., Ltd., China) was dripped into each well and the 
cells were cultured for an extra 4h. A micro-plate 

reader was used to detect the absorbance at 450nm to 

evaluate cell proliferation.  

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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Transwell and scratch wound healing assays 

 

Transwell assays were used to determine the migration 

and invasion ability of the HCC cells. The transfected 

HCCLM3 cells and Huh-7 cells in 200μl serum-free 

DMEM (5×104 cells/well) were plated into the upper 

chamber and 600μl of complete medium was added in 

the lower chamber. For cell invasion assay, the 

Transwell chamber was coated with Matrigel (Beijing 

Solarbio Science and Technology Co., Ltd., China). 

After incubating at 37° C for 24h, the remaining cells in 

the upper chamber were removed by a cotton swab. The 

cells that have invaded to the lower surface of the filter 

were fixed with 4% (v/v) neutral formaldehyde solution 

(Servicebio, Wuhan, China) for 30min and stained with 

0.1% Crystal violet for 30min. Finally, the cells in ten 

random microscope fields of each filter were counted. 

 

The transfected HCCLM3 and Huh-7 cells (5×105 cells 

per well) were seeded into 24-well plates. When the cell 

confluence reaches 90%, a scratch wound was created 

using a sterilized pipette tip (200μl) on confluent cells. 

The images of wounds were acquired with a phase-

contrast light (40×) at 0h and 24h. The heal area of each 

scratch wound was determined by ImageJ.  

 

To further understand the molecular mechanism, the 

potential signaling pathways including the NF-κB and 

MAPK signaling pathways were detected by Transwell 

and wound healing assays. Briefly: post of transfection 

for 48h, the cells were harvested and pre-treated with 

BAY-11-7082 (5μM, NF-κB inhibitor), AG-126 

(10μM, ERK1/2 inhibitor), SB203580 (10μM, p38 

MAPK inhibitor) and SP600125 (50μM, JNK inhibitor) 

for 2h in serum-free DMEM medium. Then, the cells 

were cultured in the DMEM medium containing 

inhibitors for 24 hours after being seeded into Transwell 

chambers or culture wells. The cells treated with 

dimethyl sulfoxide (DMSO) were used as the negative 

control. 

 

Flow cytometry 

 

For the cell cycle assays, after 48h of transfection, the 

HCCLM3 cells were trypsinized, and washed with cold 

phosphate-buffered saline (PBS) and then fixed in 70% 

cold ethanol at 4° C for 24 h. After centrifuging and 

washing, the cells were stained with 500μl PI buffer 

(50μg/mL, containing RNase, Beijing Leagene 

Biotechnology Co., Ltd., China) at 37° C in the dark for 

30 min. The cell cycle distribution was determined by 

the Flow cytometer after PI staining. The apoptosis 
analysis was performed following the instruction of 

Annexin-V Apoptosis Detection kit (Jiangsu KeyGEN 

BioTECH Co., Ltd. China). Briefly, 72h post-

transfection, the trypsinized cells were washed with 

cold PBS twice and re-suspended in binding buffer, and 

then stained with Annexin V-FITC and PI at room 

temperature for 5-15 min in the dark. The apoptotic 

cells were analyzed by flow cytometry within an hour. 

 

Western blotting 

 

The total protein was extracted with the nucleoprotein 

and cytoplasmic protein extraction kit (Jiangsu Keygen 

Biotech Co., Ltd., China) and quantified by the BCA 

protein assay kit (Beijing Bomaide Gene Technology 

Co., Ltd., China). After that, the protein solution was 

subjected to electrophoresis, detached via SDS-PAGE 

(12% gels), and transferred to PVDF membranes. The 

PVDF membranes were blocked with 5% skim milk 

powder in TBST (Tris buffered saline with 0.5% Tween 

20) for 2 h, and then incubated with primary antibodies 

overnight at 4° C. After washing with TBST for 5 times, 

the PVDF membranes were incubated with secondary 

antibody at room temperature for an hour. The protein 

bands were exposed by enhanced chemiluminescent 

(ECL) substrate kit (Labgic Technology Co., Ltd. Hefei, 

China) and analyzed by ImageJ software. The Anti-Bcl-

2 antibody, Anti-Caspase-3 antibody, Anti-Bax 

antibody, Anti-NF-κB p65 antibody and Anti-NF-κB 

p65 (phospho S536) antibody were purchased from 

Abcam. The p38 MAPK, Phospho-p38 MAPK 

(Thr180/Tyr182), P44/42 MAPK (Erk1/2), and 

Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) were 

purchased from Cell Signaling Technology. β-actin was 

severed as the internal control and anti-β-actin was 

purchased from Labgic Technology Co., Ltd. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Relationship between THRSP mRNA expression and DNA methylation. (A) THRSP expression was 

negatively correlated with DNA methylation (R = − 0.81, p < 2.2e-16). (B) The distribution of four THRSP DNA promoter CpG sites. (C–F) THRSP 
expression was negatively correlated with the methylation levels of the four CpG sites. From the left to right were cg09721595 (R = − 0.5, p < 
2.2e-16), cg18338296 (R = − 0.82, p < 2.2e-16), cg21864730 (R = − 0.82, p < 2.2e-16) and cg23705113 (R = − 0.72, p < 2.2e-16). 
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Supplementary Figure 2. The correlation between THRSP expression and the clinical features. THRSP mRNA expression was 
stratified by (A) age, (B) family history of cancer, (C) gender, (D) grade, (E) Ishak fibrosis score, and (F) race. 
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Supplementary Figure 3. The correlation between THRSP methylation and the clinical features. THRSP methylation was stratified 

by (A) age, (B) family history of cancer, (C) gender, (D) grade, (E) Ishak fibrosis score, and (F) race. 
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Supplementary Figure 4. The correlation between THRSP expression and immune infiltration levels in HCC. (A) No association 

between THRSP expression and tumor purity (R = −0.046, p = 0.391). (B–G) THRSP expression was significantly negatively correlated with 
infiltrating levels of B cells, CD4+ T cells, and dendritic cells, positively correlated with CD8+ T cells, but not correlated with macrophages or 
neutrophils. 
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Supplementary Table 
 

Supplementary Table 1. Correlations between THRSP and related genes and markers of immune cells. 

Description gene makers 

LIHC 

None Purity 

Cor p Cor p 

CD8+ T cell 
CD8A -0.067 0.198 -0.099 0.066 

CD8B -0.078 0.134 -0.109 * 

T cell (general) 

CD3D -0.152 ** -0.183 *** 

CD3E -0.105 * -0.16 ** 

CD2 -0.122 * -0.176 ** 

CD6 -0.111 * -0.163 ** 

CD3G -0.108 * -0.13 * 

B cell 

CD19 -0.118 * -0.14 ** 

KIAA0125 -0.126 * -0.166 ** 

SPIB -0.242 *** -0.265 *** 

PNOC -0.161 ** -0.22 *** 

CD79A -0.132 * -0.181 *** 

Monocyte 
CD86 -0.143 ** -0.198 *** 

CSF1R -0.108 * -0.167 ** 

Macrophages 

CD68 -0.184 *** -0.218 *** 

CD84 -0.004 0.946 -0.047 0.388 

MS4A4A -0.034 0.512 -0.084 0.12 

TAM 

CCL2 0.039 0.452 0.033 0.541 

CD68 -0.184 *** -0.218 *** 

IL10 -0.052 0.319 -0.093 0.086 

CSF1R -0.108 * -0.167 ** 

M1 

IRF5 -0.061 0.241 -0.065 0.228 

NOS2 0.126 * 0.106 * 

PTGS2 -0.006 0.907 -0.028 0.605 

M2 

CD163 0.022 0.67 -0.012 0.831 

VSIG4 0.065 0.211 0.04 0.455 

MS4A4A -0.034 0.512 -0.084 0.12 

MRC1 0.162 ** 0.144 ** 

Neutrophils 

CEACAM8 -0.06 0.246 -0.077 0.152 

ITGAM 0.052 0.322 0.03 0.578 

CCR7 -0.013 0.809 -0.049 0.362 

FCGR3B 0.154 ** 0.154 ** 

SIGLEC5 -0.11 * -0.17 ** 

CSF3R -0.138 ** -0.19 *** 

Dendritic cell 

HLA-DPB1 -0.151 ** -0.208 *** 

HLA-DQB1 -0.13 * -0.177 *** 

HLA-DRA -0.091 0.08 -0.139 ** 

HLA-DPA1 -0.101 0.052 -0.157 ** 

BDCA-1 -0.14 ** -0.17 ** 

BDCA-4 -0.192 *** -0.194 *** 

ITGAX -0.111 * -0.162 ** 

HSD11B1 0.523 *** 0.522 *** 

CD209 -0.017 0.743 -0.04 0.46 
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Th1 

STAT4 0.002 0.97 0.002 0.974 

STAT1 -0.155 ** -0.167 ** 

TBX21 -0.012 0.82 -0.05 0.351 

IFNG -0.047 0.362 -0.078 0.149 

TNF -0.103 * -0.151 ** 

Th2 

STAT5A -0.126 * -0.137 * 

IL13 0.287 *** 0.297 *** 

GATA3 -0.079 0.127 -0.124 * 

STAT6 -0.099 0.056 -0.108 * 

CXCR4 -0.186 *** -0.222 *** 

Th1-like BHLHE40 0.305 *** 0.3 *** 

Th17 
RORC 0.251 *** 0.285 *** 

CCR6 -0.313 *** -0.33 *** 

Treg 

CCR8 -0.06 0.251 -0.09 0.096 

STAT5B 0.006 0.908 0.006 0.917 

TGFB1 -0.212 *** -0.246 *** 

Resting Treg T-cell IL2RA -0.139 ** -0.189 *** 

Effective Treg T-cell 

FOXP3 0.211 *** 0.198 *** 

CTLA4 -0.224 *** -0.269 * 

TNFRSF9 -0.103 * -0.129 * 

Naïve T-cell TCF7 -0.15 ** -0.17 ** 

Effective memory T-cell DUSP4 -0.27 *** -0.328 *** 

Resistant memory T-cell 

ITGAE -0.443 *** -0.45 *** 

CXCR6 -0.072 0.167 -0.119 * 

MYADM -0.235 *** -0.243 *** 

Exhausted T-cell 

HAVCR2 -0.127 * -0.185 *** 

TIGIT -0.11 * -0.153 ** 

LAYN -0.129 * -0.149 ** 

PDCD1 -0.209 *** -0.247 *** 

CTLA4 -0.224 *** -0.269 *** 

LAG3 -0.114 * -0.121 * 

PTGER4 -0.124 * -0.149 ** 

LIHC, Liver hepatocellular carcinoma. None, correlation without adjustment. Purity, correlation adjusted by purity. 
P-value: 0 ≤ *** <0.001 ≤ ** < 0.01 ≤ * < 0.05. 


